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Abstract: Concepts from the theory of sequence comparison 
are adapted to measure the overall similarity or dissimilarity 
between two musical scores. A key element is the notion of 
consolidation and fragmentation, different both from the de- 
letions and insertions familiar in sequence comparison, and 
from the compressions and expansions of time warping in 
automatic speech recognition. The measure of comparison is 
defined so as to detect similarities in melodic line despite 
gross differences in key, mode or tempo. A dynamic pro- 
gramming algorithm is presented for calculating the measure, 
and is programmed and applied to a set of variations on a 
theme by Mozart. Cluster analysis and spatial representation 
of the results confirm subjective impressions of the patterns of 
similarities among the variations. A generalization of the 
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algorithm is presented for detecting locally similar portions in 
two scores, and is then applied. 
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1. Introduction 

Much  work  in the automated  analysis of  melodic 

line is concerned  with the compar i son  of  variants 

of  a tune or  the detect ion of  patterns in a tune 

where cor responding  melodic  fragments may be 

t ransformed or  distorted in various ways. For  

example, Stech (1981) ' sea rches  for  versions of  a 

given pat tern allowing 26 predef ined types of  

melodic modification. These  consist of  different 

combinat ions  of  rhythmic retrograde,  tonal retro- 

grade and inversion, and permit  arbitrary trans- 

posit ion and location within the measure.  Dillon 

and Hunte r  (1982)  provide  for  matching patterns 

on the basis of  stressed pitches only, disregarding 

differences in the rest of  the measure.  

In this paper,  rather  than establishing which 

aspects of  a melodic pat tern must  be fixed or  

setting up a class of  permit ted t ransformations of  

fixed patterns, we define a distance between any 

two melodies which depends  on the tonal contour  

and the rhythmic structure. This approach  avoids 

the arbitrariness of  predefining the class of  trans- 

formations or  distortions which are to be permit-  

ted, and the subjectivity of  deciding on "the 
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boundary between a tune and its true va r i an t s . . .  

and tunes which are similar in one or another 

respect but are not variants" (Dillon and Hunter, 

1982). 

This more general type of distance measure, 

which is appropriate to variable-length linear 

structures such as tunes or shorter musical pat- 

terns, may require costly and complex calcula- 

tions, so we will concentrate here on the elabora- 

tion of relatively efficient algorithms to carry out 

this computation. 

One of the advantages of a distance-based 

approach is that, given a set of several melodies, 

they may be classified in a hierarchical manner (cf. 

Logrippo and Stepien, 1986) or as a configuration 

of points in a metric space. Hierarchical clustering 

leads to a",classification which is mor e than just a 

set of disjoint types; it permits major classes 

subdivided into subclasses, which can be further 

subdivided, and so on. A spatial configuration, on 

the other hand, can often be projected into a two- 

or three-dimensional subspace which conserves 

much of the pattern of proximity and distance in 

the original data, allowing for easy visualization 

and identification of the major dimensions of 

variability among the melodies. 

2. Sequence Comparison 

Traditional ways of comparing sequences work 

only if the sequences have the same length n; each 

term from one sequence is compared to the term 

in the same position in the other sequence and the 

similarities or dissimilarities are summed over all 

of these pairs of corresponding terms. In the 

modern theory of finite sequence comparison (cf. 

Sankoff and Kruskal, 1983), the general approach 

is the search for an optimal correspondence 

between the elements of the two sequences (which 

have not necessarily the same length) among every 

possible correspondence satisfying some condi- 

tions such as the preservation of the order of the 

elements. 

A natural way to quantify the difference betwe- 

en two sequences A -- al, a2, . . . , a m and B - -  b l ,  

b2, . . .  bn is to count the minimal number of 

transformations (chosen among a predetermined 

set of allowed transformations) which must be 

applied to the first sequence in order to obtain the 

second one. This number is called the dissimilar- 

ity. 

Typical transformations include deletion of a 

term from a sequence, insertion of a term between 

two preexisting terms in a sequence and replace- 

ment of one term by another. To illustrate, the 

minimal number of transformations necessary to 

change the sequence A -- a, b, c, d, e, f, g to B -- a, 

c, d, e, f, h, i is three; for example, deletion of 'b,' 

insertion of 'i' and replacement of 'g' by 'h,' the 

other terms remaining the same. 

The trace of a series of transformations from A 

to B, as illustrated in Figure 1, consists of the 

source sequence A, the target sequence B and lines 

linking replaced elements and unchanged elements. 

When transformations must be deletions, inser- 

tions or replacements only, a sequence element 

can touch no more than one line and the lines do 

not cross each other. 

