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Abstract. The study and prediction of velocities in the pedestal region of Alcator C-

Mod are important for understanding plasma confinement and transport. In this study

we examine the simplified neoclassical predictions for impurity flows using equations

developed for plasmas with background ions in the Pfirsch-Schlüter (high collisionality)

and banana (low collisionality) regimes. B5+ flow profiles for H-mode plasmas are

acquired using the charge-exchange recombination spectroscopy diagnostic on Alcator

C-Mod and are compared with calculated profiles for the region just inside the last

closed flux surface. Reasonable agreement is found between the predictions from the

Pfirsch-Schlüter regime formalism and the measured poloidal velocities for the steep

gradient region of the H-mode pedestals regardless of the collisionality of the plasma.

The agreement is poorer between the neoclassical predictions and measured velocity

profiles using the banana regime formalism. Additionally, comparisons of measured

velocities from the low- and high-field sides of the plasma lead us to infer the strong

possibility of a poloidal asymmetry in the B5+ density. This asymmetry can be a factor

of 2–3 for the region of the steepest gradients, with the density at the high-field side

being larger. The magnitude of the density asymmetry is found to be correlated with

the magnitude of the poloidal velocity at the low-field side of the plasma.

1. Introduction

Edge velocities, both poloidal and toroidal, have been the subject of study in the

last several years due to the correlation between increased flow shear, radial electric

field, and improved confinement [1, 2, 3, 4]. The transition from L-mode to H-mode

is marked by a sharp increase in the impurity poloidal velocity in the edge pedestal

region; a characteristic that has been measured on several different tokamaks [2, 5, 6, 7].

Unfortunately, the effect of edge flows and radial electric field shear on transport is

not fully understood. A clearer understanding of the mechanisms driving the flows
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could provide fusion devices with the ability to control these flows and further improve

confinement.

Based on the importance of pedestal velocities, much work has been done

to formulate and validate a predictive theory incorporating the ion pressure and

temperature profiles (for both bulk and impurity ions) as the driving force for flows

on the flux surfaces [8, 9, 10]. Simplified numerical and analytical models of neoclassical

particle flow have been developed to various orders for a variety of conditions, such as

for heavy impurities in trace or non-trace amounts, near-sonic toroidal velocities, and

various collisionality regimes [11, 12, 13, 14]. To validate the use of these simplifications,

neoclassical predictions are checked against measured values from plasma discharges

[15, 16, 17]. For instance, recent work on DIII-D [14] included a comparison of measured

poloidal velocities (based on charge-exchange measurements of fully-stripped C) with

those predicted by the neoclassical computer code NCLASS [11]; some agreement

was found by retaining strong toroidal rotation effects. The plasmas considered were

typically in the banana and intermediate (plateau) regimes.

The high densities attained during H-mode discharges puts C-Mod in a fairly unique

position to study the relationship between measurement and neoclassical prediction in

a higher collisionality regime than most other tokamaks can attain. The strong gradient

region of the pedestal, which is linked to the suppression of turbulence and supports the

high densities and temperatures in the plasma core, can be characterized as near or in

the Pfirsch-Schlüter (PS) regime for a large fraction of H-mode discharges. Due to the

higher collisionalities, the ions, impurities, and electrons are more closely coupled than

found in other tokamaks [18, 19]. This coupling enables the evaluation of neoclassical

velocity predictions with high spatial resolution in the pedestal region through the use

of the impurity (B5+) temperature, Tz, in place of the majority temperature, Ti.

The charge-exchange measurements in the pedestal region provide a good

opportunity to test models because of the peaked structure assumed by the edge poloidal

velocity profile during all types of H-modes [2]. A few millimeters inside the last closed

flux surface, the measured poloidal velocity profile exhibits a sharp peak that is both

large, up to 50 km/s, and narrow (∼3 mm at FWHM). These strong gradients in the

poloidal velocity are important to study because they are connected to the large radial

electric field wells (|Er| . 300 kV/m) and shearing rates (ωs . 18 MHz) found during

H-mode operation.

In this study, we focus on the consequences of the radial and parallel, ion and

impurity, momentum balance equations which determine the poloidal ion flow, relate

the global radial electric field to the toroidal ion flow, and are also responsible for

the poloidal variation of the impurity density. Determining the toroidal ion flow (or

equivalently, the global radial electric field) from conservation of total toroidal angular

momentum in the presence of turbulence is a far more difficult task [20, 21]. No attempt

is made in this work to understand radial momentum transport or how the radial electric

field is set.

The results of this study show that the neoclassical PS regime prediction of poloidal
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velocity match measurement fairly well in the steep gradient region for all collisionality

regimes, even when the PS formulation is thought not to apply.

A second important result of this study is derived from the capability to

simultaneously measure (at least certain components of) the B5+ velocity in the pedestal

region at both the high- and low-field sides (HFS and LFS) of the plasma. Based on

these measurements and the assumption that certain parameters (uz and ωz, discussed

below) are constant on a flux surface [12], we infer that there exists an in-out (poloidal)

asymmetry in the B5+ density in the range of 2–3 (higher at the HFS). This asymmetry

is peaked in the radial pedestal region corresponding to the peak in poloidal velocity

at the LFS and is in the same direction as the theoretical predictions made for C-Mod

[22], although somewhat larger in magnitude.

Section 2 presents the simplified neoclassical theory used in these studies. The

methodology, including a description of the charge-exchange diagnostic, is briefly

described in section 3. Section 4 explores the neoclassical predictions at the low-field

side of the plasma focusing on the poloidal velocities. In section 5 we turn our attention

to the high-field side, where the simplest neoclassical predictions fail to match measured

parallel velocities. This leads us to infer a poloidal variation in the impurity density,

which is explored in section 6. We conclude by discussing these results and the limits

of the simplified models used in this study.

2. Neoclassical formalism

Here we briefly review the formalism that we have adopted for this study [8, 9, 12, 23].

