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ABSTRACT
The study of robustness and connectivity properties are im-
portant in the analysis of complex networks. This paper
reports on an effort to compare different network topologies
according to their algebraic connectivity, network criticality,
average node degree, and average node betweenness. We
consider different network types and study the behavior of
these various metrics as scale is increased. Based on exten-
sive simulations, we suggest some guidelines for the design
and simplification of networks. The main finding is that, al-
gebraic connectivity, network criticality, average degree, and
average node betweenness capture different properties of a
graph. Depending on the nature of the problem at hand,
one needs to select which one is appropriate to use as the
main metric for network analysis.
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1. INTRODUCTION
In order to develop guidelines for the simplification of com-

plex networks, we need to study their connectivity and ro-
bustness properties. The connectivity of a graph can be
quantified by algebraic connectivity [3], the second smallest
eigenvalue of the Laplacian matrix of the graph. In order to
quantify the robustness of a network, we need to precisely
define the robustness. In this paper a network is said to be
robust if its performance is not sensitive to the changes in
topology, traffic or community of interest (the set of active
sources/sinks for traffic). Based on this definition of robust-
ness, we have proposed a metric, network criticality [10] to
quantify the robustness of a network.
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In this paper we investigate and compare properties of al-
gebraic connectivity and network criticality, along with node
degree and node betweenness, and provide some guidelines
for designing and simplifying complex networks based on
desired connectivity and robustness properties.

A wealth of literature is available on network connectivity,
robustness, and different related aspects. In [2] robustness of
network topologies is studied. Graph-theoretic concepts are
used to investigate which network topologies are the most
robust. The authors argue that ”node connectivity” is the
most useful metric in graph theory to study the robustness
problem. They examine the relationship between node con-
nectivity and the degree of symmetry of a network and they
suggest that it is important for robust networks to satisfy
node similarity and optimal connectivity conditions. Two
nodes are similar if there is an automorphism that can map
one to the other. A network is node similar if all of its nodes
are similar. A graph is optimally connected if its node con-
nectivity is equal to the link connectivity metric and both
are equal to the minimum node degree of the graph. [2]
investigates the relationship between these conditions, and
arrives at the result that a network provides maximum re-
sistance to node destruction if it is both node-similar and
optimally connected. The paper then describes a number of
ways to design robust networks satisfying these conditions.

[1] introduces a new measure of symmetry, symmetry ra-
tio of a network. This metric is defined to be the ratio of
the number of distinct eigenvalues of the network to the di-
ameter. This metric is used to study the robustness of a
network topology in the face of targeted attacks.

In [9] we proposed a framework for robust routing in core
networks based on the idea of ”link criticality” and ”path
criticality”. Further development of the idea of criticality
is studied in [10], where a mathematical framework for the
definition of network criticality is given within the context
of Markov chain theory.

From a robustness point of view the algebraic connectivity
is investigated in [6, 5]. In [6] the algebraic connectivity is
studied in relation to graph’s robustness to node and link
failures. Three types of network topologies are considered:
the random graph of Erdos-Renyi, the small-world graph of
Watts-Strogatz and the scale-free graph of Barabasi-Albert,
and through extensive simulations with the three complex
network models, it is shown that the algebraic connectivity
is not trivially related to the robustness to node and link
failures. The authors have shown that in some cases the
speed of increasing the algebraic connectivity is much lower
than the speed of increasing node connectivity and that this



is very dependent on the particular complex network model.
The goal of this paper is to investigate the behavior of net-

work criticality when node connectivity increases and com-
pare the results to those of [6, 5]. We believe that this may
help find networks that are both robust and simple while
providing a desired level of connectivity.

The paper is structured as follows. Section 2 summarizes
our previous results on network criticality. Section 3 pro-
vides the relationship between network criticality and alge-
braic connectivity. In section 4 a thorough set of simulations
are conducted to compare the properties of network critical-
ity and algebraic connectivity, and an analysis of the results
is presented. In section 5 conclusions are provided.

