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Abstract

Background: Predictions in pregnancy care are complex because of interactions among multiple factors. Hence, pregnancy
outcomes are not easily predicted by a single predictor using only one algorithm or modeling method.

Objective: This study aims to review and compare the predictive performances between logistic regression (LR) and other
machine learning algorithms for developing or validating a multivariable prognostic prediction model for pregnancy care to
inform clinicians’ decision making.

Methods: Research articles from MEDLINE, Scopus, Web of Science, and Google Scholar were reviewed following several
guidelines for a prognostic prediction study, including a risk of bias (ROB) assessment. We report the results based on the PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Studies were primarily framed as PICOTS
(population, index, comparator, outcomes, timing, and setting): Population: men or women in procreative management, pregnant
women, and fetuses or newborns; Index: multivariable prognostic prediction models using non-LR algorithms for risk classification
to inform clinicians’ decision making; Comparator: the models applying an LR; Outcomes: pregnancy-related outcomes of
procreation or pregnancy outcomes for pregnant women and fetuses or newborns; Timing: pre-, inter-, and peripregnancy periods
(predictors), at the pregnancy, delivery, and either puerperal or neonatal period (outcome), and either short- or long-term prognoses
(time interval); and Setting: primary care or hospital. The results were synthesized by reporting study characteristics and ROBs
and by random effects modeling of the difference of the logit area under the receiver operating characteristic curve of each non-LR
model compared with the LR model for the same pregnancy outcomes. We also reported between-study heterogeneity by using

τ2 and I2.

Results: Of the 2093 records, we included 142 studies for the systematic review and 62 studies for a meta-analysis. Most
prediction models used LR (92/142, 64.8%) and artificial neural networks (20/142, 14.1%) among non-LR algorithms. Only
16.9% (24/142) of studies had a low ROB. A total of 2 non-LR algorithms from low ROB studies significantly outperformed
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LR. The first algorithm was a random forest for preterm delivery (logit AUROC 2.51, 95% CI 1.49-3.53; I2=86%; τ2=0.77) and

pre-eclampsia (logit AUROC 1.2, 95% CI 0.72-1.67; I2=75%; τ2=0.09). The second algorithm was gradient boosting for cesarean

section (logit AUROC 2.26, 95% CI 1.39-3.13; I2=75%; τ2=0.43) and gestational diabetes (logit AUROC 1.03, 95% CI 0.69-1.37;

I2=83%; τ2=0.07).

Conclusions: Prediction models with the best performances across studies were not necessarily those that used LR but also
used random forest and gradient boosting that also performed well. We recommend a reanalysis of existing LR models for several
pregnancy outcomes by comparing them with those algorithms that apply standard guidelines.

Trial Registration: PROSPERO (International Prospective Register of Systematic Reviews) CRD42019136106;
https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=136106

(JMIR Med Inform 2020;8(11):e16503) doi: 10.2196/16503
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Introduction

Background

Pregnancy is a common health condition that requires long-term
rigorous care to anticipate adverse outcomes. Most pregnancy
outcomes are identified after delivery; however, these are results
of interactions among multiple factors occurring for many weeks
beforehand. The number of factors and their interactions along
with the time intervals make predictions of pregnancy outcomes
very complicated. Multiple or multivariable logistic regression
(LR) is widely used to deal with similar multifactorial problems
in health outcome research [1]. Applied to medicine, statistics,
and machine learning (computer science), this algorithm fits
multiple parameters in a prediction model by assuming that
predictors are linearly and additively related to an outcome [2].
Nevertheless, nonlinear problems commonly occur in human
physiology because of complex interactions, such that a linear
model might not be capable of adequately predicting outcomes
[3]. With the growth of machine learning applications in health
care, applying other algorithms may scale up the solution space
for accurate predictions of pregnancy outcomes long before
giving birth.

Despite improvements in maternal and neonatal mortality,
conditions still differ between developing and developed
countries or regions [4]. The most common causes of maternal
deaths are hemorrhage, hypertension, and sepsis [5], whereas
the causes of neonatal deaths are mostly due to prematurity,
birth asphyxia, and infections [6]. Postpartum hemorrhage and
sepsis are further compounded by multiple causes and risk
factors [7,8], and hypertension in pregnancy or prematurity is
associated with multiple mechanisms [9,10]. The
aforementioned diseases and complications cannot be very easily
predicted by a single epidemiological predictor, a single measure
by a medical device, or a single biomarker. Furthermore,
interactions among multiple predictors also might not be
captured by a single machine learning algorithm including LR.
Therefore, a prediction study may need to compare multiple
machine learning algorithms to develop a prognostic prediction
model that uses multiple predictors.

Machine learning algorithms have long been applied for clinical
prediction purposes. A support vector machine demonstrated a

summary of receiver operating characteristics (ROCs) of >90%
for breast cancer prognostic prediction [11]. To predict
therapeutic outcomes in depression, the pooled estimated
accuracy of machine learning algorithms was 0.82 (95% CI
0.77-0.87) [12]. However, the difference in the logit area under
the ROC curve (AUROC) was 0.00 (95% CI −0.18 to 0.18)
between LR and machine learning in studies with a low risk of
bias (ROB) [13]. A similar conclusion was found for predicting
intracerebral hemorrhage (P=.49) outlined in a systematic review
[14]. These previous results imply that (1) machine learning
algorithms may or may not perform better than traditional
modeling by LR and (2) applying only a single algorithm may
cause an investigator to lose the chance to obtain a model with
optimal predictive performance using the same predictors.
Meanwhile, a unique interaction should exist between a set of
predictors and a pregnancy outcome. A particular predictive
algorithm may work best to capture this predictor-outcome
interaction. Prediction tasks are even more challenging in
pregnancy care because they demand more prognostic instead
of diagnostic predictions. Yet, unlike the common nature of
other long-term conditions in health care (eg, diabetes mellitus),
the onset, time to event, and target population in pregnancy care
are rather apparent. However, unpredictable events leading to
disabilities and death in a population such as pregnant women
or newborns are also not easily accepted as in other populations
(eg, patients with cancer and older adults). Thus, clinicians
should apply several prediction models with satisfactory
predictive performances throughout the pregnancy period.
Clinicians and investigators would benefit from knowing
whether an LR or other algorithms have a better chance of
achieving satisfactory predictive performances for a particular
pregnancy outcome. However, no previous systematic review
in pregnancy care has reviewed multiple machine learning
algorithms and compared their predictive performances,
including LR, to predict pregnancy outcomes.

This review will allow investigators and clinicians in pregnancy
care to consider the development or application of prediction
models throughout the pregnancy period. This review
demonstrates which algorithms have shown robust predictive
performances for a particular pregnancy outcome using a similar
set of predictors. Investigators in pregnancy care may also
consider whether a reanalysis by another predictive algorithm
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is needed by using existing data previously analyzed by an
algorithm including LR. Beyond the algorithm issue, the
development of machine learning models also requires an
adequate methodology and interpretable results [15]. Biased
conclusions should be avoided when describing machine
learning predictive performances [11,16]. Standard guidelines
are important when investigating and reviewing machine
learning applications in clinical prediction modeling [15,17].

Objectives

By applying the standard guidelines, we aim to review machine
learning models and compare their predictive performances
between LRs and other machine learning algorithms. In this
review, we focus on machine learning models either developed
or validated for making prognostic predictions in pregnancy
care intended to inform clinicians’ decision making.

