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Comparison of Near-Field Millimeter-Wave Probes
for Detecting Corrosion Precursor Pitting Under Paint

Mohammad Tayeb Ghasr, Member, IEEE, Sergey Kharkovsky, Senior Member, IEEE,
Reza Zoughi, Senior Member, IEEE, and Russell Austin

Abstract—Aircraft structural components such as wings and
fuselages are constantly exposed to harsh environments, which
make them susceptible to corrosion initiation and growth. To
complicate matters, corrosion is normally hidden under paint and
primer and cannot be visually detected until significant corro-
sion has occurred, causing the paint to blister. Corrosion of this
type is usually preceded by the presence of corrosion precursor
pitting. Hence, early detection of pitting is a critical issue in
the maintenance of an aircraft and its structural components.
Near-field microwave nondestructive testing techniques have been
successfully used for detection of corrosion under paint, including
very small laser machined pits. However, it is desirable to improve
the spatial resolution associated with these techniques so that pits
with dimensions in the range of a few hundreds of micrometers
can be effectively detected. In this paper, a comparison between
several different millimeter-wave open-ended rectangular wave-
guide-based probes is made for the detection and evaluation
of corrosion precursor pitting at Ka-band (26.5–40 GHz) and
V-band (50–75 GHz). A number of laser machined pits with
dimensions varying between 150 to 500 m were produced for
this investigation. Using these probes, millimeter-wave images of
these pits were produced, indicating that the modified open-ended
rectangular waveguide probes, namely, single and double tapered
and dielectric slab-loaded waveguide probes, were successful in
detecting small pits. The results of this investigation, along with a
complete discussion of the results, are presented.

Index Terms—Corrosion, microwave imaging, millimeter wave,
nondestructive testing, pitting.

I. BACKGROUND

CRITICAL aircraft structural components, such as wings
and fuselages, are exposed to harsh environments that

vary considerably in temperature and moisture content. These
varied environmental conditions lead to corrosion of these
components. In most cases the corrosion is hidden under paint
and primer and cannot be visually detected. Thus, detection
is only possible when corrosion becomes severe and causes
blistering of the paint. When this happens, a relatively large
area must be rehabilitated, which may require significant time,
resources, and downtime of the aircraft. The initiation of corro-
sion is preceded by the presence of corrosion precursor pitting.
Detection of precursor pitting yields information about the
susceptibility to corrosion initiation [1]–[3]. The size (area and
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depth) of a precursor pitting is naturally very small (fractions
of a millimeter); otherwise, when it becomes relatively large,
the corrosion process has already initiated. Therefore, nonde-
structive detection of corrosion precursor pitting is extremely
important and desirable for aircraft structural health monitoring
and maintenance.

The small size of a pit and the fact that it is hidden under paint
and primer limit the number of nondestructive testing (NDT)
methods that can be used to detect it and evaluate its size. There
are several NDT methods that may be used for this purpose. Al-
though there are many standard NDT techniques available for a
wide range of applications, there is no single technique that can
be used for detecting small pits under paint [4]–[6]. Addition-
ally, these techniques each have their own advantages and disad-
vantages when used for detecting corrosion (and pitting) under
paint. On the other hand, near-field microwave NDT methods
have been successfully used for detecting corrosion under thin
and relatively thick dielectric coatings such as paint and com-
posite materials [7]–[10]. Recently, near-field microwave NDT
methods have also been successfully used for detecting corro-
sion precursor pitting in exposed as well as painted aluminum
substrates [11], [12]. Near-field microwave NDT techniques,
using different types of probes, such as open-ended rectangular
waveguides, offer many advantages when inspecting complex
composite structures [13].

1) Measurements can be conducted in contact as well as non-
contact fashion, and when used in the latter mode, the dis-
tance between the probe and the composite under test, re-
ferred to as the standoff distance, may be optimized to
increase measurement sensitivity.

