
MENDEL — Soft Computing Journal, Volume 27, No.1, June 2021, Brno, Czech RepublicX 

Comparison of Multiple Reinforcement Learning and Deep Reinforcement Learning

Methods for the Task Aimed at Achieving the Goal

Roman Parak�, Radomil Matousek�

Institute of Automation and Computer Science, Brno University of Technology, Czech Republic

Roman.Parak@vutbr.cz�, RMatousek@vutbr.cz�

Abstract

Reinforcement Learning (RL) and Deep Reinforcement Learning (DRL) methods
are a promising approach to solving complex tasks in the real world with physi-
cal robots. In this paper, we compare several reinforcement learning (Q-Learning,
SARSA) and deep reinforcement learning (Deep Q-Network, Deep Sarsa) methods
for a task aimed at achieving a goal using robotics arm UR3. The main optimiza-
tion problem of this experiment is to find the best solution for each RL/DRL
scenario, respectively, minimize the Euclidean distance accuracy error and smooth
the resulting path by the Bézier spline method. The simulation and real word
application are controlled by the Robot Operating System (ROS). The learning
environment is implemented using the OpenAI Gym library, which uses the RVIZ
simulation tool and the Gazebo 3D modeling tool for dynamics and kinematics.
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1 Introduction

Robotics as a field of science has been evolving for the
past several years and modern robots operating in the
real world should learn new tasks autonomously, flex-
ibly and adapt smoothly to different changes. These
requirements create new challenges in the field of
robot control systems. For this purpose, reinforcement
learning (RL) methods such as Q-Learning, SARSA
(State–action–reward–state–action), etc. are com-
monly used [27]. A limitation of these learning meth-
ods is the need for a large amount of memory.

In recent years, there has been an increase in deep
neural network (DNN) methods in several areas of
science, technology, medicine, and more, along with
significant advances in Deep Reinforcement Learning
(DRL) techniques [11]. DRL overcomes the limitations
of simple RL methods by combining parallel computa-
tion and embedded deep neural networks (DNN).

Reinforcement Learning (RL) and Deep Reinforce-
ment Learning (DRL) methods are a promising ap-
proach to solving complex tasks in the real world
with physical robots. RL/DRL methods are also used
in real-world applications, such as improvements in
the gaming industry for the Go game [24], as well
as in robotic applications for manipulation [21], goal
achievement [5, 22], Human-Robot Collaboration [9],
and more [17].

Planning the trajectory of the robotic arm as one
of the most basic and challenging research topics in
robotics has found considerable interest from research
institutes in recent decades. Traditional task and
motion planning methods, such as RRT [18], RRT*
[31] can solve complex tasks but require full state ob-

servability, a lot of time for problem solving and are
not adapted to dynamic scene changes. Advanced
RL/DRL techniques can solve motion planning tasks
for multiple-axis industrial robot [23].

Figure 1: Experimental task aimed at achieving the
goal using the UR3 robot. The purple box (Atarget)
here is approximately the area of restriction from which
the targets are sampled, and the yellow box (Asearch)
represents the area of safe movement. The distance be-
tween the start (Pi) and target (Pt) point is described
by Euclidean Distance.

In this paper, we propose several RL/DRL methods
for the task aimed at achieving the goal using the co-
operating robotic arm UR3 for Universal Robots, more
precisely a 6-axis robotic arm [28]. The basic scene of
our experiment and the real robot in the initial position
position are shown in Fig. 1.
We capitalize the related work in multiple areas of re-

inforcement learning, deep reinforcement learning, mo-
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tion planning, etc. (Section 2 Related Work), and we
also summarize the necessary methods needed to create
our work (Section 3 Methods).

In the main part of the work, we focus on solving the
problem, achieving the goal using advanced methods
of motion planning (Section 4 Experiments and Re-
sults). Our approach compares different learning tech-
niques (Reinforcement Learning / Deep Reinforcement
Learning) to find the trajectory from the initial posi-
tion to the target position and the resulting trajectory
smoothing using a Bézier spline (B-spline) curve.

In the final part of the paper, we focus on the chal-
lenges we have encountered, the current limitations,
and future extensions of our work (Section 5 Conclu-
sion and Future Work).