Methods

Protocol and Registration

We reported this study based on PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) guidelines
[18] and conducted the review based on several guidelines
related to prediction studies. The review objective was defined
according to a standard of key items [19]. Our eligibility criteria
were composed of items elaborated with 2 guidelines for
developing and reporting a prediction model and a guideline
for assessing the applicability. These included transparent
reporting of a multivariable prediction model for individual
prognosis or diagnosis (TRIPOD) [20] and another that focuses
on machine learning modeling in biomedical research (hereafter
referred to as guidelines for developing and reporting machine
learning predictive models in biomedical research
[MLP-BIOM]) [15]. Applicability was assessed using
assessments that were a part of the prediction model risk of bias

assessment tool (PROBAST) [17,21]. Data were extracted based
on the checklist for critical appraisal and data extraction for
systematic reviews of prediction modeling studies (CHARMS),
which also describes items for the review objective. Our review
protocol was registered with PROSPERO (CRD42019136106).

Eligibility Criteria

Before defining the eligibility criteria, we decided to view the
LR as one of many algorithms in the machine learning field
with respect to its use in statistics and data science. A prediction
model development consisted of several elements: predictor
selection, parameter fitting, and hyperparameter optimization
[2]. In this review, the term prediction model refers to all those
elements, whereas the term prediction algorithm refers to a
parameter-fitting method. Using the same set of predictors, we
would expect different predictive performances if the parameters
of a model are fitted using different algorithms. A prediction
algorithm in machine learning is a way for the computer to learn
from data by fitting the parameters with respect to predicting a
class measured by hyperparameters from the human user [22].
Several optimization algorithms have been developed to reduce
the human role in determining these hyperparameters, such as
sequential search, random search, and Bayesian optimization
[23]. However, that is beyond the scope of this review.

By focusing on prediction algorithms, we defined eligibility
criteria to screen studies by the title, abstract, and full text. We
also assessed the applicability by examining the full text. These
were the candidates we selected for the qualitative analysis.
Key items of population, index, comparator, outcomes, timing,
setting (PICOTS) [19] and additional items [15,20] composed
the eligibility criteria. The first item of these criteria was a
review question framed using PICOTS. The key items consisted
of the following:

1. Population: men or women in procreative management,
pregnant women, and fetuses or newborns.

2. Index: multivariable prognostic prediction models applying
non-LR algorithms for risk classification tasks intended to
inform clinicians’ decision making.

3. Comparator: multivariable prognostic predictions applying
an LR algorithm, excluding a scoring system in which the
parameters determined by humans instead of using LR, for
risk classification tasks intended to inform clinicians’
decision making.

4. Outcomes: pregnancy-related outcomes of procreative
management or pregnancy outcomes for pregnant women
or fetuses or newborns.

5. Timing: with predictors being measured at the pre-, inter-,
and peripregnancy periods and outcomes being assessed at
the pregnancy, delivery, and either puerperal or neonatal
period, short- and long-term prognoses were applied.

6. Setting: primary care or hospital.

Additional items were the availability of several reporting
components as required by TRIPOD and MLP-BIOM. These
components included (1) data sources, (2) outcomes, (3)
evaluation metrics, (4) predictors, (5) descriptive statistics, (6)
event sample sizes, (7) modeling methods or algorithms, and
(8) model validation.

After briefly screening studies by eligibility criteria, we
conducted an applicability assessment by thoroughly examining
the full texts. Using PROBAST guidelines, we assessed the
applicability according to the review question framed by
PICOTS. Low, high, or unclear criteria were determined for
applicable, not applicable, or unclear applicability, respectively.
The assessment covered 3 domains of participants, predictors,
and outcomes. Only those fulfilling low criteria were selected
for the qualitative analysis.

For the quantitative analysis, studies had to report the AUROC.
Studies were selected from those applicable for the qualitative
analysis. If there were at least three LR models and a non-LR
model from any studies for an outcome, all studies with that
outcome were included in the meta-analysis. This was
determined based on the requirement of a minimum number of
data points to calculate the variance as part of the
meta-analytical procedure. If studies did not report the AUROC,
we estimated the sensitivity and specificity using the trapezoidal
rule (see Summary Measures and Synthesis of Results sections).

Information Sources

We searched the MEDLINE, Scopus, Web of Science, and
Google Scholar databases up to May 2020. There was no limit
on the publication period. However, considering the limitations
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of the search interface in Google Scholar, we only retrieved
results from the last year with keywords in the abstract or the
entire period with those keywords in the title. We also limited
the publication period to the last 10 years for search results by
keywords including “logistic regression multivariable
prediction.” This was because we estimated that there would
be enormous amounts of studies applying LR because we
applied a broad range of outcomes in this study. In contrast, we
might lack studies using other machine learning models,
although the outcomes were broad.

Search

The initial search filter was limited to the title, abstract,
keywords, or Medical Subject Heading (MeSH; MEDLINE
only) using “machine learning” AND pregnancy. We also used
“machine learning AND ([pregnancy outcome from initial
search] NOT pregnancy).” Keywords for pregnancy outcomes
were used based on MeSH to generalize a variety of terms for
pregnancy outcomes from selected studies. If the MeSH term
contained “pregnancy,” then we used the alternative entry terms
in the webpage recorded for this MeSH term. If all entry terms
also contained “pregnancy,” then we used the term without
negating “pregnancy.” In addition, we also substituted the
“machine learning” part with one of the keywords consisting
of “decision tree,” “artificial neural network,” “support vector
machine,” “random forest,” “artificial intelligence,” “deep
learning,” and “logistic regression multivariable prediction.”
All keywords are described in Multimedia Appendix 1. These
search terms were applied to all databases.

Study Selection

Duplicate records from multiple databases were removed. We
refined the search results in the title or abstract using EndNote
X8 (Clarivate Analytics) by “(supervised NOT unsupervised)
OR prediction OR classification.” Records were screened by
HS and AH, and the results were assessed by HS, AH, YC, CK,
OS, TY, and YW. Disagreements were resolved by discussion
with the last author (ES). Study selection was conducted in brief
and thorough assessments. These brief assessments were
intended to select studies by checking eligibility criteria from
TRIPOD and MLP-BIOM in the title, abstract, and briefly in
the full-text article. A thorough assessment of the applicability
from PROBAST was conducted later before the ROB
assessment.

Data Collection Process

We extracted data based on the CHARMS checklist, which
includes (1) outcomes, (2) study design, (3) data sources, (4)
data source design, (5) setting, (6) type of study, and (7)
modeling methods or algorithms, and (8) predictive
performance. Outcomes were pooled as distinct MeSH terms.
Study and data source designs were classified into prospective,
retrospective, nested case-control, case-control, and
cross-sectional. We defined the type of study based on the model
validation, which might be development, validation, or both.
Eligible studies were described as developing prediction models
by applying LR, non-LR, or both algorithms. Predictive
performances were only taken from studies that were eligible
for the meta-analysis (see Eligibility Criteria section). If there

were multiple models developed within a study using the same
algorithm, we retrieved the AUROC from the best performing
one among the models. If both LR and non-LR algorithms were
applied in a study, we selected the predictive performances of
the best models applying either the LR or non-LR algorithm.
Model performances derived from external validation were
preferred if available.