2) Compared to the far-field or plane-wave approach, near-
field approaches produce finer spatial resolutions, since
spatial resolution in the near-field of a probe is primarily
a function of the probe dimensions and not necessarily
a function of wavelength. Near-field probes are usually
relatively small; consequently, when used for millimeter-
wave imaging (as will be explained later), they produce
high spatial resolution images, which is very attractive for
detecting very small pits.

3) There are several different types of near-field probes
that may be used (open-ended rectangular and cir-
cular waveguides, open-ended coaxial lines, microstrip
patches, cavity resonators, etc.), each providing its own
unique advantageous features for a specific application.

4) There is no need for a bulky antenna. Near-field measure-
ment systems are commonly small, handheld, portable,
and operator friendly, and require low microwave power
[13].

0018-9456/$20.00 © 2005 IEEE
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When operating in the near-field and for the purpose of
microwave and millimeter-wave imaging, the electromagnetic
properties (i.e., electric field distribution) and the aperture size
of the probe significantly influence the resulting system spa-
tial resolution and radiation efficiency. As mentioned earlier,
open-ended rectangular waveguide probes have been success-
fully used to detect the presence of corrosion under paint and
primer in both steel and aluminum substrates [7]–[10] and
corrosion precursor pitting under paint [11], [12]. Near-field
microwave NDT techniques with open-ended rectangular
waveguide probes have also been used to detect other types
of surface anomalies, such as scratches, cracks, and dents in
metallic structures [14]–[18]. Standard open-ended rectangular
waveguide probes have shown great promise for detecting
precursor pitting larger than 500 m in diameter (at frequencies
higher than 30 GHz). However, for aircraft health monitoring
and effective maintenance purposes, it is necessary to detect
smaller pits since detection of smaller pits means the discovery
of earlier corrosion initiation [11], [12]. Consequently, it is of
great practical interest to increase the effective spatial reso-
lution obtained by open-ended rectangular waveguide probes
while maintaining a relatively high level of radiation efficiency
(i.e., adequate signal radiation from the probe while reducing
unwanted reflections due to mismatch between the probe and
the waveguide). At a given operating frequency band, higher
spatial resolution may be achieved by physically reducing
the probe aperture dimensions through tapering the narrow
and/or broad walls of the waveguide [11]. However, tapering
the waveguide adversely affects the radiation efficiency of the
probe and may cause significant unwanted reflections and less
power radiated from it (depending on the taper geometry).
Consequently, a tapered waveguide probe should be operated at
small standoff distances and may become less sensitive to the
presence of small pits under paint. Therefore, a compromise
must be reached between higher spatial resolution and adequate
probe radiation efficiency by electrically reducing the probe
aperture size. It is well known that the dominant mode electric
field inside a waveguide can be concentrated in a relatively
small region by inserting a dielectric slab parallel to the narrow
walls of the waveguide usually centered in the broad walls
[19]–[21]. This modification to the dominant mode electric
field distribution is equivalent to an effective (i.e., electrical)
reduction in the waveguide broad dimension. Therefore, it
is expected that such an open-ended dielectric slab-loaded
waveguide probe would provide higher spatial resolution when
used in the place of an ordinary open-ended waveguide of
the same physical dimensions (e.g., the same frequency band)
while maintaining higher radiation efficiency than a tapered
waveguide probe.

To this end, modified versions of an open-ended rectangular
waveguide probe, namely, single and double tapered and two
different dielectric slab-loaded waveguide probes, were used
to detect machined exposed and hidden (under thin dielectric
coatings such as paint) pits. The influence of dielectric slab
thickness and permittivity on the electric field distribution of the
waveguide aperture was also numerically investigated. Finally,
using two-dimensional (2-D) automated scanning tables and
laboratory-designed reflectometers at Ka-band (26.5–40 GHz)

Fig. 1. Laboratory setup.

and V-band (50–75 GHz), millimeter-wave images of pits of
various sizes were produced. This paper presents the results
of this investigation providing a comparison among these var-
ious modified near-field probes for detecting small corrosion
precursor pitting.