Neoclassical flow, to lowest-order, is composed of a component parallel to the magnetic

field and a toroidal (φ) component. Each part is represented by a coefficient (u(ψ) and

ω(ψ), respectively), which is constant on a flux surface. The total flow on a flux surface

is then written as

Va = ua(ψ)B + ωa(ψ)R2∇φ (1)

where a denotes the species and R∇φ defines the toroidal direction. One goal of our

investigations is to try to understand whether the poloidal pedestal flows in C-Mod are

consistent with this lowest-order neoclassical expression. Although poloidal variation

of the impurity density due to a strong source could alter the form of (1), any radial

impurity flow due to a strong source would have to be exactly balanced by an ionization-

driven ion (or electron) flow, a diffusive flux, or some other anomalous radial ion flow

to maintain ambipolarity. For this reason, the possible effect of a strong source is not

included in the expressions used in this study. The derivation of the flux functions ua(ψ)

and ωa(ψ) can be found in [8, 9, 10, 12] for a single impurity, z. We note here that the

derivation of uz(ψ) depends on the collisionality regime assumed, while ωz(ψ), which

does not affect the poloidal flows, is determined by the radial force balance and thus

includes a term dependent on the radial electric field, Er. Given that on C-Mod Er is

derived from the CXRS measured velocities, using it to evaluate the neoclassical toroidal
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velocity comparison. Thus, we focus solely on predicted poloidal velocities, which are

free from this complication.

Defining collisionality as

ν∗ =
νiiqR

ǫ3/2vth,i
, (2)

the various transport regimes are given by

banana: ν∗ < 1

plateau: 1 < ν∗ < ǫ−3/2 (3)

and Pfirsch-Schlüter: ν∗ > ǫ−3/2

Here νii is the ion-ion collision frequency, q is the safety factor, ǫ is the inverse aspect

ratio, and vth,i is the ion thermal speed.

Taking the poloidal (θ) component of (1) and the definitions of uz from [12], we

construct the following equations for the poloidal impurity velocities when the bulk ions

are in the PS and banana collisionality regimes:

V PS
z,θ =

cBθI

e〈B2〉

(

1

Znz

∂pz

∂ψ
−

1

ni

∂pi

∂ψ

−1.8
∂Ti

∂ψ

) (4)

V b
z,θ =

cBθI

e〈B2〉

(

1

Znz

∂pz

∂ψ
−

1

ni

∂pi

∂ψ

+
1.18 + 0.70(ft/fc)

1 + 0.46(ft/fc)

∂Ti

∂ψ

) (5)

with the fractions of trapped and circulating particles estimated by [23]

ft = 1.46

√

r

R
and fc = 1 − ft.

Here p is pressure, n is density, T is temperature, and B = I∇φ + ∇φ × ∇ψ. The

preceding equations assume that the poloidal flow has damped to its neoclassical level

[24] and consider a trace impurity that is always in the Pfirsch-Schlüter collisionality

regime. They also neglect the electron and impurity viscosities, regarding them as small

compared with the ion viscosity, and drop electron drag due to the small electron mass.

In the C-Mod pedestal, ǫ ∼ 1/3, but ǫ ≪ 1 is required for a well defined plateau

regime. Consequently, to highlight any discrepancies between theory and measurement,

we consider only the Pfirsch-Schlüter and banana regime expressions for the flows, but

remark that the expression of the plateau regime flow, like that of the Pfirsch-Schlüter

regime, has a negative sign for the ∇Ti term [25].

Equations (4) and (5) are written in the limit of α ≡ Z2nz/ne ≪ 1. In reality, for

the fully-stripped boron population (Z = 5), which is used for the CXRS measurements

in this study, α ∼ 0.25. As a result, numerical coefficients used in these equations, which

depend on α, should be modified. However, the modifications are expected to be small
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and will be neglected herein. For example, increasing α from 0.0 to 0.25 results in a

< 10% increase in the 1.8 coefficient in (4). We also remark that one of the applicability

conditions for these equations stated in [12], namely α ≫ (mi/mz)
1/2(Tz/Ti)

1/2, can be

relaxed by replacing ≫ with & and is therefore satisfied in this study.

3. Methodology

3.1. Experimental Setup

The experimental impurity velocities, temperatures, and densities are derived from

charge-exchange recombination spectroscopy (CXRS) measurements at the HFS and

LFS of Alcator C-Mod. The resulting spectra from the n = 7 → 6 transitions (λ =494.5

nm) of B4+ are analyzed for their Doppler shift, Doppler width, and brightness giving

the desired quantities, vz, Tz, and nz, respectively [2]. This analysis becomes difficult

near the separatrix and beyond, due to rapidly dropping line brightness as nB5+ → 0.

We restrict the data included in this study to those cases that have valid velocity and

temperature measurements over the whole range of the B5+ poloidal velocity profile.

In practice, this means that only H-mode data are included and the peak structure

commonly observed near the separatrix in H-mode [2] is well defined (i.e. includes the

peak and both sides).

The LFS diagnostic collects the emission from B5+ charge-exchanging with H0 from

a diagnostic neutral beam (DNB, 50 keV, 7A) [26]. The poloidal periscope provides 25

views of the midplane with impact radii covering 0.79 < r/a < 1.05 at ∼3 mm radial

resolution. The toroidal periscope houses 20 approximately toroidal views covering

0.82 < r/a < 1.07 at a radial resolution similar to the poloidal periscope. The LFS

toroidal periscope view has a small component in the poloidal direction (∼7◦ off the

toroidal) whereas the poloidal periscope is aligned to view strictly poloidally.