ROB Within and Across Studies

We used PROBAST to assess the ROB [17,21]. The ROB in
individual studies was assessed as low, high, or unclear in 4
domains of participants, predictors, outcomes, and analyses. In
addition, 20 signaling questions were answered for each study
in a transparent and accountable form. Across studies, we
described the proportion of low, unclear, or high ROBs. ROBs
were compared for each domain. We also summarized the
answers for each signaling question.

Summary Measures

We compared AUROCs from studies that reported this metric.
Logit transformation was applied to the AUROCs. We computed
logit AUROC differences between each non-LR and LR
algorithm across studies. Summary measures from any eligible
studies with all, low, or high ROB were pooled by random
effects modeling, as previously described [24]. Assuming that
selected studies were random samples from a larger population,
we chose a random effects model that attempted to generalize
findings beyond the included studies using that assumption [25].
Despite this, we did not conduct random effects modeling for
all selected studies considering the broad range of target
populations, outcomes, and algorithms. Meanwhile, we
conducted this review within a narrower field compared with a
previous systematic review of machine learning in medicine
[13]. Therefore, we only applied random effects modeling to
the predictive performances of selected studies using a particular
pregnancy outcome. These studies consisted of a minimum
number of non-LR and 3 LR models from any studies. This
minimum number was considered to obtain a minimum number
of data points of logit AUROCs to compute the interval
estimates in a random effects model. We depicted the AUROCs
using forest plots; thus, one can see which prediction algorithm
may have a better chance of obtaining optimal predictive
performance for a particular pregnancy outcome.

Pooled estimates of pairwise differences in logit AUROCs were
described by points and the 95% CI [26]. A positive difference
in logit AUROCs means that the non-LR algorithm had a higher
logit AUROC than that of the LR algorithm. The difference
was significant if 0 was not included within the 95% CI. The
number of pairwise comparisons (k) for each random effects
model was reported. We also reported variance across studies

(τ2) and I2 as absolute and relative values of between-study
heterogeneity, respectively.

If a study did not report the AUROC, we estimated this metric
based on sensitivity and specificity. As a specificity of 0%
means a sensitivity of 100% and vice versa, the AUROC could
be estimated from the reported sensitivity and specificity using
a common rule to calculate the area of the trapezoid (Equation
1). Before we subtracted the AUROC of a non-LR algorithm
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from that of an LR algorithm, we applied a logit transformation
(Equation 2).

AUROC = 0.5 × (1 − specificity) × sensitivity + specificity ×
sensitivity + 0.5 × (1 − sensitivity) × specificity (1)

Logit(AUROC) = log (AUROC / (1 – AUROC)) (2)

We used RStudio 1.2 (RStudio) with R 3.6.1 and an additional
package, metafor 2.4.0, for random effects modeling. We applied
the restricted maximum likelihood estimator method [27]. These
are common tools and recommended modeling methods for
meta-analyses [28].

Synthesis of Results

We described the characteristics of the studies consisting of
population, study design, timing, and setting. This was described
as the number of algorithms used for prediction modeling. The
algorithms were categorized into LR, non-LR, or both
algorithms. We also show the proportion of each characteristic
compared with all characteristics within the same algorithm
category.

ROBs within studies were described for the number of low,
high, or unclear ROB studies. This was reported for overall
assessment results and by domain in studies that used LR,
non-LR, or both algorithms. ROBs across studies were described
for the proportion of studies in which the answer to each
signaling question led to low, high, or unclear ROB studies. We
intended to show what makes most studies considered to have
high ROBs.

Meta-analytical results were described by a forest plot faceted
by outcome. Each facet showed comparisons of differences in
logit AUROCs for each random effects model of non-LR versus
LR algorithms. This demonstrated which algorithms tended to

outperform LR for each pregnancy outcome. Comparisons that
included non-LR high ROB studies were color coded. The best
predictive performance for each outcome was reported.
Between-study heterogeneity for each random effects model
was also reported.

We described predictors in the prediction models from studies
in the meta-analysis. For each outcome in the meta-analysis,
we selected only random effects models in which an algorithm
significantly outperformed the other. This was determined by
the 95% CI of the difference in logit AUROCs between a
non-LR and an LR model for an outcome. If any, we only
selected those that included only non-LR low ROB studies.
Only predictors in the final model were included. This was
intended to elucidate predictor-outcome interactions that
characterized an algorithm if it outperformed the others for a
particular outcome.

Results

Study Selection

We found 2093 records from 4 literature databases (Figure 1).
The search filters consisted of 144 combinations of keywords
from 8 machine learning terms and 18 MeSH terms for
pregnancy outcomes recursively derived from the keywords
“machine learning AND pregnancy” (Multimedia Appendix 1).
We refined the search results, identified research articles (not
including conference abstracts or theses), and removed
duplicates. After screening and eligibility assessment, we
included 142 studies for the qualitative analysis, of which 62
were used for the quantitative analysis. A detailed description
of the eligible criteria, process of study selection, and list of
studies for the full-text review are given in Multimedia
Appendix 1.
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Figure 1. Study selection workflow.

Characteristics of the Studies

Briefly, we collected studies that either developed or validated
a prediction model applying either LR (77/142, 54.2%) [29-105]
or non-LR machine learning algorithms (50/142, 35.2%; Table
1) [106-155]. Overall, 15 studies applied both LR and non-LR
algorithms (15/142, 10.6%) [156-170]. The cohort population
of the studies in this review consisted of every type of
population, study design, timing, and setting that we desired to
discuss in this review. More studies discussed fetuses or
newborns than pregnant women in non-LR prediction studies
(26/50, 52% vs 11/50, 22%). Meanwhile, the opposite occurred
in LR studies that focused more on pregnant women than fetuses
or newborns (50/77, 65% vs 19/77, 25%). Most used data sets
were from retrospective cohorts for LR (53/77, 69%)
[29-36,38-42,47,49-54,56-61,64-66,68-71,76-80,83,87-90,92,94,95,
97,100-105], non-LR prediction studies (27/50, 54%)
[107,108,111-113,116,117,121,122,127,130-138,140,142,143,148,150,151,
153,154], or both (9/15, 60%) [157-160,163-165,167-170]. A
retrospective cohort is one of the recommended study designs
for prognostic purposes instead of diagnostic prediction [21].

This corresponds to our review question that warrants prognostic
predictions in pregnancy care intended to inform clinicians’
decision making.

Only a few studies had prediction timing up to the puerperal or
neonatal period for LR (2/77, 3%) [74,85], non-LR (3/50, 6%)
[114,129,149], or both algorithms (2/15, 13%) [162,168]. This
is because some predictors were assessed after delivery, whereas
our review question demanded those be assessed up to delivery.
We also considered studies using data sets from either primary
care or hospital settings because the data are applicable for
clinicians’ decision making on a daily basis. As applicability
was already included in the eligibility assessment before the
qualitative analysis, eligible studies were not found to use data
sets from either primary care or hospital settings, such as from
a house-to-house survey or a screening program. Most used
data sets were from hospital settings, whereas only a few of
those were from primary care settings in the LR (6/77, 8%)
[65,69,73,77,78,87], non-LR (6/50, 12%)
[119,122,132,135,148,153], or both algorithms (1/15, 7%) [162].
A detailed description of this is also given in Multimedia
Appendix 1.
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Table 1. Characteristics of eligible studies.