II. APPROACH

Three sets of laser machined pits with openings (diameters)
and depths ranging from 100 to 500 m were produced on a
3-mm-thick aluminum plate. One set of pits was left exposed,
while the other two sets were covered by a thin layer of paint and
appliqué (paint-like polymer), respectively. Pits were spaced
about 40 mm apart. The aluminum plate was placed on a 2-D au-
tomated scanning table capable of moving the plate in two direc-
tions at very small increments. The near-field millimeter-wave
measurement systems or reflectometers were then fixed at a de-
sired standoff distance above the plate, as shown in Fig. 1. A
reflectometer consists of an oscillator (set a desired frequency),
which feeds an open-ended probe via a signal divider/combiner.
A portion of this signal is then supplied to the probe and be-
comes incident upon the pitted aluminum plate. Subsequently,
the reflected signal from the plate is picked up by the probe
and mixed with a portion of the transmitted signal (i.e., refer-
ence signal). This results in the difference between the phase
and/or magnitude of these two signals and a signal proportional
to their difference is fed into a display or indicator [13]. As
the aluminum plate and the probe move with respect to each
other (i.e., raster or C-scan), the reflected signal from the plate
changes if an anomaly (i.e., a pit) is present. The change in the
phase and/or magnitude of the reflected signal due to the pit in-
dicates its presence and can be used to evaluate its dimensions.
As the scanning table moves the plate under the probe, a 2-D
matrix consisting of dc voltages proportional to the local reflec-
tion properties of the plate is produced. These voltages are then
normalized (with respect to the highest value) in the data matrix,
and different grayscale levels are assigned to them, resulting in
a corresponding image of the scanned area. An image produced
in this way provides information about relative signal variation
in that image only, and the same two greyscale levels in two dif-
ferent images do not correspond to the same detected voltage
values [13]. Therefore, in some cases when two images need to
be compared, their matrices can be augmented first and then the
new matrix is normalized and a new image is produced. In this
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Fig. 2. Open-ended probes. (a) standard rectangular waveguide. (b) Tapered
waveguide. (c) Dielectric slab-loaded waveguide. (d) Dielectric waveguide.

way, the voltage outputs in different regions of the original two
images scan can be directly compared.

A small pit is not expected to strongly scatter the incident mi-
crowave or millimeter-wave signal. Consequently, when a mi-
crowave or millimeter-wave signal interacts with a pit and is
finally picked up by the probe, the phase variation in the scat-
tered signal is a stronger indication of the presence of the pit than
the magnitude variation [13]. Therefore, throughout this inves-
tigation, phase-sensitive millimeter-wave reflectometers were
utilized.

Finally, several open-ended probes were designed and
developed for the purpose of this investigation operating at
Ka-band (26.5–40 GHz) and V-band (50–75 GHz). These
open-ended probes consisted of a) rectangular waveguides,
b) single- and double-tapered rectangular waveguides, c) di-
electric slab-loaded waveguides, and d) dielectric waveguides
that are similar to the dielectric slab-loaded waveguides but
with the dielectric slab extended out of the waveguide aperture.
The schematics of these probes are shown in Fig. 2.

III. RESULTS

A. Simulation of Electric Field Distribution

As mentioned above, changing the aperture distribution of
the electric field in a waveguide probe may affect the spatial
resolution obtained by it when used for imaging. In a dielectric
slab-loaded waveguide, the electric field tends to concentrate in
the slab [19]–[21]. The dominant mode electric field distribution
in a dielectric slab-loaded waveguide as a function of thickness
and dielectric constant ( , where the real part is
the relative to free-space permittivity and the imaginary part is
the relative loss factor) of the slab was investigated numerically
using the expressions found in [19].