The HFS CXRS optics collect light from seven approximately toroidal views of the

plasma at the midplane near the inner wall of the machine (0.93 < r/a < 1.05 at point

of tangency with a radial resolution equivalent to ∼3 mm at the LFS). The views are

angled off of the horizontal plane to be parallel to the local field lines for plasmas with

q95 ∼ 4.0; thus the local measurement is approximately of V‖ as opposed to Vφ. A simple

capillary system injects a small amount of room temperature D2 gas along a major radius

and perpendicular to the diagnostic views. The disassociation of D2 provides the D0

necessary for charge-exchange interactions. This toroidal localization of the puff leads

to a radially localized measurement for each viewing chord. A drawback to this method

(compared to the LFS 50 keV diagnostic neutral beam) is that the neutral density, and

thus the CXRS signal, drops off much more steeply as a function of the distance inside

the separatrix due to the low energy of the D0 atoms. Thus, we are limited as to how

far into the plasma velocities can be measured reliably. A direct assessment of nB at the

HFS is not currently possible due to the lack of information about the injected neutral

population and the relevant charge-exchange cross-sections.
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Figure 1. Poloidal (diamonds) and toroidal (squares) velocities measured at the LFS

of the plasma on Alcator C-Mod. The parallel velocity measured at the HFS and

mapped to the LFS is also shown (triangles).
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Figure 2. The employed “co-current” sign convention for flows at the low-field side

of Alcator C-Mod.

Figure 1 shows representative H-mode velocity profiles derived from all three CXRS

periscopes. In the following calculations, and in Figure 1, we have subtracted off

the poloidal component from the LFS toroidal measurement, leaving a purely toroidal

velocity profile. The poloidal component is typically a very small fraction of the toroidal

velocity measurement. The peak in the poloidal velocity and the structure of the HFS

velocity profile, shown in Figure 1, are typical for H-mode discharges.

Unless otherwise noted, a positive poloidal velocity indicates flow in the electron

diamagnetic direction at the LFS. While the majority of data in this study was obtained

from forward-field discharges (positive current, clockwise from above), a few discharges

have reversed magnetic fields and currents. Differences between the two discharge types

will be noted where significant. Figure 2 shows this choice of sign convention.
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3.2. Evaluating Ti and ni

No direct measurement of either Ti or ni is available at the plasma edge. However,

these values are necessary when evaluating (4) and (5). Thus, we must make some

assumptions about the main ion parameters whose characteristics are not directly

measured. Specifically, we assume Ti = Tz and ni = ne. We expect that Tz and Ti

are well correlated, based on thermal equilibrium considerations discussed in Appendix

A.1. The use of ne in place of ni in the following calculations is based on quasi-neutrality.

The measurement of ne (and Te) in the pedestal region is performed with high spatial

resolution by the edge Thomson Scattering (TS) diagnostic [27].

The TS and HFS CXRS profiles are measured at different poloidal locations from

the LFS CXRS diagnostic and both sets of data are mapped to the outer midplane

using EFIT [28]. The mapping process does not typically align the temperature profiles

from these three diagnostics. It has been estimated that the EFIT reconstruction and

mapping processes are each only accurate to within a few millimeters.

The question naturally arises as to whether the Te profile and the low- and high-

field side Tz CXRS profiles should be radially aligned or not. First, we expect the

B5+ temperature to be approximately constant on a flux surface (Appendix A.2). In

practice, the shifts needed to align the two Tz profiles have a distribution centered

at zero shift with a standard deviation of 1.8 mm, a spread well within the expected

variation from EFIT. We therefore feel it is reasonable to radially shift the mapped HFS

Tz profiles to match those at the LFS. With respect to the alignment of the electron

temperature profile, we show in Appendix A.3 that the measured Tz and Te profiles are

well correlated in terms of their respective pedestal heights and widths. In Appendix

A.1 we also examine the thermal equilibration times for Tz and Te and find that over the

region near the top of the pedestal it is reasonable to expect them to be well-correlated.

The shift required to align the Te profile with the LFS Tz profile is, on average, −2.5 mm

with a standard deviation of 2.5 mm.

Based on the above arguments and the background found in Appendix A, we have

aligned the HFS Tz and TS Te profiles with the LFS Tz profiles for all data included

in this study. The alignment process focuses primarily on aligning the steep gradient

regions of the temperature pedestals. The HFS CXRS Tz and TS Te profiles are shifted

radially until the points of steepest gradient (nominally the middles of the pedestals)

are at the same location as the steepest gradient in the LFS CXRS Tz profile. For the

cases where the LFS profile data is sparse or missing in the steep gradient region, the

tops of the pedestals are aligned instead. Section 4.2 provides a sensitivity study of the

neoclassical calculations to this mapping and alignment process.

3.3. Evaluating the neoclassical equations

For the calculations in Section 4 we use (4) and (5) to predict velocities at the

LFS, independent of the measured velocities, thus providing a direct comparison of

measurement and model. In Sections 5 and 6 we assume the measured velocities are
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neoclassical in their variation on a flux surface. We then derive the uz(ψ) and ωz(ψ)

constants from the LFS measurements through a rearrangement of the poloidal and

toroidal components of (1):

uz(ψ) =
V meas

z,θ

Bθ

(6)

ωz(ψ) =
1

R

(

V meas
z,φ − uz(ψ)Bφ

)

. (7)

Once the flux surface constants are derived, we use them to predict the HFS Vz,‖ and,

after comparison with the measured HFS velocity, to predict the in-out asymmetry in

nB5+ .

4. Comparison of predicted and measured velocities at the LFS

4.1. Poloidal rotation in the steep gradient region

In general, we find many characteristics of measured and predicted poloidal velocity

profiles in the pedestal region to be similar. In Figure 3 we present a comparison of

typical poloidal velocity profiles (measured and calculated) from one time slice of an

H-mode discharge. The prediction for both the PS (V PS
z,θ ) and banana (V b

z,θ) regime

formalisms are shown in Figure 3a. In Figure 3b the components of the PS regime

calculation and their sum are displayed. Figure 3c provides the collisionality over the

same region. For this example the peak in the poloidal velocity falls near the border

between the PS and plateau regimes. It should be noted that although the calculation

extends beyond the separatrix (r/a > 1) the theory is not valid in that region. However,

given the uncertainty in the separatrix location (±3 mm) we allow the neoclassical

predictions to extend into regions of the plasma that may be in the scrape-off layer

(SOL).