Number of studies (percentage based on column total)Variable

Total (n=142), n (%)Both (n=15), n (%)Non-LR (n=50), n (%)LRa (n=77), n (%)

Population

67 (47.2)6 (40)11 (22)50 (65)Pregnant women

52 (36.6)7 (47)26 (52)19 (25)Fetuses or newborns

23 (16.2)2 (13)13 (26)8 (10)Men or women in procreative management

Study design

89 (62.7)9 (60)27 (54)53 (69)Retrospective

20 (14.1)2 (13)14 (28)4 (5)Nested case-control

17 (12)0 (0)4 (8)13 (17)Prospective

9 (6.3)3 (20)3 (6)3 (4)Cross-sectional

7 (4.9)1 (7)2 (4)4 (5)Case-control

Timing

61 (42.9)7 (46.7)26 (52)28 (36)At delivery

60 (42.3)5 (33.3)21 (42)34 (44)At pregnancy

14 (9.9)1 (6.7)0 (0)13 (17)Mixed timing

7 (4.9)2 (13.3)3 (6)2 (3)Puerperal or neonatal period

Setting

113 (79.6)9 (60)43 (86)61 (79)Hospital

16 (11.3)5 (33)1 (2)10 (13)Both

13 (9.2)1 (7)6 (12)6 (8)Primary care

aLR: logistic regression.

LR and Other Machine Learning Algorithms

Most studies applied an LR (92/142, 64.8%) to develop a
prediction model (Table 2). Meanwhile, an artificial neural
network was mostly applied by non-LR studies (20/142, 14.1%).
Studies that applied LR and non-LR algorithms mostly
compared LR with an artificial neural network (5/15, 33%)
[161,163,165,166,170] and decision tree (5/15, 33%)
[156,159,167-169], but decision trees tended to be paired with
an LR compared with an artificial neural network (5/7, 71% vs
5/20, 25%).

The characteristics of study populations showed that pregnant
women and fetuses or newborns were the populations of most

studies developed using LR and non-LR models, respectively.
Among pregnant women, the LR algorithm was mostly applied
to develop predictions for outcome categories of obstetric labor
(13/77, 17%) [36,46,47,54,57,62,64,70,83,86,91,97,103],
pregnancy-induced hypertension (12/77, 16%) [30,31,
43,48,55,65,66,68,76,81,93,105], and gestational diabetes (7/77,
9%) [33,45,49,84,94,100,104]. Among fetus or newborn
populations, non-LR algorithms were mostly applied to develop
predictions for outcome categories of premature birth (12/50,
24%) [111,112,115,116,118,119,121,122,125,130,141,143] and
fetal distress (9/50, 18%) [113,124,128,137,138,145,146,
152,155]. In addition, more non-LR algorithms (13/20, 65%)
were applied for the outcome category of in vitro fertilization
than for the LR algorithm.
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Table 2. Machine learning algorithm and category of outcome.

Number of studies (percentage based on column total)Variable

Total (n=142), n (%)Both (n=15), n (%)Non-LR (n=50), n (%)LRa (n=77), n (%)

Machine learning algorithm

92 (64.8)15 (100)N/Ab77 (100)Logistic regression

20 (14.1)5 (33)15 (30)N/AArtificial neural network

10 (7.0)1 (7)9 (18)N/ASupport vector machine

9 (6.3)1 (7)8 (16)N/ADeep neural network

8 (5.6)1 (7)7 (14)N/ARandom forest

7 (4.9)5 (33)2 (4)N/ADecision tree

5 (3.5)2 (13)3 (6)N/AGradient boosting

4 (2.8)0 (0)4 (8)N/ANaïve Bayes

2 (1.4)0 (0)2 (4)N/AEnsemble of algorithms

Category of outcome

24 (16.9)3 (20)12 (24)9 (12)Premature birth

22 (15.5)2 (13)13 (26)7 (9)In vitro fertilization

16 (11.3)2 (13)1 (2)13 (17)Obstetric labor

16 (11.3)0 (0)4 (8)12 (16)Pregnancy-induced hypertension

10 (7.0)0 (0)9 (18)1 (1)Fetal distress

10 (7.0)1 (7)2 (4)7 (9)Gestational diabetes

9 (6.3)2 (13)3 (6)4 (5)Cesarean section

5 (3.5)0 (0)1 (2)4 (5)Fetal development

5 (3.5)1 (7)1 (2)3 (4)Small-for-gestational-age infant

25 (17.6)4 (27)4 (8)17 (22)Others

aLR: logistic regression.
bN/A: not applicable.

ROB Within and Across Studies

ROB is described for each eligible study in Multimedia
Appendix 1 [29-170]. Among the 142 eligible studies, there
w e r e  2 4  ( 1 6 . 9 % )  l o w  R O B  s t u d i e s
[38,61-63,71,98,104,110,113,115,117-119,128,134,141,142,145,147,149,
155,157,158,169], 117 (82.4%) high ROB studies
[29-37,39-60,64-70,72-97,99-103,105-109,111,112,114,116,120-123,
1 2 5 - 1 2 7 , 1 2 9 - 1 3 3 , 1 3 5 - 1 4 0 , 1 4 3 , 1 4 4 , 1 4 6 , 1 4 8 ,
150-154,156,159-168,170], and 1 (0.7%) unclear ROB study

(Table 3) [124]. Among the low ROB studies, the categories of
outcomes were premature birth (7/24, 30%)
[38,63,115,118,119,141,169], fetal distress (5/24, 21%)
[71,113,128,145,155], in vitro fertilization (4/24, 17%)
[61,110,134,158], gestational diabetes (2/24, 8%) [104,157],
cesarean section (CS; 2/24, 8%) [117,142], obstetric labor (1/24,
4%) [62], pregnancy-induced hypertension (1/24, 4%) [147],
central nervous system malformations (1/24, 4%) [149], and
others (1/24, 4%) [98].
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Table 3. Risk of bias within studies.

Studies by algorithmAssessment by domain

Total (n=142), n (%)Both (n=15), n (%)Non-LR (n=50), n (%)LRa (n=77), n (%)

Participants

115 (80.9)11 (73)44 (88)60 (78)Low

22 (15.5)4 (27)3 (6)15 (19)High

5 (3.5)0 (0)3 (6)2 (3)Unclear

Predictors

109 (76.8)12 (80)43 (86)54 (70)Low

26 (18.3)1 (7)5 (10)20 (26)High

7 (4.9)2 (13)2 (4)3 (4)Unclear

Outcome

102 (71.8)11 (74)40 (80)51 (66)Low

30 (21.1)2 (13)4 (8)24 (31)High

10 (7.1)2 (13)6 (12)2 (3)Unclear

Analysis

26 (18.3)3 (20)15 (30)8 (10)Low

116 (81.7)12 (80)35 (70)69 (90)High

0 (0.0)0 (0)0 (0)0 (0)Unclear

Overall

24 (16.9)3 (20)14 (28)7 (9)Low

117 (82.4)12 (80)35 (70)70 (91)High

1 (0.7)0 (0)1 (2)0 (0)Unclear

aLR: logistic regression.