These concepts can be generalized by associat- 

FT//// 
a c d e f h l  

F igure  1. Trace  l ink ing  two  sequences .  
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ing a weight to each type of transformation. Thus, 

we do not necessarily count one for each transfor- 

mation but a predefined value related to the kind 

of transformation (deletion, insertion or replace- 

ment), and to the elements involved in the trans- 

formation. The dissimilarity becomes the minimum 

sum of weights among all possible series of trans- 

formations converting sequence A to B. It may be 

computed rapidly (in time proportional to mn) by 

recurrence. Let dij be the dissimilarity between am, 

a2 . . . .  , ai and b 1, b2, . . .  , bj. The recurrence 

equation f o r l  ~ i ~ m a n d l  <~j ~<nis 

di-  l,j "]- w(ai ,  o )  

dij = min d i_ 1, j -  1 + w(a~, bj) 

di, j - 1  + W(O, bj) 

where w(a~, o) is the weight associated with the 

deletion of a~, w(o, bj) with the insertion of bj and 

w(ai, bj) with the replacement of ai by bj. We 

assume w(ai, bj) = 0 if a i = bj. The initial conditions 

are 

di0 = di - 1, 0 + w(ai ,  o) ,  i /> 1 ; 

d0j=d0,j_l +w(o ,  bi),j /> 1 

and 

d00 = 0, 

since if one of the sequences has no element, the 

only possible transformations are deletions or 

insertions respectively. 

This recurrence may be applied to all pairs (i, j) 

in any order, as long as it has already been applied 

to (i - 1, j), (i, j - 1) and (i -- 1, j - 1) before being 

applied to (i, j). In order to obtain the optimal 

trace linking two sequences we construct, during 

the calculation of each d~j, pointers indicating 

which of the right hand side terms achieves the 

minimum. The best alignment and trace are ob- 

tained by following pointers backwards from the 

final dissimilarity dmn. It is not difficult to prove 

that this calculation yields the minimum sum of 

weights among all possible series of transforma- 

tions converting sequence A to B, together with an 

optimal trace linking the two sequences. 

Note that if w(x, y) = w(y, x) for all terms x and 

y (including o), the calculation of dmn between A 

and B gives the same result as the calculation of 

d,m between B and A, with deletion in the first 

case becoming insertion in the second, and vice 

versa. 

These ideas are fundamental to the mathemat- 

ical theory of sequence comparison, which has 

found many applications in science and the hu- 

manities. 

3. Musical Score as a Sequence 

Any monophonic score may be regarded as a 

series of ordered pairs with the pitch of the note as 

the first component and its length as the second. 

Rests are indicated with a dummy symbol in the 

first component. In order that our analysis remain 

invariant under transformation from one key to 

another, and from one tempo to another, we code 

the pitch of each note according to how far it is, 

e.g. in semitones, from the tonic. The length of the 

notes are coded in sixteenth note values. 

4. Transformations and Weights 

The assignment of weights to transformations 

must be sensitive to the kind of musical differences 

we wish to measure. In this study we wish to 

transcend gross differences in overall key signa- 

ture, tempo or mode between two scores, since 

these are obvious without any quantitative assess- 

ment. Rather, we are interested in local differences 

in rhythm and melody. In the case of a replace- 

ment the weight is the sum of two quantities: w(ai, 

bj) = Winterval(ai, bj) + klWlength(ai, bj), where k 1 
represents the relative contribution of length 

difference versus that of pitch difference. Winterval(ai, 

bj) is a predefined value determined by the relative 

position of the notes ai and b i (recalling that our 

notation effectively transposes each musical se- 

quence to a common scale), multiplied by the 

length of the shorter of ai and bj, so that Wi,t~rv,l is 

reduced if a short note such as grace-note is 

involved. We define Wlength(ai, bj) simply as the 

difference of the lengths of the two notes. For 

tonal music, interval weight is linked to the 

consonance of the interval. For example, a small 

weight is attributed to the replacement of a note by 

one an octave or a fifth above, since these are 

consonant intervals (in each case the two notes 

have a simple frequency ratio: 2/1 and 3/2 for the 

octave and the fifth respectively) whereas Win t . . . .  1 

will be bigger for dissonant intervals, such as a 
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second or a seventh (ratios of 9/8 and 15/8 with 

the tonic). 

To assure that interval weight is independent of 

both key and mode, it is helpful to convert the 

pitch of a note to degrees of the scale from the 

tonic. For example, if the source sequence is in G 

major and the target one in G minor we assign 

weight zero for the replacement of a B (fifth 

semitone from the tonic) by a B flat (fourth 

semitone from the tonic) since both notes are the 

third scale-degree of their respective scale (cf. 

Figure 2). Otherwise the weight for this interval 

would be inappropriately large, a semitone being a 

dissonant interval. 