The V PS
z,θ profile roughly reproduces the peaking seen in the measured velocity

profile. Although the V b
z,θ profile also exhibits some peaking, it has a much smaller peak

due to the fact that the ion temperature gradient term is in the opposite direction from

the ion pressure gradient term and thus reduces the overall peak magnitude (compare

the final terms in (4) and (5)).

Examining the components of the PS regime calculation (Figure 3b and (4)) we

see that the peak is composed of two positive peaks, the ∇pi = ∇(neTz) and the ∇Ti

terms, and the oppositely directed ∇pz = ∇(nzTz) term. It should be noted that the

∇Ti term is determined by ∇Tz and thus the gradient term may be slightly incorrect

due to the limited spatial resolution of the CXRS diagnostic and the large uncertainty

of the CXRS temperatures at the bottom of the pedestal (due to weak signal there).

In order to gain a more quantitative understanding of the differences between the

measured and calculated Vz,θ we have abstracted from each profile in our dataset the

position of the poloidal velocity peak, which for the measured profiles we shall call ρpeak.

We also have estimated the width and height of the peak in each of the predicted and

measured profiles. Included in this dataset are time slices from discharges that exhibit a
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Figure 3. a) Calculated and measured poloidal velocities. b) The three components

of the PS regime poloidal velocity calculation. c) The collisionality for the same range.

range of collisionalities at ρpeak, from banana to PS. The dataset-averaged width of the

peak in V PS
z,θ (4.0± 1.0 mm at FWHM) is larger than the dataset-averaged width of the

peak in Vz,θ (3.0 ± 1.0 mm at FWHM), but there is no correlation between individual

time slices in terms of profile widths or collisionality. On average, the peaks in both the

V PS
z,θ and V b

z,θ profiles are slightly shifted radially outward from ρpeak.

Figure 4 displays the comparison of the measured Vz,θ peak height to that of both

the PS and banana regime calculations for the entire dataset. The height of the peak

was measured relative to a baseline velocity determined by the fairly flat velocity profile

in the range 0.88 < r/a < 0.93 (see, for example, Figure 3a). The data is grouped

by the collisionality (banana, plateau, or PS) at ρpeak. The line representing complete

agreement is also shown. We see from this plot that the magnitude of the peak in V PS
z,θ

roughly correlates with the magnitude of the measured Vz,θ peak at all collisionalities.

In contrast, the correlation between the peak value of the measured Vz,θ and that of V b
z,θ

is much poorer.

In summary, whether looking at the abstracted profile characteristics (peak height,

width, and position) or looking at example profiles, the neoclassical banana regime

calculation is a much poorer representation of the measured poloidal velocity profile
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Figure 5. The effect on the neoclassically calculated Vz,θ of shifting the Thomson

Scattering profiles another ±2 mm with respect to the LFS CXRS measurements. a)

-2 mm. b) +0 mm. c) +2 mm. The symbols are the same as Figure 3a.

in the pedestal region than is the PS regime calculation. Perhaps more surprising is

that V PS
z,θ is a fairly good prediction of the measured Vz,θ profile independent of the

collisionality.

4.2. Sensitivity to the position of the TS profiles

Although we compensate for the variation and uncertainty in the EFIT mapping process

by forcing the Tz and Te profiles to overlay one another, there is still an apparent radial

offset between the peaks in the measured and neoclassically calculated poloidal velocity

profiles (see Figure 3). This offset leads to the concern that the chosen alignment of the

various measured profiles may be incorrect. To address this possibility, we performed

the same neoclassical calculations while arbitrarily shifting the TS profiles ±2 mm in

relation to the Tz profiles. Figure 5 displays these shifted profiles. We see that +2

mm does not change the position of the peak of the PS regime calculation (within the
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resolution) but lowers the magnitude. On the other hand, a shift of -2 mm better aligns

the calculated and measured peaks but makes their peak magnitudes moderately to

significantly different. The positions of the peaks in the banana regime calculations are

shifted similar to those of the PS regime calculations, but the overall magnitudes are still

noticeably smaller than the magnitude of the measured peak in all cases. Performing

these arbitrary shifts for all the data does not improve the correlation shown in Figure

4.

In summary, it is possible (in individual cases) to better align the neoclassical

and measured peaks in this manner, but doing so does not enhance, but rather can

degrade, the correlation in peak heights presented in Figure 4. A comprehensive study

of all predicted profile attributes for all possible radial shifts would likely find shift

magnitudes that better correlate the calculated profiles with the measured ones but this

would provide only minimal improvement in the correlations presented here.

4.3. Rotation at the top of the pedestal

Shifting our focus further into the core (r/a < 0.88) where the collisionality is lower by a

factor of 10–15 relative to the collisionality near the separatrix we make a comparison of

the measured and predicted poloidal velocities in a region that is entirely in the banana

regime. Figure 6 compares the measured poloidal velocity with the predictions from

the PS and banana regime formalisms. For this comparison, we averaged the poloidal

velocities in the region spanning 0.83 < r/a < 0.88. For clarity, the data is presented as

flowing toward the upper or lower divertors, regardless of magnetic field direction. There

is no clear correlation between experiment and either model for the current dataset. It

should be noted that the uncertainty in the measured poloidal velocities is ±2–3 km/s.

Because this is an absolute measurement rather than a relative one (such as the height of

the peak) concerns about calibration of the diagnostic must be considered. For example,

a small shift in the wavelength calibration (e.g. 0.05 Å) would shift all the points up,
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or in the direction of “toward the upper divertor,” by ∼3 km/s.

5. Neoclassical prediction of HFS velocities

The second emphasis of this study is the comparison of the high- and low-field side

B5+ velocities with neoclassical predictions for the variation of V on a flux surface. As

discussed in Section 3, the CXRS measurements at the HFS do not extend as far inside

the separatrix as do those at the LFS. Thus, our comparisons are limited to the region

near ρpeak, the location of the peak poloidal flow.