ROB is also described across the studies in Table 3 and Figure
2. The corresponding signaling questions for each term and the
answers for each study are described in Multimedia Appendix
1. Low ROB studies were the fewest in the analysis domain
(26/142, 18.3%), consisted of the LR (8/77, 10%) [38,61-64,
71,96,98,104], non-LR (15/50, 30%) [63,110,113,115,
117-119,124,128,134,141,142,145,147,155], and both
algorithms (3/15, 20%) [157,158,169]. In the analysis domain,

the fewest low ROB studies that achieved the minimum events
per variable (EPV) consisted of LR (35/77, 45%) and non-LR
(31/50, 62%) prediction studies. More calibration and
discrimination tests were conducted using LR (72/77, 94%)
than by non-LR (39/50, 78%) prediction studies. In contrast,
more non-LR prediction studies appropriately handled missing
data (43/50, 86%) compared with LR prediction studies (57/77,
74%).
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Figure 2. Signaling questions with respect to ROB domains across studies. Bars from low/high/unclear ROB are stacked to be 100%. Domains are
described on the right-hand side. The number on the bar is the number of low ROB studies (total LR/non-LR/both at top) based on a single signaling
question summarized as a term on the left-hand side. LR: logistic regression; ROB: risk of bias.

Comparison of the Predictive Performance

There were 62 studies in the meta-analysis that had outcomes
that were predicted by at least one non-LR and 3 LR models
(see Summary Measures section). Overall, 21 random effects
models of the predictive performance by non-LR versus LR
models are shown in a forest plot (Figure 3). Forest plots of
logit AUROC differences for each random effects model are
described (Multimedia Appendix 1). With respect to candidate
studies (n) included in the final random effects models, we

developed 5 random effects models for preterm delivery (20/62,
32%) [32,44,60,63,75,87,96,111,112,115,118,119,121,125,130,
141,143,156,163,169], 5 for CS (7/62,11%) [79,90,
106,117,142,166,167], 2 for pre-eclampsia (6/62, 10%)
[31,48,65,76,123,147], 3 for gestational diabetes (9/62, 15%)
[33,45,84,94,100,104,108,139,157], 5 for ongoing pregnancy
(13/62, 21%) [73,78,99,110,132,134-136,148,150,153,158,170],
and 1 for vaginal birth after CS (7/62, 11%) [36,47,57,
64,83,97,165].
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Figure 3. Forest plot of random effects models for differences in logit AUROCs from a non-LR with any LR prediction models. Plots were grouped
by outcome. The lines indicate the 95% CI with diamonds whose sizes were determined by the number of pairwise comparisons (k). Absolute and
relative values of between-study heterogeneities are denoted by τ2 and I2, respectively. Colors of the boxes and lines were determined based on the
existence of high ROB studies among those using non-LR algorithms. ANN: artificial neural network; AUROC: area under the receiver operating
characteristic curve; DNN: deep neural network; DT: decision tree; Ens: ensemble of multiple algorithms; GB: gradient boosting; LR: logistic regression;
NB: naïve Bayes; RF: random forest; ROB: risk of bias; SVM: support vector machine.

To determine the final random effects model for each
comparison, we identified studies that were responsible as the
source of heterogeneity and removed those AUROCs from the
random effects model. We excluded a non-LR [121] and an LR
study [84] that developed a prediction model for preterm
delivery and gestational diabetes, respectively. This is because
their AUROCs were outliers compared with those for the same
outcome and algorithm. We also excluded 3 LR studies
[32,63,87]. In those studies, preterm delivery was defined as
delivering within 1 to 2 weeks of preterm labor presentation.
Meanwhile, the majority of studies for this outcome defined
preterm delivery as that before 37 weeks of gestation.

The non-LR models significantly outperformed the LR models
in preterm delivery (4/5 non-LR models), CS (3/5 non-LR
models), pre-eclampsia (1/2 non-LR models), and gestational
diabetes (2/3 non-LR models). From those that examined
preterm delivery, a prediction model did not include a non-LR
high ROB study [115] compared with those from 7 LR studies
[32,44,60,63,75,87,96]. This model applied a random forest
(differences in logit AUROC 2.51; 95% CI 1.49-3.53). The
same algorithm was applied to a prediction model from a
non-LR low ROB study in pre-eclampsia [147]. For random
effects modeling, this model also significantly outperformed
those from 4 LR studies (1.2, 95% CI 0.72-1.67) [31,48,65,76].

Meanwhile, prediction models from non-LR low ROB studies
of Saleem et al [142] and Artzi et al [157] significantly
outperformed those from the corresponding LR studies as an
aggregate for CS (2.26, 95% CI 1.39-3.13) and gestational
diabetes (1.03, 95% CI 0.69-1.37). Interestingly, the models
were developed using a gradient boosting algorithm that used
multiple decision trees similar to a random forest.

In contrast, a prediction model using a non-LR algorithm
significantly underperformed compared with those using an LR
in a random effects model (−0.85, 95% CI −1.19 to −0.52). This
applied an artificial neural network to predict vaginal birth after
a CS [165]. This model underperformed compared with those
from 7 LR studies [36,47,57,64,83,97,165]. However, the
non-LR study was a high ROB study.

A random effects model developed for comparison of artificial
neural networks and LR to predict preterm delivery had the

highest heterogeneity by I2 (97%; k=35). This number means
that 97% of the total variability among 35 data points of
differences in logit AUROCs was caused by between-studies
heterogeneity instead of sampling error within each study [171].
This is reasonable because a higher variance occurs with a larger
number of comparisons within a random effects model. In
contrast, a random effects model with the smallest number of
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comparisons (k=4) also had the lowest heterogeneity by I2

(75%). This random effects model was developed to analyze
comparisons of non-LR and LR algorithms for either CS or
pre-eclampsia. Nevertheless, a diverse target population and
hyperparameter optimization conceivably caused the
heterogeneity of the predictive performance, although the same
outcome was predicted using the same data set and machine

learning algorithm. The lowest I2 in this meta-analysis remains
classified as substantial heterogeneity instead of moderate or
unimportant; thus, performing random effects instead of fixed
effect modeling is recommended to address this issue [172].

However, I2 only indicates that the difference in logit AUROCs
substantively varies across studies but does not tell how much
this metric varies [173]. To interpret the absolute heterogeneity
for the difference in logit AUROCs, we needed to consider the
observed AUROC of a non-LR model for each of the random
effects models. The observed AUROCs were described for each
of the original studies in this meta-analysis in Multimedia
Appendix 1.

A random effects model developed for comparison of random
forests and LR to predict ongoing pregnancy had the highest

absolute value of heterogeneity (τ2=2.86). In this random effects
model, random forests were applied to develop predictions in
2 studies that reported AUROCs of 0.740 (95% CI 0.710-0.770)
[158] and 0.9820 [134]. We simulated a sequence of logit
AUROCs to identify equivalent differences in AUROCs to
approximate a difference of the logit value in the random effects
model (1.22, 95% CI −0.03 to 2.48). AUROC differences of
0.206 and 0.026 were equivalent to a difference in the logit
AUROC of 0.91, compared with those aggregated from LR
models for the random forest models of Blank et al [158] and

Mirroshandel et al [134], respectively. Using τ2, one can
calculate the 95% prediction interval (PI) of the logit AUROC
difference, as previously described [173]. This estimates the
potential AUROC of the random forest to predict ongoing
pregnancy with respect to an LR using different populations.
For this random effects model, the 95% PI of the logit AUROC
difference ranged from −4.75 to 7.19. This is equivalent to 0.257
lower and >0.73 higher than AUROCs of any LRs in the random
effects model for the random forest model of Blank et al [158].
For the random forest model of Mirroshandel et al [134], the
95% PI was equivalent to 0.018 lower and 0.943 higher than
the AUROCs of any LRs in the random effects model. This is

a reasonably wide PI for the highest τ2 in this meta-analysis,
although the non-LR study had a low ROB. This is because
ROB only reflects the risk of a predictive performance that
differs from the true value of the training sample. However, the
ROB does not reflect the difference if the predictive performance
is compared with other samples across different populations.