2 Related Work

Our approach to finding a point in Cartesian space
using multiple RL/DRL techniques is based on previ-
ous work in the areas of reinforcement learning, deep
reinforcement learning, and motion planning. In the
following section, we will briefly discuss previous work
on each of the relevant topics.

In research in the field of robotic motion planning,
the concept of machine learning emerges. In particular,
Reinforcement Learning (RL) and Deep Reinforcement
Learning (DRL) techniques are an area of growing in-
terest for the robotic research community.

Researchers at Erle Robotics have created a frame-
work for testing various RL/DRL algorithms called
OpenAI Gym [6, 32]. Various robot simulation tools
are used as an extension of the OpenAI toolkit, with
Gazebo [1, 15] and PyBullet [8] being the most com-
monly used today. The connection of the robotic tool
with the robust physical core and the Gym toolkit is
created using the ROS (Robot Operating System) [25].

RL/DRL methods are used in robotic applications in
the real world for several experiments. One of the ap-
proaches is focused on unscrewing operations in robotic
disassembly of electronic waste using the Q-Learning
method [16], other approaches have used a robotic arm
to achieve a goal using the Deep Reinforcement Learn-
ing method DQN (Deep Q-Network) [5], TRPO(Trust
Region Policy Optimization)[22] and tested the result
of the experiment in a real application. Some ap-
proaches use 2D/3D cameras and some other sensors
to observe the robotic environment [5, 10, 12], others
use only dynamic simulation with the specified environ-
ment [13, 16] or use real-time robot learning techniques
[19].

Motion planning is one of the most fundamental re-
search topics in robotics. Some of the approaches have
used traditional planning methods, such as RRT [18],
RRT* [31], where structured tree methods are used
to find the curve from point A to point B. Other ap-
proaches use modern techniques, such as RL/DRL, but
both methods use Bézier curves to characterize com-
plex trajectories and smooth motion planning [23].

3 Methods

This section provides a brief introduction to the the-
ory of Reinforcement Learning, Deep Reinforcement
Learning, as well as path smoothing techniques us-
ing the Bézier spline curve. In each subsection, we
present two methods of RL (Q-Learning, SARSA) /
DRL (Deep Q-Network, Deep Sarsa) control and the
last subsection is focused on trajectory smoothing.

3.1 Markov Decision Process

Markov Decision Process (MDP) is a classical formula-
tion of sequential decision making, where actions influ-
ence not just immediate rewards, but also subsequent
situations or states, and through those future rewards
[27]. MDPs include late reward and the need to com-
promise with immediate and late reward.
The MDP contains a structure of four basic elements:

(st; at;P (st+1|st; at);R(st+1|st; at)), where st and st+1

elements represents the current and next state, at
part represents the action, P (st+1|st; at) means the
probability of transition to the state st+1 when tak-
ing action at in state st, and the last part of ele-
ments R(st+1|st; at) represents the immediate reward
received from the environment after the transition from
st to st+1. The agent and environment interact at each
in a sequence of discrete time steps, t = 0, 1, ... Proba-
bility of transition in the MDP structure is depending
on the current state st and chosen action at [11, 27, 33].

Figure 2: Basic structure of agent-environment inter-
action in Markov’s decision-making process (MDPs)
[11, 27]

3.2 Reinforcement Learning

Reinforcement learning (RL) is an area of machine
learning that deals with gradual decision-making. The
main task of this method is to learn how agents ought
to take sequences of actions in an environment to max-
imize cumulative rewards. Markov decision processes
(MDP) are an ideal mathematical formulation for RL
problems, for which a direct learning methodology to
achieve the goal is proposed. The agent decides to
receive not only the current remuneration, but also
cumulative remuneration in the next learning state
[11, 27, 33].
The agent and MDP together form a sequence that

contains a number of state-action pairs represented as
τ = ((s0, a0), (s1, a1), . . . ). The return is defined as the
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discounted return for the sequence τ at the time steps
t:

Rt(τ) =

∞
∑

t′=t

γt′−trt′ , (1)

where γ is a discount factor ((0 ≤ γ ≤ 1)), rt′ is the
reward at time steps t′.
The main optimization problem of the RL method is

the need to find the optimal policy π∗, which is defined
such as maximizing the expected return

π∗ = argmax
π

E
τ∼π

[Rt(τ)]. (2)

Q-Learning (QL):

is one of the most popular methods of Reinforce-
ment Learning. The QL method was developed as an
off-policy TD (Temporal difference) control algorithm,
defined by

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a

Q(st+1, at)

−Q(st, at)],

(3)

where α is a learning rate (0 < α ≤ 1),
max

a
Q(st+1, a) is estimate of the optimal future

value, and other parameters are described in the
previous section [11, 27].