We begin the analysis by determining uz(ψ) and ωz(ψ) from the LFS CXRS data

through (6) and (7). Then, assuming they are constant on a flux surface, we use the

magnetic reconstruction provided by EFIT (and the extra shift that aligns the impurity

temperature profiles) to map these flux coefficients to equivalent locations at the HFS.

Together with the known viewing angle of the HFS periscope, we generate an expected

Vz,‖ at the HFS of the plasma which can be compared to the directly measured Vz,‖. An

example comparison is shown in Figure 7. The predicted parallel velocity calculated in

this manner has a peaked structure driven by the LFS poloidal velocity contribution to

uz(ψ). We see that the measured parallel velocity in the region within 1 cm inside the

separatrix is lower than the prediction by a factor of up to 6. Furthermore, the largest

measured velocities are at a different radial location than the peak of the calculated

profile. Often the measured profile does not show a complete peak (if it indeed peaks

at all) in the region sampled by the diagnostic.

6. Poloidal variation of impurity density

One possible explanation of the discrepancy between the directly measured Vz,‖ and

that generated from the uz(ψ) and ωz(ψ) derived at the LFS is that we are using a

somewhat simplified model of V in (1) when considering multiple poloidal locations.
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An underlying assumption in (1), (6), and (7) is that the impurity density is constant

on a flux surface. Prior studies on C-Mod, both experimental [29, 30, 31] and theoretical

[22], have identified the potential for up-down and in-out asymmetries. In the theoretical

model [22], the variation in impurity density is driven by friction between the impurities

and the majority ions in poloidally varying fields.

In-out asymmetries in the impurity density have also been inferred on other

tokamaks as well. For example, on JET, near-sonic toroidal flows driven by unbalanced

neutral beam injection cause a centrifugal force that pushes impurities to the low-field

side of the tokamak [32, 33]. Similar centrifugal effects also were observed for heavy

impurities on the ASDEX Upgrade tokamak [34]. When JET removed the neutral

beam heating and only used ICRF sources to heat optimal shear plasmas, tomographic

reconstruction of nickel emission indicated a minor density build up at the high-field

side of the plasma. It should be noted that these studies were more focused on the core

plasma rather than the pedestal region.

In this section we will allow nz to vary on a flux surface and calculate the impurity

density asymmetry required to make the measured velocities at both sides of plasma

consistent with a modified form of (1).

6.1. Modification of the neoclassical equations

Allowing the impurity density to vary poloidally has a simple but profound effect on

the first-order flow equation. There is no modification to the last term in (1) as it is

purely toroidal. The impurity density, nz(r, θ), once absorbed into the constant uz(ψ)

during the neoclassical derivation is no longer constant over the flux surface and must

be considered separately. For clarity we will relabel the new flux constant kz(ψ). The

modified equation for the impurity velocity becomes (for Z ≫ 1) [22]

Vz =
kz(ψ)

nz(r, θ)
B + ωz(ψ)R2∇φ. (8)

With this modification, we can now use the measured velocities to calculate the

impurity density at the HFS of the plasma. First, we determine the impurity density

profile at the LFS midplane from the measured CXRS brightnesses [2] and use those

values to calculate kz(ψ) and ωz(ψ) for the flux surfaces in the pedestal region. The

flux constant kz(ψ) is given by

kz(ψ) =
nmeas

z,L

Bθ,L
V meas

z,θ,L , (9)

where L (H) indicates values from the LFS (HFS), and ωz(ψ) is still determined through

(7) (replacing uz with kz/nz). Taking the component of the velocity parallel to the total
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b) The LFS poloidal velocity profile, reproduced for reference.

magnetic field at the HFS we find

Vz,‖,H ≡ Vz,H · b̂

=

(

kz(ψ)

nz,H
BH + ωz(ψ)R2

H∇φ

)

· b̂

=
kz(ψ)

nz,H
B‖,H + ωz(ψ)RH cos ζ

(10)

where b̂ is a unit vector in the magnetic field direction and ζ (∼10◦) is the angle that

the magnetic field makes with the toroidal direction (cos ζ ≡ Bφ,H/B‖,H). Mapping the

flux constants to the HFS we now assume the measured HFS parallel velocity is the left

hand side of Equation 10 and solve for nz,H.

The resultant HFS and LFS impurity density profiles are plotted together (given the

mapping as determined by EFIT and the Tz profiles) versus normalized minor radius in

Figure 8. This plot is typical of H-mode results for Alcator C-Mod. The HFS densities

for the points furthest into the plasma (near the top of the pedestal) are close to or lower

than the LFS density on the same flux surface. For flux surfaces in the steep gradient

pedestal region the HFS densities are significantly higher than their LFS counterparts.

The uncertainties on the HFS densities shown in Figure 8 are only from the uncertainties

in the measured velocities and do not include the significant uncertainty of the LFS

density calculation.

The comparison of HFS and LFS nz can be simplified by reorganizing (8)–(10) in

terms of a density asymmetry,

A ≡
nz,H

nz,L

=
Vz,θ,L

B‖,H

Bθ,L

∆‖ + αVz,θ,L
Bφ,L

Bθ,L
cos ζ

(11)
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where α = RH/RL and

∆‖ ≡ Vz,‖,H − αVz,φ,L cos ζ. (12)

The asymmetry is preferable to a direct calculation of nz,H because it is only a function

of the measured velocities and eliminates the dependence on the LFS density calculation.

Equation (11) properly reduces to unity if one uses (12) along with cos ζ ≡ Bφ/B‖ while

assuming no poloidal variation in B and R (cylindrical limit). Finally, we see by the

form of (11) that the asymmetry information is carried primarily in Vz,θ. For example,

if Vz,θ → 0 over the flux surface, then the flow at both sides of the plasma would be

purely toroidal, varying only with radius (assuming ω constant on a flux surface). In

that situation, ∆‖ → 0 and A is undefined.