Fig. 3 shows the calculated electric field distribution of the
dominant TE mode in a Ka-band rectangular waveguide
(WR-28) loaded with a 1-mm-thick dielectric slab (in the
center of the waveguide broad dimension) for four different
relative permittivity values of: 1) 1 (no dielectric slab),
2) 2.5, 3) 4, and 4) 9.8 (assuming lossless
dielectric slabs for all cases, i.e., 0). The results show that
as the relative permittivity of the dielectric slab increases, the
electric field becomes more concentrated within the dielectric
slab. In addition, the electric field distribution in a dielectric
slab-loaded waveguide depends on the width of the slab as
well. Fig. 4 shows the normalized electric field distribution in
a dielectric slab-loaded rectangular waveguide for a slab with

9.8 and normalized widths of 0.05, 0.15, and
0.3, respectively. In Fig. 4, is the width of the dielectric slab

Fig. 3. TE mode electric field distribution in a rectangular waveguide
loaded with a 1-mm-thick dielectric slab having various permittivities at
35 GHz: (1) " = 1, (2) " = 2:5, (3) " = 4, and (4) " = 9:8.

Fig. 4. Normalized TE mode electric field intensity distribution in a
rectangular waveguide loaded with a dielectric slab with permittivity of
" = 9:8 for different normalized slab width c=a.

and is the extent of electric field concentration region at the
selected level of 0.5 (i.e., effective electric
field localization).

It can be seen from Fig. 4 that for 9.8, is not a mono-
tonic function of normalized dielectric slab width. This fact is
more clearly illustrated in Fig. 5, where is plotted versus
normalized dielectric slab thickness for different relative
permittivities of 1) 2.5, 2) 4, 3) 9.8, and 4)

15, respectively. The results show that for a given dielec-
tric slab relative permittivity, there is an optimum slab width that
gives the smallest effective extent of electric field localization
which corresponds to the highest concentration of the electric
field inside and near the slab. For example, when using a dielec-
tric slab with relative permittivity of 9.8, the maximum localiza-
tion of TE electric field occurs for a normalized slab width of
approximately 0.13. Also, as expected, the optimum slab width
decreases as the slab dielectric permittivity increases.

B. Imaging

1) Ka-Band Results: Previously it was shown that an open-
ended rectangular waveguide probe and a double tapered probe
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Fig. 5. The extent of normalized effective electric field localization d=a
versus normalized slab width c=a for different dielectric permittivity of the
slab: (1) " = 2.5, (2) " = 4, (3) " = 9.8, and (4) " = 15.

at Ka-band were not capable of detecting machined pits smaller
than 500 m in diameter [11]. Therefore, in order to examine
and compare the attributes of the various probes mentioned ear-
lier, a pit with a diameter and a depth of approximately 1 mm
was produced. This pit was scanned using four probes; namely,
an open-ended rectangular waveguide (aperture dimensions of
7.11 3.56 mm), a double-tapered waveguide (aperture dimen-
sions of 4.8 2.4 mm), a single-tapered waveguide (aperture di-
mensions of 7.11 0.5 mm), and a dielectric slab-loaded (

and 0.14) rectangular waveguide (aperture dimen-
sions of 7.11 3.56 mm). The pit was scanned at a standoff dis-
tance of 1 mm for all cases, and the resulting images are shown
in Fig. 6. In all of the images presented in this paper, the probes
are oriented such that the broad dimension of the aperture is
parallel to the vertical axes of the images (i.e., the electric field
vector is parallel to the horizontal axes of the images). The di-
mensions shown in all images are in millimeters.