Denote deg(n) the weight associated to pairs of 

notes which differ by n degrees of scale. A special 

calculation is needed if one of the notes being 

compared is not in its scale (i.e. it is not a degree of 

the scale of the score it is in). In this case, the 

interval weight is denoted by ton(m), is computed 

from the difference m in semitones and is higher 

than for neighbouring intervals computed from 

degrees (since it is less consonant): we will assume 

that the relationship is approximately of form 

ton(m) = ¢tdeg(n(m)) + 0, where n(m) is the 

neighbouring interval computed by degrees and/z 

and 0 are parameters to be determined. For 

example, n(7) = 4 since the fifth (interval of 4 

degrees) consists of 7 semitones; n(4) = 2 for a 

major scale and n(3) = 2 for a minor scale, since 

the third (interval of 2 degrees) consists of 4 or 3 

semitones depending on if the third is major or 

minor, and so on. If both notes are not in their 

respective scale, the interval weight is computed 

from the difference of degrees after subtracting (or 

adding) one semitone to both notes, except when 

that is not possible. (If the two notes are the tenth 

and eleventh semitones of minor scales cf. Figure 

2; in this case we use ton(m) and the ,u and 0 

parameters.) These considerations of degrees and 

scales are not pertinent in an atonal music context 

where w might be, for example, constant over all 

intervals. 

We consider w(ai, 0), the weight associated with 

a deletion, to be a special case of w(a~, bj), since a 

deletion is, in effect, as the replacement of a~ by a 

note of length zero. Appropriately, the term 

Winterval is reduced to zero since the smaller of the 

length of ai and zero is zero, so that w(ai, o) is 

simply the length of the deleted note a~ times k v In 

the same way, w(o, bj) is the length of the inserted 

note bj times kl. 

5. Analogies with Time-Warping 
It is necessary in the comparison of musical 

sequences to allow two more kinds of transforma- 

tion, similar to the compressions and expansions 

used in time-warping for automated speech re- 

Major  scale degrees 1 2 3 4 5 6 7 

Minor  scale degrees 1 2 3 4 5 6 7 

Semitones 1 2 3 4 5 6 7 8 9 10 11 12 

Difference o f  degrees with the tonic 0 1 2 2 3 4 5 5 6 

Difference o f  semitones with the tonic 0 1 2 3 4 5 6 7 8 9 10 11 

Figure 2. Degrees  of  major  and minor  scales in the chromatic  scale. 
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cognition (cf. Kruskal and Liberman, 1983). These 

new transformations which we call consolidations 

and fragmentations, involve the replacement of 

several elements by a single one and the replace- 

ment of one element by several, respectively. To 

motivate this, we note that, for example, a whole 

note replaced by four quarter notes of the same 

pitch should not be very costly. Were we con- 

strainted to insertions, deletions and replace- 

ments, however, it would cost at least one replace- 

ment and three insertions. It seems advantageous 

to be able to count it as a single transformation: a 

fragmentation. 

In the same way as for a replacement, the 

weight associated with a fragmentation or a con- 

solidation is a linear combination of Wleng,h and 

Winterval. For a fragmentation, Winterval is the sum of 

the Winter~a~ S between each replacing note and the 

replaced one while Wlength is the difference between 

the total length of the replacing notes and the 

length of the replaced one. For example in the 

following fragmentation, since the length Of the 

whole note is equal to the total length of the four 

replacing notes, the weight associated to the total 

difference of length is zero. Winterval will be the sum 

of the Win t . . . .  1 s corresponding to each of the trace 

lines. Interval weight and total length difference 

weight are defined in a similar way for a consolida- 

tion. 

v 

2L2_  
The consolidation/fragmentation concept re- 

sembles that of compression/expansion, with the 

essential difference that the latter, mainly used in 

the processing of human speech, is applicable to 

sequences resulting from sampling at regular 

intervals of a continuous function, usually of time. 

Compressions and expansions are local distor- 

tions or "warpings" of the time axis, the sequences 

they link are discretizations of two continuous 

functions whose trajectories traverse (approxi- 

mately) the same curve in feature space in the 

same direction though at possibly very different 

rates. In the context of musical sequences, how- 

ever, the melody function is essentially discrete, 

the time interval between two elements is not 

regular and in consolidation and fragmentation a 

note is most often compared to a series of notes 

with the same total time value (through the effect 

of Wlength ) as  opposed to compression and expan- 

sion. 

6. The Algorithm 

By integrating consolidation and fragmentation 

into the set of transformations and letting the 

weight associated with a replacement be a linear 

combination of Winterval and Wlength , the dissimilarity 

recurrence equation becomes 

dij = m i n  

d i _j,j +w(a i, o) (deletion) 

dl.j_ j + w(o, bj) (insertion) 

{di -  1,j - k -k- w(ai,  b j_  k + D. " " '  bi), 
2 ~< k ~< j} (fragmentation) 

{di--k,j- I "~- w ( a i -  k + 1 , - "  ' ,  ai, bj), 
2 ~ k ~< i} (consolidation) 

di- ~,i- 1 "t- w(ai ,  bj) (replacement) 

for 1 ~< i ~< m, 1 ~< j ~< n, where w(ai, bj_k+ 1, 

. . .  , bj) and w(a i_k+ J, --- , a~, bj) are the pre- 

defined weights associated to a fragmentation and 

a consolidation respectively. Initial conditions are 

di0 = d i -  1, 0 -t- w(ai ,  o) ,  i /> l (deletion); 

d0j = d0 d -1 + w(o, bj),j >~ 1 (insertion) 

and 

d00 = 0, 

since at this stage of the recurrence, deletions and 

insertions are respectively the only possible trans- 

formations, one of the sequences having no terms. 