State–action–reward–state–action (SARSA):

is an on-policy TD control method, very similar to
the previous Q-Learning method. SARSA method is
characterized by using the next action [27].

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a

Q(st+1, at+1)

−Q(st, at)],

(4)

3.3 Deep Reinforcement Learning

Deep reinforcement learning (DRL) combines artificial
neural networks (ANN) with a learning reinforcement
architecture that allows agents to learn the best pos-
sible actions in an individual environment to achieve
their goals. The main approach of this method is to
approximate the function and optimize the goals, map-
ping the state-action pairs to the expected rewards
[11, 33]. This area of research can solve a wide range
of complex decision-making tasks that were previously
out of reach for a machine.
The learning agent’s DRL methods with auxiliary

tasks within a jointly learned representation can signif-
icantly increase the effectiveness of the learning sam-
ple. The learning agent’s DRL methods with auxiliary
tasks within a jointly learned representation can signifi-
cantly increase the effectiveness of the learning sample.

This is based on simultaneously maximizing a number
of pseudoreward functions, such as immediately pre-
dicting the reward (γ = 0), predicting changes on the
next observation, or predicting the activation of some
hidden unit of the agent’s neural network [11].

Deep Q-Network (DQN):

is a combination of Q-learning with deep convolu-
tional ANN and reinforcement learning method, multi-
layer and deep ANN specialized in the processing of
spatial data fields. For a given state of the neural net-
work s, the output is a vector of action valuesQ(s, a; θ),
where θ are the network parameters [11, 29]. The two
most important components of the DQN algorithm are
the use of the target network and the use of the expe-
rience replay. The formula used by DQN is then:

Q(st, at; θt)← Q(st, at; θt)

+ α[(rt+1 + γmax
a

Q(st+1, at; θt)

−Q(st, at; θt))
2],

(5)

where a target network with parameters θt, is the
same as the online network except that its parameters
are copied every τ steps from the online network, so
that then θt = θt, which implies that weight of the
neural network [29].

Deep SARSA (DSARSA):

is similar to the previous part. In the structure
of learning, the approximation of the value function
is with the convolutional neural network (CNN), that
uses Q-network to obtain Q value like DQN. The Func-
tion is represented by a CNN with weights θ and an
output that represents the Q-values for each action[20].

Q(st, at; θt)← Q(st, at; θt)

+ α[(rt+1 + γmax
a

Q(st+1, at+1; θt−1)

−Q(st, at; θt))
2],

(6)

3.4 Bézier-Spline Curves

Bézier curves use Bernstein’s polynomials, which were
described in 1912 by the Russian mathematician Sergei
Bernstein [30].
B-spline curves, like Bézier curves, use polynomials

to generate a curve segment. The main difference be-
tween simple Bézier curves and a B-spline is that B-
Spline is used as a series of control points to determine
the local geometry of the curve. This feature ensures
that only a small portion of the curve is changed when
a control point is moved [30]. A Bézier spline curve of
degree p is defined by n+1 control points P0, P1, .., Pn

[2]:

B(t) =
n
∑

i=0

Ni,p(t)Pi, (7)

where Ni,p(t) is a normalized B-Spline curve defined
over the nodes.
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4 Experiments and Results

In this section, we present an application that includes
a task using several RL/DRL techniques for the point
of Cartesian space achievement problem using an col-
laborative manipulator with 6-DOF (Degrees of Free-
dom). The experiment will be demonstrated in simu-
lation and in the real world.

4.1 Setting up the learning environment

For our experiment, we will use a cooperating robotic
arm UR3 from Universal Robots (Fig. 1), more pre-
cisely a 6-axis robotic arm with a working radius of 500
mm/19.7 inches, a payload of 3 kg/6.6 pounds and a
repeatability of ±0.1 mm [28].