For the random effects model with the lowest τ2 and including
a non-LR low ROB study, the random effects model had a logit
AUROC difference of 1.03 (95% CI 0.69-1.37) for a prediction
model of gestational diabetes using gradient boosting. The
prediction study reported an AUROC of 0.875 (95% CI
0.868-0.885) [157]. The 95% PI of the logit AUROC difference
estimated an equivalent AUROC that ranged from 0.0096 lower

to 0.425 higher than the AUROCs of any LR in the random
effects model. The gradient boosting model from this study is
likely to outperform an LR to predict gestational diabetes.

In addition, we may need to know the τ2 meaning for the random

effects model with the highest I2 and larger numbers of
comparisons (k). This random effects model had an AUROC
difference of 1.67 (95% CI 1.21-1.94; 95% PI −2.08 to 5.42;
k=35) for a prediction model of preterm delivery using an
artificial neural network. Overall, 5 non-LR studies were
included in this random effects model. The remaining studies
reported AUROCs of 0.88 [111], 0.94 [118], 0.945 [125], 0.9115
[163], and 0.911 (95% CI 0.862-0.960) [130]. Considering only
the lowest (0.862) and highest (0.960) that covered all of the
AUROCs, the artificial neural network model may have
AUROCs of 0.119 lower and 0.864 higher than those of any
LR. The AUROC interval was also as wide as that of the random

effects model with the highest τ2.

Descriptive Analysis of Predictors

A random effects model was selected for each outcome except
for ongoing pregnancy, which fulfilled our criteria to describe
the predictors. For each outcome in the meta-analysis, we
selected random effects models in which either a non-LR
algorithm significantly outperformed the LR or it was
significantly underperformed by the LR. This was determined
by the 95% CI of the difference in the logit AUROCs between
the non-LR and LR models for an outcome. If any, we only
selected those including only non-LR low ROB studies. The
random effects models were random forest versus LR for
preterm delivery, gradient boosting versus LR for CS, random
forest versus LR for pre-eclampsia, gradient boosting versus
LR for gestational diabetes, and artificial neural network versus
LR for vaginal birth after a CS. As we only extracted the
AUROC of either the best LR or non-LR model, only predictors
and outcomes of that model were considered if there were
multiple models for different subtypes of the outcome in a study.

For preterm delivery, Despotovic et al [115] developed a random
forest model using a previously published standardized
electrohysterogram (EHG) data set [174]. This data set was also
used by other studies in this meta-analysis to predict the same
outcome using different algorithms [118,125,130,141,143,169].
All predictors were features extracted from the multichannel
EHG obtained at around 22 and 32 weeks of gestation to predict
delivery after 39 and 34 to <37 weeks of gestation for term and
preterm delivery, respectively. Compared with their
counterparts, LR models used predictors consisting of maternal
demographics or lifestyle [44,60,75,96,163], medical or obstetric
histories [44,75,96,156,163], clinical predictors from obstetrical
examinations [44,163], EHG [169], and biomarkers [75]. These
were obtained before pregnancy [60,96,156,163], at 11 to 14
weeks of gestation [75], 18 to 34 weeks of gestation
[44,163,169], or near events within 1 to 2 weeks [44]. The LR
models were developed to predict preterm delivery at 20 to <37
weeks of gestation [44,75,96,163,169] and any delivery at <37
weeks of gestation (predictors could be taken before pregnancy)
[60,156].
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For CS, Saleem et al [142] developed a gradient boosting model
using a previously published standardized cardiotocogram
(CTG) data set [175]. This data set was also used by Fergus et
al [117] in this meta-analysis to predict the same outcome using
a deep neural network. All predictors were features extracted
from the CTG data set obtained at first- and second-stage labor
for a maximum of 90 min preceding delivery to predict a CS.
Compared with their counterparts, LR models used predictors
consisting of maternal characteristics [79,90,166], medical
histories [167], obstetric histories [90,166,167], and clinical
predictors from obstetric examinations [90,166,167], ultrasound
measures [79], routine laboratory tests [90], and medications
[90]. These were obtained before [90,166,167] and during
pregnancy [79,90,166,167]. The LR models were developed to
predict CS [166,167], emergency CS [79], and CS in pregnant
women with gestational hypertension or mild pre-eclampsia at
term [90].

For pre-eclampsia, Sufriyana et al [147] developed a random
forest model that used a nationwide health insurance data set.
The predictors consisted of maternal demographics and medical
histories but excluded obstetric ones. These were obtained before
and during pregnancy up to 2 days before the events
(pre-eclampsia or eclampsia of any severity and timing).
Meanwhile, the LR counterparts used maternal demographics
or lifestyle [31,65,76], medical histories [31,65,76], obstetric
histories [31,65,76], family histories [31,76], clinical or obstetric
examinations [31,65], ultrasound measures [65], routine
laboratory tests [76], and biomarkers [48,65]. These predictors
were obtained before pregnancy [31], at 11 to 13 weeks of
gestation [65], and at <20 weeks of gestation [48]. LR models
were developed to predict pre-eclampsia of any severity and
timing [31,48,65,76]. The predictors were taken before
pregnancy, and this disorder occurs after 20 weeks of gestation
by definition.

For gestational diabetes, Artzi et al [157] developed a gradient
boosting model that used a nongovernmental, nationwide health
care database. The predictors consisted of maternal
demographics, medical histories, obstetric histories, clinical or
obstetric examinations, routine laboratory tests, and medications.
These predictors were obtained before pregnancy and up to 22
weeks of gestation to predict gestational diabetes diagnosed at
24 to 28 weeks of gestation. The LR counterparts used maternal
demographics or lifestyle [33,100,104], medical histories [33],
obstetric histories [104], family histories [33,45], clinical
examinations [33], obstetric examinations [33], routine
laboratory tests [33,45,94,100,104], medications, and biomarkers
[33,45]. The predictor timing was 6 to 14 weeks of gestation
[33,45,94,100,104] and >14 to 22 weeks of gestation
[45,100,104]. Meanwhile, the outcome timing was 24 to 28
weeks of gestation [33,45,94,100,104].

For vaginal birth after a CS, Macones et al [165] developed an
artificial neural network model that used a medical records
database. The predictors used maternal characteristics, medical
histories, obstetric histories, obstetric examinations, and labor
procedures. These were obtained before pregnancy, during
pregnancy, and at labor to predict successful vaginal birth after
a CS. The LR counterparts used maternal characteristics
[36,47,64,83,97], medical histories [57], obstetric histories

[36,47,57,64,83,97], obstetric examinations [97], and labor
procedures [97]. These were obtained before pregnancy
[36,47,57,64,83,97], during pregnancy [97], and at labor [97].
The models predicted vaginal birth after a CS with the same
definition as those of non-LR studies [36,47,57,64,83].