Under this new definition of dissimilarity, a typical 

trace diagram might be as in Figure 3. 

Whereas the algorithm presented in section 2 

required computer time proportional to n 2 (in the 

case m -- n), this new algorithm might seem to 

necessitate a time of order n 3 since for each of the 

n 2 values of dij to be computed (1 ~< i, j ~< n) we 

have to find minimum not among three possibil- 

ities as before, but among i + j + 1, which is 

bounded only by 2n + 1. However, the algorithm 

may be adapted to require only order n 2 computer 
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0 1 8 2 0 3 ON a 5 a 6 8 7 0 8 

bl b2 bs b4 b5 b6 b7 b9 

Figure  3. T race  invo lv ing  conso l ida t ions  and  f ragmenta t ions .  

time. This involves the use of two constants F and 

C such that the recurrence equation 

d~j = min 

di- l.j + w(ai, o) (deletion) 

di, j -  1 "{- w(o,  bj) (insertion) 

{di--l,j--k "3r w(ai, bj - k + l  . . . . .  bj), 
2 ~< k ~ rain (j, F)} (fragmentation) 

{di-k,j- I + w(ai- k + 1,. • . ,  ai, bj), 
2 ~< k ~< min (i, C)} (consolidation) 

di- 14-1 + w(ai, bj) (replacement) 

is equivalent to the previous one. This is the case if 

it is never necessary to consider fragmentations of 

a~ into more than F elements or to consider the 

consolidations of more than C elements into bj. 

For example we can always find an F such that it 

is more worthwhile to insert a number of terms 

than to extend a fragmentation to more than F 

elements. We simply choose F to be the smallest 

integer larger than or equal to the ratio max {L(ap), 

1 ~< p ~< m }/min{L(bq), 1 <~ q ~< n}, where L (ap) 

and L(bq) are the lengths of the notes ap and bq 

since the fragmented note will clearly be shorter 

than the total length of the F fragments and 

hence, extending the fragmentation to more than F 

elements would increase the Wlength component of 

the weight. In practice, when computing a given dij 

and considering successively fragmentations into 

2, 3, 4 . . . .  elements, it is not even necessary to 

continue until the fragmentation of a~ into F 

elements; we can stop when the total length of the 

fragment notes becomes equal to or larger than 

that of ~, the fragmented note. Similar remarks 

apply to C. 

Again, it can be shown that the optimal trace 

linking two musical sequences is obtained through 

the use of pointers for each d o of the previous 

recurrence equation and the best alignment is 

found by following the pointers starting at dmn. 

Of course, since F and C depend on the ratio of 

note lengths in the two scores, the algorithm can 

only be considered strictly of order n 2 over some 

set of scores (or possible scores) in which these 

quantities are bounded. Practically speaking, this 

is always the case. 

It should be noted that Logfippo and Stepien 

(1986) also treated scores as abstract sequences, 

but confined themselves to pitch considerations in 

making alignments, and without allowing for 

fragmentation, consolidation or other time-warp 

analogies. They did not envisage recourse to 

sequence alignment algorithms for optimizing 

alignments, though they did suggest weighting 

matches according to rhythmic considerations. 

7. Parameter Determination 

In order to apply the algorithm, the values of the 

parameters involved in the dissimilarity recur- 

rence equation have to be given. These parameters 

are kl, the relative contribution of Wlength versus  
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Winte~a,; deg(n), n ---- 0, 1, . . .  , 6, the weight 

associated with an interval of n degrees; kt and 0, 

the parameters involved in the equation used to 

compute ton(m) from the weights associated with 

intervals computed by degrees, and rest, which is 

the value given to Winterval when one of the notes 

involved in the transformation (replacement, frag- 

mentation or consolidation) is a rest (when two 

rests are matched, Winterval takes the same value as 

in the case of two notes of same pitch). Interval 

weights are determined modulo an octave. For 

example, the weight for an octave-and-a-third is 

the same as for a third. Interval parameters are 

determined according to consonance. We will 

assign increasing weights to intervals in order of 

increasing dissonance: unison, fifth, third, sixth, 

fourth, seventh and second. Despite the fact that 

the fourth has a simpler frequency ratio than do 

the third and the sixth, 4/3 compared to 5/4 and 

5/3 respectively, the third and the sixth are 

traditionally considered more consonant than the 

fourth in occidental music. For the applications in 

this paper, we chose the values: 

deg(0) = 0 

deg(4) = 0.1 

deg(2) = 0.2 

deg(5) = 0.35 

deg(3) = 0.5 

deg(6) = 0.8 

deg(1) = 0.9 

rest -- 0.1; 

# = 2; 

0 = 0.6; 

(unison (identity replacement), 

octave, two octaves, . . . ) ;  

(fifth, octave and a fifth . . . .  ); 