2. NETWORK CRITICALITY
In this section we summarize the results of our previous

work on robustness [10].

2.1 Network Model
We model a network with an undirected weighted graph

G = (N, E, W ) where N is the set of nodes, E is the set
of graph links, and W is the weight matrix of the graph.
Throughout this paper we assume that G is a connected
graph.

Consider a finite-state irreducible Markov Chain with tran-
sition probabilities pij of transitioning from state i at time
t to state j at time t + 1 (discrete time). The Markov chain
can be represented by a state transition diagram with states
as nodes in a graph and edges corresponding to allowable
transitions, and labels associated with the edges denoting
the transition probabilities. The Markov chain can also be
viewed as a random walk on the n-node graph with next-
step transition probabilities pij according to the following
rule:

pij =

(

wij
P

k∈A(i) wik
if j ∈ A(i)

0 otherwise
(1)

where A(i) is the set of adjacent nodes of i and wik ≥ 0 is
the weight of link (i, k).

We are interested in quantifying the betweenness of a node
in the random-walk corresponding to a Markov chain. The
original definition of random-walk betweenness is given in
[7], but here we use a modified version defined in [10]. Con-
sider the set of trajectories that begin at node s and termi-
nate when the walk first arrives at node d, that is, destina-
tion node d is an absorbing node. We define the betweenness
bsk(d) of node k for the s−d trajectories as the average num-
ber of times node k is visited in trajectories from s to d.

Let Bd = [bsk(d)] be the n × n matrix of betweenness
metrics of node k for walks that begin at node s and end
at node d. Further, let Pd be the matrix of transition prob-
abilities when the random walk is modified so that state d
is an absorbing state. We use P (i|j) to show the truncated
(n − 1) × (n − 1) matrix that results from removing ith row
and jth column of matrix P . It is shown in [10] that:

Bd(d|d) = (I − Pd(d|d))−1 (2)

2.2 Definition of Network Criticality
We now introduce network criticality, the metric that we

proposed in [10], to quantify the robustness of a network.
We start by defining node/link criticality.

Node criticality is defined as the ratio of the random-walk
betweenness of a node to its weight (weight of a node is
defined as the sum of the weights of its incident links). Link
criticality is similarly defined as the ratio of the betweenness
of a link to its weight.

Let η(k) be the criticality of node k and ηij be the crit-
icality of link l = (i, j). It is shown in [10] that ηi and ηij

can be obtained by the following expressions:

τsd = l+ss + l+dd − 2l+sd or τsd = ut
sdL+usd (3)

τ =
X

s

X

d

τsd, τ̂ =
1

n(n − 1)
τ (4)

η(k) =
bk

Wk
=

1
2
τ =

n(n − 1)
2

τ̂ (5)

ηij =
bij

wij
= τ = n(n − 1)τ̂ (6)

bsk(d)

Wk

= l+sk − l+sd − l+dk + l+dd (7)

where L+ = [l+ij ] is the Moore-Penrose inverse of graph
Laplacian matrix L, n is the number of nodes, and uij =
[0 ... 1 ... − 1 ... 0]t (1 and −1 are in ith and jth position).

Observation 2.1. Equations 3 to 6 show that node crit-
icality (ηk) and link criticality (ηij) are independent of the
node/link position and only depend on τ (or τ̂) which is a
global quantity of the network.

Definition 2.2. We refer to τ as the network criticality
and τ̂ as normalized network criticality. In this paper our
experiments are based on normalized network criticality

One can see that τ̂ is a global quantity on network graph
G. Equations 5 and 6 show that node (link) betweenness
consists of a local parameter (weight) and a global metric
(network criticality). τ̂ can capture the effect of topology
and community of interest via betweenness, and the effect
of traffic via weight (by appropriate definition of weight).
The higher the betweenness of a node/link, the higher the
risk of using the node/link. Furthermore, one can define
node/link capacity as the weight of a node/link, then the
higher the weight of a node/link, the lower the risk of using
the node/link. Therefore network criticality can quantify
the risk of using a node/link in a network which in turn
indicates the degree of robustness of the network.