6.2. Inferred asymmetry

An asymmetry factor is calculated at each radial location corresponding to a valid HFS

CXRS measurement, resulting in several values from a single time slice. Figure 9a–c

displays the derived asymmetries for the entire dataset as a function of the distance

from ρpeak (x ≡ R − ρpeak), which is a well defined location being determined from the

same CXRS diagnostic. Using this distance was found preferable to using the separatrix

location because of the higher uncertainty in the separatrix location. The separatrix is

typically 2–3 mm beyond the poloidal velocity peak and is shown as a shaded region.

Figure 9a shows the asymmetry from all available data points. We see that even within

the large scatter in the data, there is a trend towards larger asymmetry in the region of

the poloidal velocity peak (x ∼ 0). Figures 9b and 9c are binned averages of the dataset

separated by forward field and reversed field respectively. Note that the uncertainties

shown for binned data are the weighted standard deviation of data about the mean

for each averaged set of data (as opposed to the direct uncertainty in the underlying

measurement, which is generally smaller, especially near x = 0).

In all cases, we find that the asymmetry increases near ρpeak. The in-out asymmetry

is consistently a factor of 2–3 in the region near x = 0. Moving into the plasma (x < 0)

the asymmetry drops to order unity supporting the expectation that the asymmetry

correlates with increased poloidal velocity. Beyond the peak towards the separatrix

(x > 0), both the collected CXRS signal and the associated measured velocities drop

significantly and the uncertainties become large, making it difficult to determine the

magnitude of the asymmetry. Comparing the binned data of Figures 9b and 9c, we see

that reversed field discharges appear to have higher asymmetries than do forward field

ones, correlating with the higher poloidal velocities found during those discharges.

We also see in Figure 9a that the uncertainty in A decreases near ρpeak. Taking the

derivative of Equation 11 with respect to Vz,θ, we infer that the total uncertainty in A is

(to lowest order) inversely proportional to the magnitude of the poloidal velocity. This

effect can be seen by the increase in the magnitude of the uncertainty as we move away

in either direction from the location of the peak in the poloidal velocity.
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Figure 9. a) The asymmetry for the entire dataset separated by collisionality. b–c)

Binned averages for just the forward and reversed field portions of the dataset.

It is also educational to plot the asymmetry, A, versus Vz,θ as we have done in

Figure 10a. For reference, we provide representative Vz,θ profiles from forward and

reversed field discharges in Figure 10b. The data is separated into four regions based

on the distance from ρpeak. As stated earlier, the data from Region III near ρpeak have

the lowest uncertainties and thus we have the most confidence in them. Due to the

larger number of data points, we have deviated from the standard sign convention and

defined positive poloidal velocities as those flowing toward the upper divertor at the

LFS, regardless of field direction. As expected, the highest asymmetries are at the

highest poloidal velocities and we see that there is a strong correlation between these

two values. This trend is well described by the form of Equation 11 if we assume that

∆‖ is a constant. This is not a natural assumption, yet it is roughly true for a majority

of the data (not shown).

Neoclassical derivations of the impurity density, which are explored in the following

section, do not provide any mechanism for obtaining values of A < 1. However, we see

in Figure 10 that there is a significant number of data points in this region, with a strong

correlation to Vz,θ. As mentioned before, as Vz,θ → 0 the flow becomes purely toroidal

and our technique for measuring the asymmetry fails. These concerns are addressed

further in Sections 6.4 and 7.2.
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6.3. Neoclassical prediction of impurity density asymmetry

For comparison to the asymmetries inferred from the measured velocities, we utilize

a formalism by Fülöp and Helander that predicts poloidal density asymmetries based

only on the measured pressure profiles [22]. As stated before, the build up of impurity

density at the HFS is driven by friction between the impurities and the majority ions in

poloidally varying fields, rather than by a centrifugal force, which would cause a higher

density at the LFS. Here, we apply their work to the present C-Mod dataset and show

that the predicted asymmetries are of the same form (peaked at the HFS and similar

magnitude) as found above.

Equation 27 in [22] describes the poloidal distribution of the normalized impurity

density, n = nz/〈nz〉, assuming trace impurities in a strongly collisional plasma.

Expanding that equation in terms of g−1, where

g = −
miniI

eτiznz〈B · ∇θ〉

(

d ln ni

dψ

)

(13)

measures the steepness of the bulk ion density profile, they find a limiting form for the

zeroth-order (n = n0 + n1 +O(g−2)) impurity density,

n0 =
γ

1 − 〈(1 + γb2)−1〉

b2

1 + γb2
. (14)

Here γ ≡ 2.8(ln Ti)
′/(ln ni)

′ (where prime denotes a derivative with respect to ψ), τiz is

the ion-impurity collision time, and b ≡ B/〈B2〉1/2. In the cylindrical limit (b = 1), n0
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becomes a flux function, as expected. For C-Mod, g peaks sharply in the steep gradient

region and is higher on average in plasmas with higher collisionality. For medium and

low collisionality discharges g = 5.3 ± 3.1 at ρpeak, while in higher collisionalities g

ranges anywhere between 10–40. Thus, (14) is a valid approximation for most of the

edge region. The value of γ also varies significantly at the location of the steepest

gradient, with an average value of γ = 3.7 ± 3.1, though larger values are observed.

Evaluating (14) at both sides of the plasma we find that the impurity density builds

up near the inner wall, where the magnetic fields are higher. This gives an expected

asymmetry of A0 ≡ n0,H/n0,L = 1.5 ± 0.3 (for local values of γ), somewhat lower than

that inferred from the velocity data.

6.4. Sensitivity to the poloidal velocity

Given the large variation in the derived density asymmetry shown in Figure 9 for x < 0

(towards the center of the plasma) and the expectation that all A should be greater

than 1, we have investigated the sensitivity of the derived asymmetry to possible errors

in the magnitude of Vz,θ. As shown in Figure 1, for r < ρpeak, Vz,θ is near zero or

negative. In Figure 8 we show the response of the inferred HFS impurity density to an

arbitrary increase in Vz,θ of 2.5 km/s, which is the level of uncertainty for the velocity

measurement as well as a reasonable magnitude for a potential systematic error due to

miscalibration. We see that farthest from the separatrix, where the poloidal velocity

is naturally near zero, such a small change in poloidal velocity has a significant effect

on the asymmetry—where the asymmetry was originally approximately unity, it has

now become greater than one. On the other hand, there is little change in the inferred

asymmetry to the poloidal velocity at other points in the profile, particularly near ρpeak.