(third, octave and a th i rd , . . . ) ;  

(sixth, . . . ) ;  

( fourth, . . . ) ;  

(seventh, . . . ) ;  

(second, . . . ) ;  

and hence we get for the other weights, using the 

formula ton(m) = ~deg(n(m)) + 0 (raising the 

weights computed by degrees): 

ton(0) = 0.6 

ton(7) = 0.8 

ton(4) = 1 

ton(3) = 1 

ton(9) = 1.3 

ton(8) = 1.3 

ton(5) = 1.6 

ton(6) = 1.8 

ton(10) = 2.2 

(unison, octave, . . . ) ;  

(perfect fifth, octave and a perfect 

f i f th, . . . ) ;  

(major th i rd , . . . ) ;  

(minor th i rd , . . . ) ;  

(major sixth . . . .  ); 

(minor sixth, . . . ) ;  

(perfect four th , . . . ) ;  

(augmented four th , . . . ) ;  

(minor seventh, . . . ) ;  

ton(2) = 2.3 

ton(11) = 2.5 

and 

ton(l)  = 2.6 

(major second, . . . ) ;  

(major seventh, . . . ) ;  

(minor second, . . . ) .  

We note in the values listed above that ton(6), 

ton(11) and ton(l)  are slightly larger than stipu- 

lated by the equation ton(m) = / ,deg(n(m))  + 0, 

and ton(2) is slightly less, the augmented fourth 

being less consonant than the perfect fourth, the 

major seventh less than the minor and the minor 

second much less than the major second. Finally 

we assigned a weight to the rest of exactly the same 

value as that of the most consonant interval (other 

than the identity replacement). We can be really 

confident only about the order of weights in terms 

of decreasing consonance. The precise values we 

have calculated are debatable, or could be opti- 

mized with respect to some data set. In any case, 

some assignment of parameter values is necessary 

to evaluate the performance of the algorithm. 

Once the weights associated to the intervals are 

fixed, it is relatively easy to determine the only 

remaining parameter, kl, which represents the 

relative contribution of Wlength and Winterval. We 

proceed heuristically on pairs of musical se- 

quences which are known to be quite similar since 

in this case we know roughly what to expect for 

the form of the trace diagram. 

Mozart's nine variations on the theme: Ah! vous 

dirai-je, maman (K. 300, "Twinkle, Twinkle Little 

Star," arrangement in Duschesnes [1962]) con- 

stitute an ideal collection of such musical se- 

quences to start with, they are of comparable 

lengths: the theme and most of the variations have 

twelve 4/4 bars. Variation 6 has twenty-four 3/4 

bars and Variation 4 twelve 6/8 bars, so that by 

multiplying the length of each note of the former 

by 2/3 and each note of the latter by 4/3, all the 

sequences are endowed with the same total time. 

To determine k 1 we will study its effect on the 

traces linking three pairs of sequences. The first 

pair involves two very similar sequences: the 

theme and Variation 5, the former in a major key, 

the latter in a minor one. The second pair consists 

of two quite similar sequences, Variation 2 and 3, 

and the third, two relatively dissimilar musical 

sequences: Variations 3 and 7. If for a value of k I 
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the traces align too often two highly dissonant 

notes of same length, we may suspect that the 

differences of length are too strongly penalized 

compared to differences of pitch, i.e. kl is too high. 

Inversely, when we notice that consolidations and 

fragmentations tend to link a single note of a 

certain length with a group of notes whose total 

length is very different simply because all the notes 

of the group are consonant with the single note, kl 

must be too low. As another way of assessing a 

value of kl, we may observe if the bar lines divide 

trace diagrams into twelve bar lines (the bar line 

information is not given in the input to the 

algorithm). If few trace lines cross bar divisions we 

consider the trace favorably. 

Based on these criteria, we obtain the traces in 

Figures 4, 5 and 6 with the final value: k I = 0.348. 

We notice that the bar alignment criterion is only 

partially met between Variations 3 and 7, is largely 

met by Variations 2 and 3, and fully met between 

the theme and Variation 5. (If we connect corre- 

sponding bar lines we see that no trace lines cross 

them.) This last trace confirms the mode indepen- 

dence of the algorithm since the theme is in major 

key while Variation 5 is in a minor one. 

That the set of parameters responsible for the 

traces is reasonable, is confirmed by examining 

Figures 4 and 5, where notes having obviously 

analogous roles in the two melodies are linked in 

the trace. Inappropriate parameter values inevi- 

tably miss some of these correspondences. 

8. Patterns of  Similarity among Variations on a 

T h e m e  

We apply our musical comparison algorithm, with 

parameters as determined in the preceding sec- 

tion, to the set of all possible pairs of these 

variations. Prior to further quantitative analysis, 

we sketch a "subjective" assessment of the differ- 

ent variations. Variation 1 is almost identical to 

the theme, with only a few fragmentations of the 

original quarter notes into eighth notes. Variation 

2 contains many more such fragmentations. Varia- 

tion 3 carries this rhythmic complication much 

further, introducing sixteenth notes but still fol- 

lowing the melodic structure of the theme rather 

~ , ' T ~  ; - - ' v  r ', • i "  ~ ~ ~ . . . .  Li  , - -  i :  = - i '  - "  I -  - - ; -  - r , ,, ~ = - ~ - -  ~ . 