From Fig. 6, it is clear that each probe produced an image of
the pit with a unique set of characteristics and features. The pit
image produced by the open-ended waveguide probe consisted
of two distinct spots, as shown in Fig. 6(a). This is primarily due
to the fact that the pit dimension is much smaller than the wave-
guide aperture dimensions, resulting in two distinct interactions
between the pit and the two edges of the waveguide aperture
(i.e., corresponding to the board walls of the waveguide aper-
ture). This type of interaction has also been observed when scan-
ning a surface breaking crack in conducting plates [15]–[17].
This interaction becomes less significant as the standoff dis-
tance increases, resulting in a single spot indicating the pit [17].
This is an important issue, from the detection point of view, in
that when detecting two spots, one is less likely to miss the pit.
However, for smaller aperture dimensions, one is expected to
detect one spot but with higher signal intensity. This is indi-
cated by the images produced using the remaining probes, as
both tapered waveguide probes and the dielectric slab-loaded
waveguide probe produced one spot indicating the presence of
the pit, as shown in Fig. 6(b)–(d). Moreover, the single tapered
waveguide probe, which has the smallest narrow wall dimen-

Fig. 6. Images of a pitting with a diameter of� 1 mm and a depth of� 1 mm
obtained at a standoff distance of 1 mm using Ka-band probes. (a) Open-ended
rectangular waveguide. (b) Dielectric slab-loaded rectangular waveguide.
(c) Double-tapered Ka-band to U-band transition waveguide. (d) Single tapered
waveguide.

sion, produced an image very similar in shape to that of the ac-
tual pit [Fig. 6(d)].

Each image in Fig. 6 also shows rings around the image of the
pit as a result of the standing wave set up between the waveguide
flanges and the plate. Thus, the presence of the pit is depicted
by these characteristic rings, which results in a more robust de-
tection of a pit (i.e., higher probability of detection). Also, it is
worth noting that the dielectric slab reduced the intensity of the
rings, as expected (i.e., the electric field is concentrated at the
center of the probe), as shown in Fig. 6(b).

The signal intensity associated with the pit in each image de-
pends on the radiation efficiency of the particular probe used
and the relative concentration of the electric field at its aper-
ture. The images shown in Fig. 6 are individually normalized
(as explained earlier), and therefore it is not possible to com-
pare the difference in intensity between the images. However,
when these images were augmented together before normal-
ization (not shown in this paper), we observed that the double
tapered and the dielectric slab-loaded waveguides produce im-
ages with higher contrast than the open-ended waveguide and
the tapered waveguide. The double tapered waveguide has aper-
ture dimensions that are smaller than the open-ended waveguide
(i.e., field is concentrated in a smaller area). However, this di-
mension is not very small compared to the single tapered wave-
guide. Therefore, the radiation efficiency associated with the
double tapered waveguide is not significantly less than that of
the open-ended waveguide but higher than that of the single-
tapered waveguide. The dielectric slab-loaded waveguide pro-
duces concentrated field along the broad walls of the waveguide
aperture while maintaining adequate radiation efficiency.

On the contrary, obtaining finer spatial resolution by de-
creasing probe aperture dimensions results in a decrease in its
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Fig. 7. Image of three pits of 500 �m in diameter and depths of (from left to right) 150, 200, and 500 �m, obtained using the single tapered probe at Ka-band.

radiation efficiency. Thus, since the radiation efficiency suffers
in this case, measurements should be performed at a very small
standoff distances. This is apparent in the results obtained using
the single-tapered waveguide probe, which has been capable
of detecting exposed machined pits of 500 m diameter and
depths as small as 150 m. This corresponds to a relatively
high spatial resolution while operating at a relatively low
frequency. This is possible since the narrow wall dimension of
this probe is comparable to the pit size. Fig. 7 shows the image
of three 500- m-diameter pits, each with depths of (from left
to right) 150, 200, and 500 m, respectively, obtained using
the single tapered probe. In this image, the difference in the
intensity of the indications corresponds to the variation in pit
depth. This image was obtained at a standoff distance of less
than a millimeter. For such small standoff distances, the probe
output voltage is sensitive to variations in standoff distance.
The original image was masked by the signal due to standoff
distance variation. Consequently, the image was processed to
remove the effect of variations in standoff distance.