The effect on the asymmetry of a systematically low Vz,θ can also be evaluated

through (11) and Figure 10. The largest effect will be where the poloidal velocities

are smallest, which is where A ≤ 1. In fact, a change of just 2.5 km/s will significantly

increase the smallest asymmetries, moving most points above the A = 1 line (not shown).

The change in A is less noticeable where Vz,θ is large (of order 10–20%) and all the data

continues along the same A versus Vz,θ trend shown in Figure 10.

7. Discussion

7.1. Limits of the results

An unexpected result of this work is the strong correlation between the PS regime

predictions and the measured poloidal velocity near the separatrix for all collisionalities.

It is natural to assume that the banana regime formalism would have better predicted

the velocities measured for the lowest collisionality discharges, but this appears not to

be the case. One factor which makes the banana regime calculation a poorer match to

the data is that the main ion temperature gradient term is of opposite sign and nearly

the same magnitude as the main ion pressure gradient term (recall (5)). Of course, at
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low collisionalities there will be some portion of the majority species which is colder,

and thus more collisional, and accounting for this could have some small effect on the

∇Ti term in (5). However, even though these slow ions by themselves might drive flows

similar to those in the Pfirsch-Schlüter formalism, their effect is overwhelmed by the

oppositely directed contribution from ions with miv
2/2Ti > 4/3. Additionally, recent

theoretical work has discovered a much stronger modification to the banana regime

expression due to radial electric field effects in the steep gradient region [35]. That

recent work shows that the coefficient on the ∇Ti term is reduced from its value in (5)

and can even change the sign, depending on the strength of the radial electric field.

Reducing the effect of the ∇Ti term would result in an increase in the magnitude of the

peak in the V b
z,θ profile. However, without changing sign such an effect is insufficient to

make the calculated profiles well-correlated with the measured profiles.

Most of the profiles included in this dataset are actually in the plateau regime at

ρpeak. Furthermore, except for the lowest collisionality discharges, a portion of every

velocity profile is in the plateau regime. It is possible to develop neoclassical equations

similar to (4) and (5) for the plateau regime. Predictions from these equations would

be better suited for comparison to a large fraction of the measured velocity profiles used

in this study. This process is beyond the scope of this paper, though it is recommended

that such a set of equations be developed for future studies.

In this study we have not attempted to isolate the role of poloidally localized boron

sources on measured in-out asymmetries or the effect of radial impurity transport. We

believe that further experiments, such as those that vary the relative magnitudes of the

HFS and LFS boron sources, are required to determine if these concerns have an effect

on the derived asymmetry.

7.2. Limit of first-order theory

Here, we highlight a few limitations of the models used to predict the poloidal velocities

and impurity density asymmetries. The first-order theory used to predict Vz,θ is derived

in a limit where δi ≡ ρp/L⊥ ≪ 1, where ρp is the poloidal ion gyroradius and L⊥ is

the perpendicular pressure scale length. For the steep gradient region in C-Mod, we

find 1 < δi < 5 for the main ions, which violates this assumption. This means the

ion banana orbits extend across a significant portion of the pedestal allowing trapped

particles to sample potentially significantly different regions of the plasma. Thus, we

are concerned about the applicability of the banana regime formulation in [12] to the

lowest collisionality C-Mod data. The magnitude of the error that this violation causes

is not readily quantified, but large changes in poloidal flow are possible due to the radial

electric field in the pedestal [35].

Another assumption integral to the derivation of first-order theory and the

asymmetry calculation is that ωz is a constant on a flux surface. If ωz is not constant

then, of course, the derived asymmetry will be changed.
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8. Summary

We have presented a comparison of neoclassically calculated poloidal velocity profiles

with those from the CXRS diagnostic on Alcator C-Mod. Velocity profiles were predicted

using poloidal flow equations in both the Pfirsch-Schlüter and banana regimes. In the

steep gradient region the height, position, and width of the measured poloidal velocity

peak were compared to those of the predictions. The values were similar for location

and width, within the uncertainties of the measurements and calculations. On average,

the predicted peaks were both slightly wider and located at larger major radii than

those of the measured profiles. Better agreement was found between the peak heights of

the measured and PS regime formalism profiles, regardless of the actual collisionality of

the plasma. In contrast, the magnitude of the profile peak predicted using the banana

regime formalism had a much poorer correlation with measured peak heights, even for

the lowest collisionality plasmas considered.

After determining flux surface constants from the LFS measured poloidal and

toroidal velocities, we then constructed predicted V‖ profiles at the HFS of the plasma.

When compared with the profiles actually measured at the HFS, these predicted profiles

had significantly different magnitudes and shapes. This led us to relax an assumption

typically used in neoclassical theory and allow poloidal variation in the impurity density.

Using this modified model, we calculated the ratio of HFS to LFS nz necessary to make

the measured velocities from both sides of the plasma consistent under the assumed

formalism. The inferred asymmetry of 2–3 at the location of the peak in the poloidal

velocity, is similar to the predicted asymmetry of 1–2 found in previous numerical studies

of C-Mod data.
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Appendix A. Profile alignment

In light of the uncertainty in the mapping process and the sensitivity of neoclassically

calculated profiles to the relative locations of the measured profiles, we consider whether

or not the various temperature profiles should be aligned after mapping to the LFS

midplane. Figure A1a shows the relevant temperature profiles from a single time during

a strong H-mode. The profiles are rather similar, yet are separated by ∼3 mm. After

forced alignment there is very good agreement between the temperature profiles, as seen
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Figure A1. An example of a) the unshifted and b) the shifted impurity and electron

temperature profiles. The fit to the CXRS data is also shown.

in Figure A1b.