Figure 4. Trace linking Variation 5 to Theme. 

~ + . _ :  _ ~ ' = _ _ - : - Y - ' - r ' - ~ ~  . . . .  L - + , " "T ' ~ -  ' - -  ~ I 

. - . ~ - - . ~ = - , ' - , - , ' - ~ - - - ~ , - - - " w - ~  [ ~ - - ~ - ~ - ~ = ~  ~===.--= i . . . .  ;~ i- ,  = , -=:-=!~- '~;-~ q, 

/1" t ' 
Figure 5. Trace linking Variation 2 to Variation 3. 
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Figure 6. Trace linking Variation 3 to Variation 7. 

strictly. Likewise for Variation 4 which contains 

many grace notes and smoothly ascending and 

descending diatonic and arpeggio passages. Varia- 

tion 5 returns closer to the basic melody, but is in a 

minor key, as is Variation 6. The rhythmic com- 

plexity of Variation 6 disguises the theme, but it is 

still discernible, as opposed to the remaining three 

variations in which there is very little identifiable 

of the original melody. Variation 7 consists mostly 

of arpeggio triplets while Variation 8 and 9 are 

made up of long passages of sixteenth notes. In 

Variation 8, these passages contain rather large 

intervals and few smoothly ascending or descend- 

ing sequences, while the opposite holds for Varia- 

tion 9. 

If we apply our algorithm to every pair of 

variations, we obtain the dissimilarities shown in 

Table 1. We note first the central role of the 

theme: with some exceptions it is generally more 

similar to each variation than the latter is to any 

other variation. In order to visualize the overall 

patterns contained in the array, a rough classifica- 

Table 1. Dissimilarities between each pair of variations. 

Theme Varl Var2 Vat3 Var4 Var5 Var6 Var7 Var8 Var9 

Theme 
Varl 
Var2 
Var3 
Var4 
Var5 
Var6 
Var7 
Var8 
Var9 

0 
19.1 0 
29.1 29.1 0 
17.2 22.7 26.6 0 
33.1 33.3 33.2 33.5 
17.6 20.0 30.3 21.0 
33.1 41.8 44.1 39.1 
40.5 41.7 49.5 45.1 
41.5 43.9 44.4 39.7 
45.1 48.3 49.2 38.1 

0 
34.0 0 
46.7 34.8 0 
44.5 45.0 40.3 0 
42.1 40.1 47.4 54.4 0 
45.9 46.8 44.7 49.3 38.0 
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dissimilarity 

/ \  
5 0 - -  

4 0 -  

3 0 -  

2 0 -  

1 0 -  

I 
[ 

I 
i,. 

Theme Var3 Var5 Varl Var2 Var4 Var6 Var7 Var8 Var9 

Figure 7. Cluster analysis. Average link method. 

tion of the nine variations and the theme can 

be made through cluster analysis. The tree in 

Figure 7 is derived using the average-link method 

(Williams and Lance, 1977). It appears from this 

tree that variations in which the theme can easily 

be recognized (Variations 1, 3 and 5) group 

together (with the theme) rather closely. Likewise 

Variations 8 and 9, which have almost identical 

rhythmic structures, group together. Finally, we 

should note the proximity of variations in a major 

key with Variation 5 despite the fact that the latter 

is in a minor one. 

A different way of visualizing the data is 

through a spatial representation as given by 

principal components analysis (cf. Rao, 1965). 

Our dissimilarity is not however, a metric. For 

example if one takes a and b a fifth apart, and c a 

fifth apart from b (highly consonant intervals), 

then the interval between a and c is an octave and 

a second (dissonant interval). In other words, the 
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interval weights do not satisfy the triangular 

inequality, since for this example Winterval(a , b) + 

Wintervaj(b, c) < Wi,terval(a, C). Hence, neither does 
the dissimilarity measure. Moreover we do not 

have wi. t .... l(x, y) = 0 iff x = y when for example x 

and y are two notes one octave away from each 

other (the weight associated with this interval 

having been fixed to zero). Nevertheless it does 

not deviate from data-analytic practice to assume 

that for long enough melodies d approximates a 

metric. This will enable us through the use of 

principal components analysis to represent each 

variation as a point on the plane. 

The best representation (preserving a maximum 

of the variability in the data) of ten points (the nine 

variations and the theme) in the plane, that is, 

using the first two principal components as axes, 

which together represent more than 54% of the 

total variation in the data, yields the configuration 

in Figure 8. The same remarks made about the 

results obtained with cluster analysis apply here. 