Another promising probe for detecting small pits, especially
under paint, is the dielectric waveguide probe. For this probe,
the electric field is concentrated within the slab which is nar-
rower than the waveguide it extends out of. Additionally, there
is no waveguide flange in this case (i.e., no rings are expected
around the image of a pit). Therefore, this probe is expected to
produce higher spatial resolution images than the open-ended
waveguide and the slab-loaded waveguide probes. Fig. 8 shows
the image of a 500- m-diameter and 150- m-depth pit under
paint obtained using a dielectric waveguide (aperture 3 1 mm)
at a standoff distance of 0.2 mm. In this image, two spots indi-
cating the pit are clearly visible since the pit diameter is smaller
than the dielectric waveguide dimensions and the standoff dis-
tance is very small. These spots are created due to the interaction
between the edge of the dielectric waveguide and the pit, as ex-
plained earlier. This is confirmed by measuring the distance be-
tween the centers of these spots, which is 3 mm and very close
to the width of the dielectric waveguide. The results obtained
using this dielectric waveguide could not be obtained using the
other probes at Ka-band with the exception of the single-ta-
pered probe, as shown in Fig. 7. It is important to note that both
of these probes were capable of detecting micrometer-size pits
only at very small standoff distances.

2) V-Band Probes: In order to increase the spatial resolu-
tion while maintaining high radiation efficiency, the frequency
of operation may be increased. As the operating frequency
increases, the physical aperture dimensions of the probe be-
come smaller, resulting in higher spatial resolution. Fig. 9
shows three images of a 500- m-diameter and 150- m-depth
pit under paint at a standoff distance of 0.5 mm obtained
at V-band using a) an open-ended rectangular waveguide

Fig. 8. Image of a pit of 150 �m depth and 500 �m diameter under paint
obtained using a dielectric waveguide probe at Ka-band.

(aperture dimensions of 3.8 1.9 mm), b) a double-tapered
waveguide probe (aperture dimensions of 3.1 1.5 mm), and
c) a double-tapered waveguide probe (aperture dimensions of
2.54 1.27 mm). By comparing the results, it is clear that the
double tapered probe produced better image contrast than the
open-ended rectangular waveguide probe. On the other hand,
the open-ended rectangular waveguide [Fig. 9(a)] produced the
more pronounced characteristics rings. This is primarily due
to the fact that stronger standing waves are set up between the
metal plate and the flange of the waveguide probe since this
probe radiates more efficiently than the other two. As explained
earlier, this is an advantageous feature from a detection point of
view; however, this probe produces images with coarser spatial
resolution than the other two. The best of these three probes,
in terms of resolution at V-band, was to the smallest double
tapered probe which was capable of detecting pits as small as
200 m in diameter and a depth of 500 m under paint and
appliqué and pits as small as 150 m in diameter and a depth
of 500 m when exposed.

Fig. 10 shows two images of a set of three pits with a di-
ameter of 500 m and depths of (from left to right) 150, 200,
and 500 m under paint and appliqué, respectively. These im-
ages were also obtained at a standoff distance of 0.5 mm. In
these images, vertical lines are visible throughout the image
with constant spacing of approximately 2 mm, corresponding
to the half-wavelength at that frequency (70 GHz). These lines
are due to standing surface waves formed on the sample due
to reflections from the edge of the sample. The variation in the
background signal level in Fig. 10(a) is due to the nonuniformity
associated with the paint thickness. This is an issue to be con-
sidered since these variations may mask signals from smaller
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Fig. 9. Images of a pit of 150 �m depth and 500 �m diameter under paint at a standoff distance of 0.5 mm using V-band probes. (a) Open-ended rectangular
waveguide. (b) Double-tapered V-band to E-band transition waveguide probe. (c) Double-tapered V-band to W-band transition waveguide probe.

Fig. 10. Image of three pits of 500 �m diameter and depths of (from left to
right) 150, 200, and 500 �m, obtained at a standoff distance of 0.5 mm using
an open-ended rectangular waveguide at V-band: (a) under paint and (b) under
appliqué.