Appendix A.1. Thermal equilibration

Here we review the thermal equilibration times between the various species in order to

support radially shifting the temperature profiles and the use of the approximation that

Ti ∼ Tz. Values for all the relevant time scales are collected in Figure A2 for a typical

H-mode. The time it takes the boron impurity to thermally equilibrate to the main ion

species (in ms) is [36]

τzi = 5.56 × 1027 (miTz +mzTi)
3/2

(mimz)1/2Z2niλzi
. (A.1)

Here, the units of temperature are eV, density is in m−3 and λzi is given by

λzi = ln(Λzi) ∼ 17.3 −
1

2
ln(

ni

1020
) +

3

2
ln(

Ti

1000
). (A.2)

Similar estimates can be made of the boron-electron (τze) and ion-electron equilibration

(τie) times. All three profiles are shown in Figure A2 for a single time-slice in a typical

discharge.

Over much of the pedestal, the thermal equilibration between B5+ and the bulk

ions is found to be much faster than the energy transport time, which we define as

τtrans ≡ L2
p,i/χ. (A.3)

χ is the thermal diffusivity and Lp,i is the ion pressure scale length. χ is approximated

by

χ ≡
Pflux

3
2
n∇(Ti + Te)

(A.4)

where Pflux is the total power crossing the last closed flux surface. τze is slightly longer

than τzi but still much shorter than the energy transport time. We also find that τie
is shorter than τtrans over much of the plasma but in the pedestal the two become
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Figure A2. The equilibrium and diffusivity times in the pedestal region for a typical

discharge.

approximately equal. Although this might lead us to expect the ions and electrons are

generally decoupled in this region, the full energy balance equation should be considered

to properly resolve that question.

We conclude that Tz is a reasonable approximation for Ti in the pedestal region

given that τzi is less than all other equilibrium times and much less than τtrans over most

of that region. However, we reiterate that the comparison of equilibrium times is not

a rigorous proof. We should also point out that to evaluate (A.1) we must make the

same assumption that we are trying to validate, namely Ti ∼ Tz. However, even if we

used Ti ∼ 1.5Tz the general results are still the same. The relative magnitudes of the

equilibrium times also provide good evidence for the correlation found in Figures A1b

and A4.

Appendix A.2. Alignment of HFS data

Here we address the forced alignment of the HFS CXRS Tz measurements to those at

the LFS. This alignment assumes Tz is constant on a flux surface which follows from the

work of Fülöp and Helander [22]. Working in the Pfirsch-Schlüter regime and assuming

that the impurity density is much smaller than the ion density, they calculate the first

order correction to the main ion temperature, which is assumed nearly constant on a

flux surface, from

∇‖Ti =
16

25

ITi

Ωiτi

d ln Ti

dψ

(

1 −
B2

〈B2〉

)

. (A.5)

Here, Ωi is the ion cyclotron frequency and τi is the ion collision time. We see that the

parallel gradient of Ti involves the radial flux gradient of Ti as well as the strength of

the magnetic field. Integrating along a field line from the low- to high-field sides we

find, for typical C-Mod parameters, that this correction is only a few percent for flux

surfaces outside the midpoint of the pedestal and that this correction rapidly decreases

as one moves into the plasma. Thus, we feel confident aligning the LFS and mapped

HFS B5+ temperature profiles with radial shifts.
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Appendix A.3. Te and Tz profiles

To further motivate shifting the mapped TS profiles to match those from the LFS

CXRS diagnostic, we examine several characteristics of the measured Te and LFS Tz

profiles. The method we employ for abstracting profile characteristics is to fit each set

of pedestal data with a hyperbolic tangent (tanh) function that is connected at the

top of the pedestal to a linear fit of the core data [37]. The combined form of this fit

(f) depends on five parameters that are allowed to vary during the fitting process: the

slope of the linear portion (m) and the height (h), base level (b), midpoint (r0), and half

width (∆) of the pedestal.

f(r) =
h

2

(

tanh(r0 − r)

∆
+ 1

)

+ b

+ (r0 − ∆ − r)mH(r0 − ∆ − r)

(A.6)

where H(r0−∆−r) is the Heaviside step function which turns on for values of r < r0−∆.

With these fits, we may systematically derive pedestal heights and widths as well as

calculate smooth gradients. The tanh fit to the impurity temperatures is shown for the

data in Figure A1b.

The first profile characteristic we explore is the radial scale-length, L, which may

remain constant even as the pedestal height and width changes. It turns out that

the scale lengths of the temperature and density profiles, both for the electrons and

the B5+ impurity, are fairly constant over the range of H-mode discharges considered.

Furthermore, they are all of the same order. Figure A3 shows all the temperature and

density scale lengths measured in the pedestal region plotted against the collisionality

at the location of the maximum profile gradient.

Next we examine the magnitude of both the Te and Tz pedestals and find that

in C-Mod they are well correlated from the top to the separatrix. Figure A4a shows

a comparison of Te and Tz at the top of the pedestal (based on the tanh fits). The

same strong correlation between Tz and Te continues through middle of the pedestal
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Figure A4. Comparison of the electron temperature to the B5+ impurity temperature

at a) the top of the pedestal and b) the steep gradient region.

as shown in Figure A4b. In contrast, lower density/collisionality tokamaks can observe

that the electron and ion temperatures are less correlated in the edge region [38]; Ti

drops more slowly than Te moving out through the pedestal to the SOL. For those

machines, LT,z can be much larger than LT,e. We note that the C-Mod data spans a

range that includes lower collisionalities where we might not expect Tz and Te to be so

closely correlated/coupled, but they still are.

Finally, we note that, even in an otherwise constant discharge, the difference

between the locations of the pedestal midpoints (for Tz, Te) can swing from positive

to negative and back. The variation in radial difference tends to be in the range of 1–3

mm, but can be larger depending on the shape of the equilibrium.

Because the general profile characteristics are well matched and the variation in

relative location of the CXRS and TS profiles is similar to the expected EFIT uncertainty

it seems reasonable to assume that the Tz and Te profiles should overlay each other.
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