Observation 2.3. It turns out that the value of pair-wise
criticality, i.e. τsd for pair s− d, is equal to the effective re-
sistance between nodes s and d when the network is consid-
ered as an electrical network with link conductances equal to
the link weights [4]. The total effective resistance of the net-
work is also equal to the network criticality τ . In this paper
we use the terms network criticality and effective resistance
interchangeably.

In order to simplify the structure of complex networks, one
needs to have a good understanding of connectivity proper-
ties of a network as well as its robustness. In this paper our
goal is to investigate τ̂ as a function of weight matrix (W )
and compare it with algebraic connectivity of a graph.

3. NETWORK CRITICALITY AND ALGE-
BRAIC CONNECTIVITY



Figure 1: Extended Linear Graph (ELG) and Flat
Grid Graph (FGG)

Fiedler [3] defined algebraic connectivity as the first non-
zero eigenvalue (λ2) of the Laplacian matrix of a connected
graph (recall that the first eigenvalue of Laplacian matrix
for a connected graph is zero). Algebraic connectivity is
a lower bound for node connectivity and link connectivity.
Therefore, the further λ2 is from zero, the higher the node
and link connectivity of a graph.

In [11] we have shown that network criticality is bounded
by the reciprocal of algebraic connectivity. More precisely:

2
(n − 1)λ2

≤ τ̂ ≤
2
λ2

(8)

This means that increasing the connectivity of a network,
decreases the upper bound of network criticality, which po-
tentially means more robustness.

4. SIMULATION RESULTS
In this section, motivated by [6], we provide an in-depth

study of algebraic connectivity and network criticality (ef-
fective resistance). We used a diverse range of topologies,
from structured graphs (linear graph, grid, Torus, etc) to
random graphs and small-world networks. The quantities
of interest for us are: network criticality, algebraic connec-
tivity, average degree, and average node betweenness. In
all of the experiments, we assume that all the link weights
are equal. In fact, without loss of generality we assume
wij = 1 ∀(i, j) ∈ E.

4.1 Deterministic Graphs
While a complex network is usually not a regular or struc-

tured graph, frequently a large number of existing complex
networks (for instance the network of proteins) can be built
by joining some structured topologies. Therefore, in this
section we study the behavior of the metrics of interest in
deterministic and structured networks.

In the first experiment we consider extended linear graph
(ELG), and flat grid graph (FGG) (see Fig. 1). In Fig.
2 we compare the behavior of network criticality, algebraic
connectivity, average degree, and average node betweenness
in ELG and FGG for different network sizes.

Fig. 2-a shows the behavior of network criticality for ELG
and FGG. The criticality of ELG grows much faster than
FGG. Fig. 2-b reveals that the algebraic connectivity of
FGG is always better than ELG, that is the flat grid has
better connectivity but the speed of decreasing the connec-
tivity of the graph is much slower than increasing the net-
work criticality. According to the Fig. 2-c, the average node
degree of ELG approaches 4, and the average node degree

Figure 2: Comparison of Extended Linear and Flat
Grid Topologies

Figure 3: Topology of Ladder (LAG) and Dense Flat
Grid Graph (DFG)

of FGG is between 3.5 and 4.0. Finally, Fig. 2-d shows that
the average node betweenness of ELG is higher than that of
FGG. The behavior of average node betweenness and net-
work criticality in this experiment are very close, because the
variations of node degree for both networks are small, there-
fore, according to equation 5, the average node betweenness
and network criticality are almost proportional.

This experiment reveals that while the changes in node
degree and algebraic connectivity of ELG and FGG are rel-
atively similar, there is a huge change in the behavior of net-
work criticality, which means that network criticality cap-
tures some attributes of the graph that cannot be found in
node degree and algebraic connectivity.