The simulation is controlled through communica-
tion between the RVIZ [7, 26] simulation tool and the
Gazebo 3D modeling tool [1, 15]. In our experiment,
we use the UR3 URDF model (Universal Robotic De-
scription Format) without a gripper and the official
ROS driver for Universal Robots [3], which is used to
control real / simulation robots.
The main structure of our experiment is shown in

Fig. 1. Fig. 3 shows a simplified structure of the
UR3 model in the RVIZ simulation tool. The blue
sphere represents the initial position of the robot and
the target to be reached by the robot is represented
as a red sphere. The purple box (Atarget) is approx-
imately the area of restriction from which targets are
removed, and the yellow box (Asearch) represents the
area of safe movement. The safe area is created with
given to the individual robot model to avoid collisions
with the target area (imagine that the target area is a
bin for an object selection problem).

Figure 3: Learning environment of the UR3 model in
the RVIZ simulation tool.

4.2 Definition of experiment

In our problem, we choose a task aimed at achieving
a goal in Cartesian space using a robotics arm. The

task aims to autonomously find the trajectory from
the initial position to the target position using various
learning techniques (Reinforcement Learning / Deep
Reinforcement Learning) and using the Bézier spline
method to smooth the resulting trajectory.
First, the robot position is initialized and the target

position is randomly selected. When selecting a target
position, we start the learning process for each learn-
ing technique. The distance between the start Pi and
target Pt point is described by Euclidean Distance dt
(Eq. 8).

dt(Pi, Pt) =

√

√

√

√

n
∑

i=1

(Pi − Pt)2, (8)

4.3 Learning process

We implement the learning environment within the
OpenAI Gym library [6, 32], which provides a inter-
face to train and test the learning process.
To evaluate our algorithm, we performed identical

experiments with several RL/DRL techniques. In the
first experiment we use classical RL techniques (QL,
SARSA) and in the next experiment we use modern
DRL techniques (DQN, DSARSA). Hyper-parameters
of individual RL/DRL techniques are given in the table
(Tab. 1, Tab. 2).

Table 1: Hyper-parameters used for Reinforcement
Learning method (Q-Learning, DARSA)

Hyper-parameter Symbol Value

Episodes of Training Mmin, Mmax 500, 1000
Steps per Episode T 100
Discount Factor γ 0.75
Learning Rate α 0.3

Table 2: Hyper-parameters used for Deep Reinforce-
ment Learning method (DQN, DSARSA)

Hyper-parameter Symbol Value

Episodes of Training Mmin, Mmax 500, 1000
Steps per Episode T 100
Discount Factor γ 0.95
Learning Rate α 0.0003
Batch Size N 64
Replay Buffer Size B 2000
Optimizer - Adam [14]

The reward function of the goal achievement exper-
iment in each learning technique is defined as:

Rt =
dt(Pp, Pt)− dt(Pa, Pt)

dt(Pi, Pt)
+Rs, (9)

where dt(Pi, Pt) is the initial Euclidean distance
between the start Pi and target point Pt, and
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Figure 4: Agent-environment interaction in Markov’s
decision-making process (MDPs) in our problem. The
environment in our problem represents the communi-
cation between the RVIZ [7, 26] simulation tool and
the Gazebo [1, 15] 3D modeling tool via ROS [25].
The agent represents the RL/DRL methods used in
our problem.

(dt(Pp, Pt) − dt(Pa, Pt)) is the Euclidean distance
difference in real time (Pp – previous position, Pa –
actual position). The parameter Rs assumes values
higher than 0 when the condition is successfully done,
which is determined by the accuracy of the results
(Eq. 10).

Rs =

{

0.25, if δd ≤ 5%.

0, otherwise.
(10)

where δd is the error of accuracy of the Euclidean
distance, defined as:

δd =
dt(Pa, Pt)

dt(Pi, Pt)
.100. (11)

The learning process of the RL/DRL agent begins
by examining the environment by performing actions
from the initial state to the target state and collecting
appropriate rewards (Eq. 9). In our experiment, the
agent can select one of six possible actions (at = (0..5))
in each state (st = (X+, X−, Y+, Y−, Z+, Z−)), and the
available actions correspond to fixed discrete steps 5
mm of the Tool Center Point (TCP).
Once the agent moves from Asearch, the episode M

ends in the current step T , otherwise the process con-
tinues until the maximum number of episodes.