We note, however, that the principal components 

analysis makes a clearer separation between dis- 

similar variations than does the cluster analysis, 

and that the internal structure of the more theme- 

like group is less well resolved. If we consider the 

first three principal axes, which represent nearly 

70% of the total variation, we obtain some refine- 

ment in the main group. The central role of the 

theme is confirmed and the distance separating 

Variations 6 and 7 is clearer. 

9. General Case: Seeking for Local Similarities 

The algorithm studied in the previous sections is 

meaningful for comparing two scores in their 

entirety. Often, however, especially when two 

t'-q 

< 

2 0 -  

10 

-10 

-20 

-30 

-40 . , 

-40  -30  

[] Var9 

[] Var8 

Var3 

Var4 

[] Var6 

[] Var7 
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[] 
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Figure 8. Principal components analysis. 
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scores are of very different lengths, there is no 

motivation for such a global comparison. Instead, 

we may wish to detect and measure similar 

portions of two scores. We now introduce an 

algorithm for doing this which is almost identical 

to that presented in the previous sections. The 

addition of a single parameter controlling the 

length of the similar portions to be found is 

enough to generalize the previous method. 

Kruskal and Sankoff (1983), in order to find 

local alignments (traces between portions of two 

sequences) in molecular biology, propose a modi- 

fication of an algorithm first suggested by Smith 

and Waterman (1981). If we were to search for 

portions of two sequences with minimum distance 

as defined in the basic sequence comparison 

algorithm, this minimum would always be achiev- 

able with a meaningless alignment of very short 

portions (such as alignment of two single ele- 

ments). Instead, we replace the dissimilarity used 

in the algorithm of Section 2 by an alignment 

"quality" function to be maximized, involving both 

positive and negative values; depending on the 

type of transformation. Let qij be the maximum 

quality of any local alignment between portions 

ending at a~ and bj. If all such alignments have 

negative quality then the maximum is the null 

alignment and qij = 0. Since every local alignment 

between al, a2, • • •, am and bl, b2, • • •, bn contains 

some final a i and final bi, the maximum quality 

possible is max{qij: 1 ~< i ~< m, 1 ~< j ~< n} where 

chj is computed with the following recurrence: 

qi-x,j + s(a~, o) 

qij = max qi - ~,i- 1 + s(ai, bi) 
qJ, i -  1 + s(o, bi) 
0 

where qi0 = 0 for all i, q0i -- 0 for all j and s(ai, o) < 

0, s(o, bi) < 0 and s(ai, bj) are the values corre- 

sponding to deletions, insertions and replace- 

ments, respectively. Note that s(ai, bj) > 0 if a~ = 

bj. 
Once the % are calculated, the best local 

alignment is obtained by making use of pointers 

calculated at the same time as the chi indicating, for 

each qJi, which of the right hand side terms was 

responsible for the maximization. The traceback 

path starts with the maximizing q~i and ends when 

a nil % value is met. 

In some applications we look not only for the 

best local alignment but also for the second "most 

similar" pair and so on, and generally we do not 

want these to be merely subsets of portions 

already found. Smith and Waterman suggest 

eliminating as possible endpoints for an alignment 

all qij encountered in the traceback from the 

optimal % down to the beginning of this optimal 

alignment and then looking for the second optimal 

quality amongst remaining chj. But proceeding this 

way will still generally lead to variants of the first 

alignment found. The modification suggested by 

Kruskal and Sankoff is to label as 'used' each (i, j) 

encountered in the trace of the optimal alignment 

found and to reappty the algorithm with the differ- 

ence that we let qij = 0 for all % labeled 'used'. 

Once all the chj are re-computed, we take as 

second best alignment the maximal chj value. We 

repeat this procedure in order to obtain the other 

best alignments. 
In the same way as we generalized the full- 

sequence comparison algorithm to the comparison 

of musical scores, we adapt the algorithm for 

finding similar portions of two sequences de- 

scribed here to finding similar portions of two 

scores. Considering a score as a series of ordered 

pairs (pitch and length) and allowing consolida- 

tions and fragmentations, we first construct the 

quality function chj exactly in the same way as dij 

(dissimilarity), except that each weight is replaced 

b y  (k 2 - weight), where k 2 is a parameter defined 

so that (k 2 -- weight) is negative for insertion and 

deletion and positive for at least identity replace- 

ments. 