Fig. 11. Image of a pit of 200 �m depth and 500 �m diameter under paint
obtained at a standoff distance of 0.5 mm at V-band using (a) dielectric
slab-loaded waveguide probe and (b) dielectric waveguide probe.

pits. In contrast, the image in Fig. 10(b) is more uniform since
the appliqué is more uniform in thickness than paint.

A dielectric slab-loaded waveguide at V-band produced im-
ages similar in characteristics to those at Ka-band except with
higher resolution. For example, at a standoff distance of 0.5 mm,
the dielectric slab-loaded waveguide at V-band produced an
image [Fig. 11(a)] of the pit with a diameter of 500 m and
a depth of 200 m with higher signal intensity corresponding
to the spot in the image representing the pit and with reduced
ring effects. Images at this frequency band are more suitable
for pit size evaluation and shape determination. The probe that
provided the best spatial resolution and image contrast was the
dielectric waveguide probe at V-band. Fig. 11(b) shows the
image of the same pit [as shown in Fig. 11(a), at V-band and a
standoff distance of 0.5 mm, but using a dielectric waveguide

probe aperture with dimensions of approximately 1 1 mm].
This high-contrast image shows a single spot representing the
pit with no rings. The dielectric waveguide probe was also used
at higher standoff distances of up to 2 mm, at which point it
was no longer capable of detecting the 500- m-diameter pits.
At smaller standoff distances, this probe was able to detect pits
with sizes as small as 150 m in diameter and 150 m in depth.
This is expected since this type of dielectric waveguide is not
an efficient radiator compared to an open-ended rectangular
waveguide. Due to its high resolution, the dielectric waveguide
probe produces images that correspond more closely to the
actual shape of a pit.

IV. CONCLUSION

Different types of near-field millimeter-wave probes for
detection and evaluation of corrosion precursor pitting under
paint using raster scanning were investigated and compared.
The probes investigated produced images of a pit that depend
on the type of the probe, relative aperture size of the probe and
the pit, operating frequency, and standoff distance. At selected
frequency bands, various pit dimensions, and range of standoff
distances, the open-ended waveguide probe produced a double
image of the pit as a signature of the probe aperture and distinct
rings around the image as a signature of the probe flange. This
type of image may provide high probability of detection, but
for the evaluation of pitting, an image similar to the real shape
of the pit is more desirable. A single pit image was obtained by
a dielectric slab-loaded waveguide, dielectric waveguide probe,
and tapered waveguide probe. It was shown that a significant
increase in the electric field concentration may be obtained in
a dielectric slab-loaded waveguide, and further concentration
of the electromagnetic field can be accomplished in a dielectric
waveguide.

The dielectric slab-loaded waveguide and dielectric wave-
guide probes provided a high level of detection sensitivity and
relatively high spatial resolution, both increasing with the in-
crease in the operating frequency. The tapered waveguide probe
provided the highest resolution among all probes, but its detec-
tion sensitivity was lower than the dielectric slab-loaded wave-
guide probe. The dielectric waveguide probe produces images
of high contrast and spatial resolution, which may be helpful in
the evaluation and sizing of a pit.
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One other issue to be considered is the physical strength of
the probe and its rigidity, which favors the metallic waveguides
more than the dielectric ones. In this case, tapering the wave-
guide may be the best solution to increase spatial resolution.

For measurements conducted in this investigation, the dielec-
tric waveguide probe at V-band provided the optimal combina-
tion of spatial resolution and sensitivity for the detection and
evaluation of pits under paint. The tapered waveguide probe
may also be useful for pit detection and evaluation in cases of
small standoff distances, such as when scanning exposed metal
surfaces.

One of the issues that need to be overcome is the effect
of standoff distance variation on the results. High-resolution
probes are sensitive to standoff distance variation, which may
mask the indication of a pit. Further processing may be required
to “clean” such images and extract the indication of a pit.
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