Fig. 3 shows the ladder and dense flat grid graph (DFG),
which are two other topologies of interest. In Fig. 4, the be-
havior of FGG and DFG are compared. Fig. 4-a verifies that
the network criticality of DFG is smaller than the network
criticality of FGG with the same number of nodes. This is
expected because the number of links in DFG is more than
FGG. Therefore, if the objective of designing a network is to
make it more robust in the sense that robustness is defined
in this paper, we need to use DFG. According to Fig. 4-b
the algebraic connectivity of FGG and DFG are very similar
for all values of n. This means that if only the connectivity
is critical in a network, then it is preferred to use FGG. In
other words, if connectivity is the only concern, a DFG can
be safely converted to a FGG.

Fig. 4-c shows the average node degree of FGG and DFG
and Fig. 4-d shows the behavior of average node between-



Figure 4: Comparison of Flat Grid and Dense Flat
Grid Topologies

ness. According to this figure the average link betweenness
for FGG and DFG are very similar. In other words, when
the control of average node betweenness is the main objec-
tive, then it makes sense to use FGG with the same number
of nodes. This will simplify the network significantly.

In the next experiment, we compare the behavior of ex-
tended linear graph (ELG) and ladder graph (LAG). Ac-
cording to Fig. 5, network criticality of LAG is slightly worse
(larger) than the network criticality of ELG, while the al-
gebraic connectivity of ELG and LAG behave similarly for
different values of n. Average degree of ELG converges to
to 4, while the average node degree of LAG converges to a
value less than 2.5. As the total number of links in a graph is
approximately the number of nodes times the average node
degree, we arrive at the result that when the networks grow
in node size, the number of links in ELG is much more than
LAG, in other words, a slight improvement in network criti-
cality comes at the expense of a huge increase in the number
of links (while the number of nodes in both networks are the
same).

Now by looking at the result for average node between-
ness, we find that the average node betweenness of ELG
grows faster than LAG as n grows. A final result is that
in general by changing an ELG-like topology to a LAG,
we do not lose too much, as a matter of fact the average
node betweenness even decreases, while the network criti-
cality (effective resistance) slightly increases. The average
node betweenness has an important role in developing traffic
engineering algorithms for communication networks [8].

Now we study the behavior of square torus graph (STG)
and sparse flat graph (SFG) (Fig. 6). In Fig. 7 the be-
havior of STG and FGG are compared. Fig. 7-a shows
that up to a certain number of nodes (around 16 nodes), the
network criticality of STG decreases with increasing node
number. It also reveals that for networks with less than
90 nodes STG has smaller network criticality than FGG
with the same number of nodes. However, for larger net-
works FGG has better (smaller) network criticality. Fig.
7-b shows that algebraic connectivity of STG for networks
with less than 80 nodes is better (larger) than that of FGG

Figure 5: Comparison of Ladder and Extended Lin-
ear Graph Topologies

(a) STG (b) SFG

Figure 6: Topology of Square Torus Graph (STG)
and Sparse Flat Graph (SFG)



(a) (b)

(c) (d)

Figure 7: Behavior of STG and FGG

with the same number of nodes. It also shows that after
80 nodes algebraic connectivity of FGG is slightly better.
However, the difference in the behavior of STG and FGG is
more evident through their network criticality and average
node betweenness. Fig. 7-c shows that average node degree
of STG quickly approaches 4, while average node degree of
FGG is always less that 4 and goes to 4 very slowly. Ac-
cording to the Fig. 7-d, this causes smaller average node
betweenness for FGG networks when 80 ≤ n ≤ 90, while
the network criticality of STG is smaller for the networks
with 80 ≤ n ≤ 90 as shown in Fig. 7-a.

Finally, we study the robustness behavior of SFG and
FGG. In Fig. 8 we compare the behavior of SFG with
FGG. Fig. 8-c shows that for networks with large number of
nodes, FGG has 45% more links than SFG. This increase in
link density leads to a considerable improvement in network
criticality, algebraic connectivity, and average node between-
ness. Fig. 8-a shows that network criticality of FGG is much
smaller than SFG. For n = 200, the network criticality of
SFG is 1.406 while it is 0.747 for FGG.