This approach is not completely satisfying since 

it awards a high score to two replacements involv- 

ing short notes such as 

a 1 ~ a2 

b l a b 2  

and a low weight to a replacement involving two 

long notes such as 

a 3 

I 
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(the first weight is 2k 2 whereas the second is k2). In 

order to avoid this problem we multiply k: by the 

total length of the notes involved in the transfor- 

mation considered. Thus, the scores associated 

with deletion, replacement and fragmentation will 

be respectively: 

s(a~, o) = kaL(a 0 - w(a i, o), 

s(a i ,  b j )  = k 2 ( L ( a i )  + L ( b j ) )  - -  w ( a i ,  b j )  

and 

J 

s(ai, bj_k +~," • ", bj) = k2(L(ai ) + ~ L(bO) - 
s = j - k + l  

- -  w ( a i ,  b j _  k + 1," • ' ,  b j )  

where L(a 0 and L(bj) are the lengths of the notes ai 

and bj. Thus the quality recurrence equation is 

q i -  1,j "1- k2L(ai) -- w(ai, o) 

Off, j--I -1- k2L(bj) -- w(o, bi) 

J 

{qi_ 1,j_ k + k2(L(ai) + ~ L(bs)) - 
s= j - -k+ l  

-- w(ai, bj _ k + 1 . . . .  , bi), 

2 ~ k 4 min(j, F)} 

qij = m a x  {off_k,j_, + k2 Y~ L(as) + 
s = i - - k + l  

-4- L(bj)) - w(a i_k + 1, • • . ,  ai, bj), 

2 ~< k ~< min(i, C)} 

qi-1,i-1 + k2(L(ai) + L(bi) ) - w(ai, bj) 

0 

~< m and 1 ~< j ~< n, with initial f o r l  ~< i 

conditions: 

offo = max 
off - 1,0 + k2L(ai) - w(ai, o) 

i > l ;  
0 

q0,i- 1 + kzL(bj) -- w(o, bj) 
% = max 0 ' J >~ 1 

and 

q00 = 0 

Again, to obtain all the good local alignments, 

we trace back from all the highest values of offj and 

stop whenever a nil % value is met. 

The parameter k2 can be interpreted in terms of 

length of the local alignments, this length being 

proportional to k 2. Moreover, we can prove that 

the algorithm which seeks for local similarities is a 

generalization of the algorithm for entire se- 

quences discussed in section 6. Indeed, if k2 is 

chosen large enough, the optimal local alignment 

is the alignment obtained with the algorithm of 

section 6 (and the portions found are thus the 

entire source and target sequences). 

10. Seeking for Local Similarities in Mozart's 

Alleluia 

In applying the algorithm of section 9 to the piece 

Alleluia (K165, 1773), the score (Anonymous 

1932) was used both as source and target sequ- 

ence. First, we labeled as 'used' all (i, i), 1 ~< i ~< m 

in order to avoid finding, as first optimal local 

alignment, the trivial identity alignment (between 

the whole piece and itself). 

The twelve best local alignments (with k 2 = 

0.05) consist almost entirely of identity replace- 

ments: eight are properly identity alignments such 

as the eighth best local alignment shown in Figure 

9a, which does, however, reveal an interesting 

feature: the portion reoccurs twice, as in a canon, 

with a two bar delay. The four other local align- 

ments each contains one or two notes which differ 

only in their length or their pitch or one consolida- 

tion of two notes, as in the third best pair of similar 

portions, shown in Figure 9b. 

11. Discussion 

The automated analysis has served to confirm and 

quantify our subjective impressions of the dimen- 

sions of variability in the variations. At the same 

time this exercise is a validation of the concepts 

and the actual parameter values used in the 

comparison algorithm. 

The algorithm we have elaborated is valid in the 

context of any monophonic tonal music, although 

the parameter values were determined using a 

restricted set of variations on a theme. These 

variations are diverse enough to require trace 

diagrams exemplifying a wide range of transfor- 

mations between scores. The addition of a single 

parameter which has an influence on the length of 

the portions found was sufficient to generalize the 

algorithm into one designed for detecting similar 

portions in two scores. 

The algorithm for comparing entire sequences 
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Figure 9. Trace associated with two local alignments of Mozart's Alleluja. 

has the advantage of performing a "global" com- 

parison. The criterion of similarity used encom- 

passes both melodic and rhythmic aspects with 

relative importance governed by a single parame- 

ter. It is not affected by gross differences in key, 

mode or tempo. It also has several disadvantages. 

A melody in one score which recurs several times 

in another can only be linked with one of these 

instances. If two tunes are identical except for the 

displacement of one portion near the beginning of 

one and the end of the other, many correspon- 

dences will not be identified since the trace lines 

of the displaced bars cannot cross those of the rest 

of the tune. Another disadvantage is that the whole 

scores given as input to the algorithm have to be 

"matched," even the portions having no similar 

counterpart in the other score. All these dis- 

advantages vanish when the (second) algorithm 

which finds local similarities, with its flexible 

length parameter, is applied. 

Applications of these algorithms could be 

extended to any kind of sequences in which time is 

an essentially quantitative dimension (rhythm, in 

music) and not simply an ordinal parameter (as in 

speech recognition where compressions and ex- 

pansions of an elastic time axis are allowed). 

Similar studies might be carried out in a flame- 

work not restricted to tonal music and generalized 

to polyphonic scores. Possibilities for application 

are numerous, for comparative analysis of differ- 

ent versions of folksongs and production of 

derivation trees in ethnomusicology or in medieval 

musicology (e.g. the study of Gregorian chant), 

criticism, as an adjunct to automated composition, 

for the study of the development of a composer, 

and even for questions of copyright. 
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