Discussion

Summary of Evidence

Of the 2093 records from 4 literature databases using 144
keywords, we found 142 eligible studies, among which 24 had
a low ROB. These eligible studies developed prediction models
for outcome categories of premature birth, in vitro fertilization,
obstetric labor, pregnancy-induced hypertension, fetal distress,
gestational diabetes, CS, fetal development,
small-for-gestational-age infants, and others.

There were 4 models with non-LR algorithms from low ROB
studies that had significantly higher differences in logit
AUROCs than those with LR algorithms. The models used
random forest algorithms to predict preterm delivery (2.51, 95%
CI 1.49-3.53), gradient boosting algorithms to predict CS (2.26,
95% CI 1.39-3.13), random forest algorithms to predict
pre-eclampsia (1.2, 95% CI 0.72-1.67), and gradient boosting
algorithms to predict gestational diabetes (1.03, 95% CI
0.69-1.37). The first model that applied a random forest used
only EHG records to predict preterm delivery. The second
random forest model used only maternal demographics and
medical histories but excluded obstetric ones for pre-eclampsia
prediction. Meanwhile, the first model that applied a gradient
boosting algorithm used only CTG records to predict CSs. The
last model was developed by applying a gradient boosting
algorithm for gestational diabetes. This model used maternal
demographics, medical histories, obstetric histories, clinical or
obstetric examinations, routine laboratory tests, and medications.

Comparisons With Prior Work

We compared our systematic review and meta-analysis with
prior works related to either machine learning algorithms or
pregnancy outcomes similar to those in our study. A recent
paper described applications of artificial intelligence in obstetrics
and gynecology [176]. That paper was a narrative instead of a
scoping or systematic review. Our systematic review and
meta-analysis covered all pregnancy outcomes in obstetrics, as
described in that paper. These were described as fetal heart
monitoring and pregnancy surveillance, gestational diabetes
mellitus, preterm labor, parturition, and in vitro fertilization.

Nevertheless, the predicted outcomes by non-LR models in our
review were still insufficient. Diseases that cause maternal
deaths should receive higher priority than those causing neonatal
deaths. The risks were higher for pregnant women with
antepartum hemorrhage (incidence rate ratio [IRR]=3.5, 95%
CI 2.0-6.1) or hypertension (IRR=1.5, 95% CI 1.1-2.2)
compared with those without these diseases [177]. Maternal
sepsis was also associated with fetal or neonatal deaths (odds
ratio [OR] 5.78, 95% CI 2.89-11.21) [178]. Accordingly, the
impact of the prediction models may be insufficient to reduce
both maternal and neonatal deaths.
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LR was found in our study to be the most often used algorithm
to develop a prediction model in pregnancy care, including
predicted outcomes that caused the most maternal deaths,
followed by artificial (shallow) neural networks, support vector
machines, and deep neural networks. These corresponded to a
systematic review and meta-analysis [13] that showed a similar
majority of machine learning algorithms in medicine, except
that the study reported classification and regression trees to be
the second most often used algorithms (30/71, 42%). All models
within eligible studies in that review were included instead of
only choosing the best one within each study. Using the same
summary measures as we did, the aforementioned review
demonstrated that non-LR models from low ROB studies did
not outperform LR models. A decision tree showed a difference
of logit AUROCs of −0.34 (95% CI −0.65 to −0.04; k=16)
compared with an LR. The review selected 125 eligible studies
of 927 candidates from one database. Between-study
heterogeneity was not described in that review.

Similar to a previous study [13], a systematic review and
meta-analysis did not consider LR as a machine learning
algorithm and only compared the predictive performances of
non-LR algorithms [179]. This study compared machine learning
models to predict any outcomes using routinely collected
intensive care unit data. Most of the algorithms were artificial
neural networks (72/169, 42.6%), support vector machines
(40/169, 23.7%), and decision trees (35/169, 20.7%). However,
since 2015, most of the algorithms were support vector machines
(37/125, 29.6%) and random forests (72/169, 42.6%). These
corresponded to the majority of machine learning algorithms
for pregnancy care in our systematic review.

We hold a particular assumption to determine whether
interaction of predictors and outcome may be best predicted by
a prediction algorithm. If the same predictors and outcomes
were used by the best prediction algorithm applied in either
non-LR or LR models but not used by the other outcomes in
this meta-analysis, then the prediction algorithm may be the
best for the pregnancy outcome using those predictors. To
predict preterm delivery with predictors that included EHG in
either non-LR or LR models [115,169], the random forest
outperformed the LR algorithm. Similar to this model in terms
of using biomedical signals, gradient boosting also outperformed
LR using CTG [142], but none of the LR counterparts used the
same predictor. Other predictors were used across outcomes
and algorithms (LR or non-LR). These included maternal
demographics, lifestyle, medical or obstetric histories, clinical
examinations, ultrasound measures, routine laboratory tests,
biomarkers, and medication or procedures. Family histories
were used in the LR models to predict gestational diabetes in
this meta-analysis but were not used by the gradient boosting
model (the non-LR counterpart). Therefore, we could not find
a convincing pattern of predictors with respect to the best
algorithms for each of the other pregnancy outcomes beyond
preterm delivery.

Interestingly, the random forest significantly outperformed the
LR for almost all of the pregnancy outcomes included in the
meta-analysis. Although the gradient boosting algorithm
significantly outperformed the LR for CS and gestational
diabetes instead of the random forest, gradient boosting also

uses multiple decision trees as in the random forest. For ongoing
pregnancy predictions in in vitro fertilization, a random forest
model from low ROB studies also showed the largest difference
in logit AUROCs outperforming LR (1.22, 95% CI −0.03 to
2.48) compared with other non-LR algorithms. For predicting
vaginal delivery after a CS, a non-LR algorithm, particularly
an artificial neural network in our meta-analysis, did not
significantly outperform LR.

Comparing differences in AUROCs and focusing on multiple
prediction algorithms, a study with individual participant data
also compared LR and non-LR algorithms, particularly Poisson
regression, random forest, gradient boosting, and an ensemble
of a random forest with either LR or support vector machine
[180]. Several models were developed to predict all-cause
readmissions in patients with heart failure within 30 and 180
days. The random forest significantly outperformed the LR
(0.601, 95% CI 0.594-0.607 vs 0.533, 95% CI 0.527-0.538) for
30-day readmissions. Similar to the random forest, the gradient
boosting algorithm (0.613, 95% CI 0.607-0.618) also
significantly outperformed the LR. The predictors consisted of
medical histories and routine laboratory tests.

Massive evaluation of 179 algorithms from 17 machine learning
families was conducted using 121 data sets [181]. The best
results were achieved using random forests. In our review, there
were 13 studies in which the best models applied either a random
forest [106,108,115,134,144,147,155,158] or gradient boosting
[127,140,142,157,160]. Random forests used multiple subsets
of all samples and predictors randomly with replacement to
grow multiple parallel decision trees [182]. Although gradient
boosting also uses multiple decision trees, the advantages of
random forest over gradient boosting are robust to noise and
overfitting [183]. Meanwhile, gradient boosting randomly uses
multiple subsets of all samples without replacement to
sequentially construct additive regression models [184]. The
advantages of gradient boosting over random forests are
state-of-the-art predictive performance on tabular data and the
customizability of loss of function [181,185]. Hence, several
gradient boosting algorithms were developed, and some studies
in our review applied these algorithms. To predict gestational
diabetes, Artzi et al [157] applied LightGBM, a scalable gradient
boosting machine. This algorithm was optimized to speed up
the training process by up to 20-fold with the same accuracy
[186]. Another gradient boosting system (ie, XGBoost) [187]
was applied in a study by Qiu et al [140] to predict live births
after in vitro fertilization. This study was not included in our
meta-analysis because there was an insufficient number of LR
[61,69] and gradient boosting [140] algorithms for predicting
live births.