4.4 Experimental results

The training results of the proposed target achieve-
ment experiment using the UR3 robotic arm are shown
in Fig. 5 (a. Q-Learning, b. SARSA, c. Deep Q-
Network, d. Deep SARSA), including the mean cumu-
lative reward with the number of iterations in each of
the episodes.
The main goal of the optimization problem in the

case of the learning process was to maximize the ex-

pected cumulative reward (Fig. 5) and to minimize the
Euclidean distance accuracy error (Fig. 6).

(a) Q-Learning

(b) SARSA

(c) Deep Q-Network

(d) Deep SARSA

Figure 5: Training results of RL/DRL techniques using
the environment to achieve the goal of the UR3 robot.
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δd ≤ 5.0% δd ≤ 10.0% δd > 10.0%

Figure 6: Minimization of Euclidean distance accuracy
error for each of the learning techniques.

(a) Q-Learning

(b) SARSA

(c) Deep Q-Network

(d) Deep SARSA

Figure 7: Test case of a robotic arm for the task of
achieving a goal: Without trajectory optimization.

(a) Q-Learning

(b) SARSA

(c) Deep Q-Network

(d) Deep SARSA

Figure 8: Test case of a robotic arm for the task
of achieving a goal: With trajectory optimization by
smoothing the path using B-Spline.

After the learning process, the robotic arm UR3 is
tested with the RVIZ simulation tool and the Gazebo
3D modeling tool, which communicate through ROS.
In each learning technique, we choose the best solution
and execute the movement of the planning path. The
resulting path is smoothed by the Bézier spline method
using the GEOMDL library [4]. The trajectory results
of the proposed experiment in each scenario are shown
in Fig. 7 without B-Spline, and Fig. 8 with B-Spline.
The result of the learning experiment is also tested

in a real robotic application using the official ROS
driver [3]. A demonstration of the proposed optimiza-
tion path using the DQN learning technique is given in
Fig. 9.
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(a) 0% (b) 25% (c) 50% (d) 75% (e) 100%

Figure 9: Test case of a robotic arm for the task of achieving a goal in a real robot application. The experiment
using the proposed optimization path is performed by the DQN learning technique.

Table 3: Results of RL/DRL learning techniques for the goal achievement experiment

Learning
Technique

Number of
episodes

Best solution
(Episode; Time)

Number of points
from Pi to Pt

Accuracy error
δd

Time
Default

Time
B-Spline

Q-Learning 500 (279; 04:55 hr.) 63 2.98% 5.25 sec. 2.27 sec.
SARSA 800 (772; 18:29 hr.) 92 8.48% 7.83 sec. 4.33 sec.

Deep Q-Network 500 (440; 15:48 hr.) 83 4.16% 6.57 sec. 2.89 sec.
Deep SARSA 500 (371; 13:25 hr.) 78 2.90% 6.79 sec. 2.44 sec.

5 Conclusion and Future Work

In this work, we provided the experimental study of
multiple reinforcement learning (RL)/deep reinforce-
ment learning algorithms (DRL), namely Q-Learning
(QL), SARSA for RL methods, and Deep Q-Network
(DQN), Deep Sarsa (DSARSA) for DRL methods. We
presented related work on the problem of achieving the
goal using RL/DRL techniques. In this work, we also
introduced in more detail the various learning methods
and techniques for trajectory smoothing. The simula-
tion is controlled by communication between the sim-
ulation tool RVIZ and the Gazebo 3D modeling tool
via the Robot Operating System (ROS). The main op-
timization problem of this experiment is to find the
best solution for each RL/DRL scenario, respectively,
minimize the Euclidean distance accuracy error δd.
RL (QL) and DRL (DQN, DSARSA) techniques com-
pleted the conditions for the required accuracy repre-
sented by Rs, but in the perspective of the future re-
search are techniques based on deep neural network are
more stable and efficient. The resulting path found in
each scenario is smoothed by the Bézier spline method
and tested in a real robotic application using the official
ROS driver.

This work can provide a foundation for future re-
search on motion planning in the field of robotics using
advanced deep reinforcement learning methods such
as DDPG (Deep Deterministic Policy Gradient), TD3
(Twin Delayed Deep Deterministic Policy Gradient)

and more. This research can also provide a suitable ba-
sis for other areas of learning, such as the Pick & Place
task, Bin-picking, etc., and the use of other robotic arm
models.

Acknowledgement: This work was supported by In-
ternal grant agency of BUT: FME-S-20-6538 “Industry
4.0 and AI methods”.
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