There are also some interesting points in the comparison
of behavior of FGG, DFG and SFG using Fig. 8 and Fig. 4.
These figures show that moving from SFG to FGG generates
more improvement in network metrics compared to moving
from FGG to DFG, although in both movements we should
increase number of links to the same extent.

Quantity SFG FGG DFG
Average Degree 2.55 3.71 5.43

Network Criticality 1.406 0.747 0.494

Table 1: Numerical Comparison of Robustness in
SFG, FGG, and DFG

Table 1 shows the average node degree and network crit-
icality for these three topologies when n = 200. According
to this table moving from SFG to FGG needs 45% increase

(a) (b)

(c) (d)

Figure 8: Behavior of SFG and FGG

in average degree and leads to 47% decrease in network crit-
icality while moving from FGG to DFG needs an increase
in average degree by 45%, again but network criticality de-
creases only 34%. In addition, comparison of Fig. 8-b with
Fig. 4-b and Fig. 8-d with Fig. 4-d show that by moving
form SFG to FGG we gain improvement in algebraic connec-
tivity and average node betweenness, while there is almost
no gain in these metrics by moving from FGG to DFG.

4.2 Small-World Networks
Small-world is a name for a subset of complex networks

where despite the huge size of the network, the average path
length between any two nodes is relatively small. The small-
world model proposed by Watts-Strogatz is the most stud-
ied small-world model [12]. Starting from a regular ring
lattice, we connect each node with 2s neighbors (s neigh-
bors in each side), then we rewire each link with probability
p. In rewiring process, we keep the first node of each link
and reconnect the other end node (clockwise) with proba-
bility of p to another node which is chosen randomly from
the ring nodes in a way that sell-loops and parallel edges
are not permitted. For 0.01 ≤ p ≤ 0.1 small world charac-
teristic appears (small average path length, large clustering
coefficient). If we continue increasing the randomness by
increasing p, the graph starts behaving more like a random
graph. For p = 1 we get a pure random graph (small average
path length, small clustering coefficient).

In Fig. 9 variations of average network criticality and
average algebraic connectivity with link connectivity for dif-
ferent values of n are shown. Fig. 9-a and 9-b show the
behavior of average network criticality and algebraic con-
nectivity for p = 0.01, and Figures 9-c and 9-d correspond
to p = 0.1. For each combination of n and p, we have gener-
ated 10, 000 graphs. The value of s is taken to be uniformly
distributed between 1 to 10 units (1 ≤ s ≤ 10). The results
shown in Fig. 9 are the average values over all generated
graphs.

One can see that average algebraic connectivity in both
cases (p = 0.01 and p = 0.1) and for different values of n



(a) p = 0.01 (b) p = 0.01

(c) p = 0.1 (d) p = 0.1

Figure 9: Average Network Criticality and Alge-
braic Connectivity for Small-World Networks with
p = 0.01 and p = 0.1

increases relatively smoothly with link connectivity. How-
ever, Fig. 9-a and 9-c show a significant change in average
network criticality when link connectivity increases from 1
to 2. Therefore, if simplifying a small-world network leads
to decreasing edge connectivity from 2 to 1, this results in a
huge jump (increase) in average network criticality (loosing
robustness) which is not desirable. This fact is not captured
through average algebraic connectivity charts.

Furthermore, when the link connectivity is more than 4,
the value of average network criticality does not have a sig-
nificant change even if the network grows from n = 50 to
n = 500. In other words, for small-world networks, if the
connectivity is fixed to a desirable value (this value depends
on the probability p), increasing the network size does not
cause dramatic change in network criticality.

5. CONCLUSIONS
In this paper we investigated the behavior of different

graph theoretic measures on some well-known graph topolo-
gies. More specifically, we examined the effect of network
size on network criticality, algebraic connectivity, average
degree, and average node betweenness. We saw that there
is no unique graph metric to satisfy both connectivity and
robustness objectives while keeping a reasonable complexity.
Each metric captures some attributes of the graph. It turns
out that in order to design or simplify a network, we need
to study the effect of all these graph metrics and choose the
best network topology according to the requirements of the
problem at hand.
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