Of the pregnancy outcomes predicted by non-LR algorithms in
this review, most outcomes were in vitro fertilization, premature
birth, and fetal distress, possibly because of several reasons.
Using keywords of “machine learning IVF” in MEDLINE, we
found a review paper from 2011 call for a need for artificial
intelligence in in vitro fertilization [188]. Only one machine
learning study for in vitro fertilization was found before that
study [189]. All machine learning studies for in vitro fertilization
were published after the review paper, and most studies were
identified within 2093 records in our review
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[110,140,150,153,158,190-193]. As prediction for in vitro

fertilization had already begun by 1989 [194], the machine
learning prediction (non-LR) possibly arose because of the 2011
review. Meanwhile, for machine learning predictions of
premature birth, fetal distress, and CS, many data sets (25/43,
58%) were secondary instead of primarily collected data. The
secondary data sets consisted of predictors and outcomes of
EHG and preterm delivery [174] (7/25, 28%), CTG, and acidotic
blood pH of the umbilical artery [175] (4/25, 16%), CTG and
CS [175] (2/25, 8%), CTG and acidotic blood pH of the
umbilical artery [195] (3/25, 12%), EHG and preterm delivery
[196] (2/25, 8%), and others (7/25, 28%). This implied that
shared data sets drive more machine learning predictions
compared with self-collected data sets. This indicates that the
increase in publicly available data has driven progress in
machine learning applications in health care [197].

For non-LR algorithms, the lack of shared data sets may have
been the reason for few prediction studies for maternal outcomes
compared with those for neonatal outcomes in this systematic
review. Meanwhile, pregnancy-induced hypertension was found
in pregnant women of newborns who were born prematurely
[198]. Prematurity was also associated with maternal sepsis
(OR 2.81, 95% CI 1.99-3.96), including antenatal cases [178].
Therefore, more shared data sets for maternal outcomes are
needed. Future studies using machine learning algorithms should
develop more prediction models for maternal outcomes in
pregnancy care.

In addition, sample sizes of data sets for model development
may contribute to bias in predictive performance. For example,
in our meta-analysis, prediction models of ongoing pregnancy
in in vitro fertilization had point estimates of AUROCs ranging
from 0.575 to 0.982. These were developed using a support
vector machine [110], artificial neural networks [132,136,170],
random forests [134,158], deep neural networks [148,153],
naïve Bayes algorithms [126,135,150], and LRs
[73,78,99,158,170]. Compared with a recent systematic review
focusing on prediction for in vitro fertilization [143,194], the
range of AUROCs was wider than that of the previous review.
The AUROCs ranged from 0.59 to 0.775 without non-LR
machine learning predictions. A previous review also reported
that the sample sizes ranged from 110 to 288,161 instances,
whereas our review found that studies that applied non-LR
algorithms alone or combined with LR had sample sizes ranging
from only 46 [158] to 8836 [148] instances. Meanwhile, non-LR
machine learning algorithms require larger sample sizes relative
to the number of candidate predictors [199].

A meta-analysis of multivariable LR was also previously
conducted for premature birth from 4 studies [200]. In a previous
systematic review, the 2 highest AUROCs were 0.67 (95% CI
0.62-0.72; low ROB) and 0.64 (95% CI 0.60-0.68; high ROB).
Non-LR models of premature birth in our systematic review
showed AUROCs of 0.75 (95% CI 0.67-0.82) [121] and 0.911
(95% CI 0.862-0.96) [130], but these models were developed
from high ROB studies. The other models only reported point
estimates of the AUROC, which were a minimum of 0.6 by a
decision tree [156] and a maximum of 0.991 by a support vector
machine [143].

Minimizing the bias of model performance is the first thing to
consider when developing a clinical prediction model. Several
concerns need to be addressed when developing prognostic
machine learning predictions of pregnancy care. In our review,
most studies had problems of insufficient EPV (either LR and
non-LR studies), single imputation (mostly LR studies), and no
assessment of calibration (mostly non-LR studies). This may
expose the studies to high ROBs [21]. The overestimation of
the predictive performance is larger, with fewer participants
with events relative to the number of predictor candidates, as
described in the PROBAST guidelines. Most ROBs in our
review were contributed by the domain of analysis, and answers
to which the EPV signaling question mostly led studies to high
ROB assessment results. Insufficient EPV mean that the study
developed a model using a data set with a sample size that was
less than the minimum requirement for events relative to the
number of predictors. LR only requires 20 EPV, whereas
non-LR algorithms require 50 to 200 EPV. Meanwhile, single
imputation means that missing values are imputed by any
random value, mean, median, mode, or one-time regression.
Multiple imputations are more recommended than single
imputations, in which the preferred method is multiple equations
by chained equations. For the assessment of calibration, a study
should show the incidence of events (true probability) for each
subset of samples that belongs to the same range of predicted
probability by the model. We recommend these based on
PROBAST guidelines and other guidelines for machine learning
prognostic predictions in pregnancy care [15,21].

Strengths and Limitations

Our systematic review and meta-analysis will allow investigators
or clinicians in pregnancy care to consider whether trying
multiple machine learning models provides benefit to their
studies. If more prediction models are needed for the outcomes
with more specific problems or subpopulations, then predictive
modeling may consider comparisons of LR and non-LR
algorithms for specific outcomes that were compared in our
meta-analysis. We also reported heterogeneity measures to
interpret the predictive performances of algorithms across
studies.

However, the diverse populations and hyperparameters caused
substantial heterogeneity of predictive performance in our
meta-analysis. Future meta-analyses will be needed if more
machine learning models are developed for the same outcome
using the same algorithm. However, we tried to minimize the
heterogeneity by excluding several studies to ensure more
homogenous outcome definitions and normally distributed
AUROCs. We also applied random effects modeling as
recommended [172].

Conclusions

Prediction models using non-LR machine learning algorithms
significantly outperformed those using LR for several pregnancy
outcomes. These non-LR algorithms were random forests for
predicting preterm delivery and pre-eclampsia and gradient
boosting for predicting CS and gestational diabetes. In our
review, studies that developed models using these algorithms
had low ROBs. For predicting ongoing pregnancy in in vitro

fertilization, non-LR algorithms did not significantly outperform
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LR. Prediction models using non-LR algorithms for vaginal
birth after a CS significantly underperformed LR, but the study
with the non-LR algorithm had a high ROB.

On the basis of our meta-analysis, we recommend comparing
multiple machine learning models, which include both LR and
non-LR algorithms, to develop a prediction model. In our

systematic review, we also found that many studies had high
ROBs in the domain of analysis. In this domain, many studies
lacked EPV to develop a prediction model. Hence, we also
recommend the future development of a prediction model to
pursue standard EPV and other standards based on guidelines
to minimize ROBs.
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