
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 1, Ver. II (Jan. 2014), PP 31-35

www.iosrjournals.org

www.iosrjournals.org 31 | Page

Comparison of Neural Network Training Functions for

Hematoma Classification in Brain CT Images

Bhavna Sharma
1

 and Prof. K. Venugopalan
2

1
(Ph.D Scholar, Computer Science Dept., Mohanlal Sukhadia University, Udaipur, India)

2
(Professor, Computer Science Dept., Mohanlal Sukhadia University, Udaipur, India)

Abstract:Classification is one of the most important task in application areas of artificial neural networks

(ANN).Training neural networks is a complex task in the supervised learning field of research. The main

difficulty in adopting ANN is to find the most appropriate combination of learning, transfer and training

function for the classification task. We compared the performances of three types of training algorithms in feed

forward neural network for brain hematoma classification. In this work we have selected Gradient Descent

based backpropagation, Gradient Descent with momentum, Resilence backpropogation algorithms. Under

conjugate based algorithms, Scaled Conjugate back propagation, Conjugate Gradient backpropagation with

Polak-Riebreupdates(CGP) and Conjugate Gradient backpropagation with Fletcher-Reeves updates (CGF).The

last category is Quasi Newton based algorithm, under this BFGS, Levenberg-Marquardt algorithms are

selected. Proposed work compared training algorithm on the basis of mean square error, accuracy, rate of

convergence and correctness of the classification. Our conclusion about the training functions is based on the

simulation results.

Keywords: Artificial Neural Network, Back propagation, Gradient Descent, Levenberg-Marquardt.

I. Introduction
Classification is one of the most commonly encountered decision making tasks in medical image

analysis [1]. Brain hematoma is caused due to a sudden stroke to a person after blood leaks out from the blood

vessels in the brain. Brain hematomas can be epidural hematoma (EDH), subdural hematoma (SDH) and

intracerebral hematoma (ICH). All these hematomas are hyper dense in nature and brighter than the other brain

tissue having different shapes. Classification of these types of hematomas can be done by ANN [2].

Classification problem can be solved ANN mathematically and in a non-linear fashion.

An ANN is a biologically inspired computational model composed of various processing elements

called artificial neurons. They are connected with coefficients or weights which constructs the neural network’s

structure [3]. The processing elements have weighted inputs, transfer function and outputs for processing

information. There are many types of neural networks with different structures have been designed, but all are

described by the transfer functions used in processing elements(neurons), the way of training given or learning

rule and by the connection formula.ANN is composed of single-layer or multiple layer neurons. For complex

problems multilayer perceptron (MLP) is the best model as it overcomes the drawback of the single-layer

perceptron by the adding more hidden layers. In a feedforward multilayer perceptron network the inputs signals

are multiplied by the connection weights are first summed and then directed to a transfer function to give

output for that neuron. The transfer function (purelin, hardlim,sigmoid, logistic) executes on the weighted sum

of the neuron’s inputs.

Fig.1 : Multilayer perceptron Neural network

A neural network is trained with input and target pair patterns with the ability of learning. In MLP

network, backpropagation (BP) learning algorithm is used [4]. Inputs data is fed forward through the network to

optimize the weights between neurons. Adjustment of the weights is done by backward propagation of the error

during training phase. The network takes the input and target values in the training data set and changes the

value of the weighted links to reduce the difference between the output and target values. The error is minimized

across many training cycles called epoch. During each cycle network reaches to specified level of accuracy. The

number of processing elements per layer, as well as the number of layers, greatly affects the abilities of the

Comparison of Neural Network Training Functions for Hematoma Classification in Brain CT Images

www.iosrjournals.org 32 | Page

MLP. Too few of them can slow down the learning process, and too many of them can alter the generalizing

abilities of the MLP due to overfitting or memorization of the training data set [5].

To classify the types of hematoma from brain CT scan images first step is to preprocess the image to

reduce the noise, second step is to segment the image using appropriate method [6] than in the next step we

extracted statistical, shape and texture based features. The aim of feature extraction is to measure certain

properties, attributes in original data that distinguish one input pattern from another pattern. In total 16 features

are extracted from segmented image [7]. These features are fed to multilayer perceptron neural network.

In this paper, we focused on the different training algorithms that can be applied on the set of input data

patterns. The MLP has to be trained to attain the desired output according to the training patterns or examples.

Main objective is to find out the best training functions for classification of brain hematomas. For performance

evaluation of training functions parameters are recognition accuracy, speed of training, correctness. One of the

most important parameter is the mean squared error

 MSE =
∑ ()

 (1)

Where yi is the target and oi is the observed output and N is the number of data set.

II. Training Algorithms
There are number of batch training algorithms which can be used to train a network. Here, three types

of training algorithms having eight training functions have been evaluated for classification of brain hematoma.

They are Gradient Descent algorithms (traingd, traingdm, trainrp), Conjugate Gradient algorithms (trainscg,

traincgf, traincgp), Quasi-Newton algorithms (trainbfg,trainlm) [8].

2.1 Gradient Descent algorithms

These are the most popular training algorithms that implements basic gradient descent algorithm and

updates weights and biases in the direction of the negative gradient of the performance function.

2.1.1 Gradient Descent backpropagation algorithm (traingd) is a gradient descent local search procedure. It

measures the output error, calculates the gradient of the error by adjusting the weights in the descending

gradient direction.

2.1.2 Gradient Descent with Momentum (traingdm) algorithm is steepest descent with momentum that

allows a network to respond to the local gradient as well as recent trends in the error surface. It acts like a

lowpass filter that means with momentum the network ignores small features in the error surface. A network can

get stuck in to a shallow local minimum but with momentum it slides through such local minimum [9].

2.1.3 Resilence backpropogation (trainrp) training algorithm eliminates the effects of the magnitudes of the

partial derivatives [10]. In this sign of the derivative is used to determine the direction of the weight update and

the magnitude of the derivative have no effect on the weight update. The size of the weight change is

determined by a separate update value. The update value for each weight and bias is increased by a factor

whenever the derivative of the performance function with respect to that weight has the same sign for two

successive iterations [11]. The update value is decreased by a factor whenever the derivative with respect that

weight changes sign from the previous iteration. If the derivative is zero, then the update value remains the

same. Whenever the weights are oscillating weight change will be reduced.

2.2 Conjugate Gradient algorithms

The basic gradient descent algorithm adjusts the weights in the negative of the gradient, the direction in

which the performance function is decreasing most rapidly. This does not necessarily produce the fastest

convergence. In the conjugate gradient algorithms a search is performed along conjugate directions, which

produces generally faster convergence than steepest descent directions. The conjugate gradient algorithms

require only a little more storage than the other algorithms. Therefore, these algorithms are good for networks

with a large number of weights [12].

2.2.1 Scaled Conjugate Gradient (trainscg) does not require line search at each iteration step like other

conjugate training functions. Step size scaling mechanism is used which avoids a time consuming line search

per learning iteration. This mechanism makes the algorithm faster than any other second order algorithms. The

trainscg function requires more iteration to converge than the other conjugate gradient algorithms, but the

number of computations ineach iteration is significantly reduced because no line search is performed [13].

2.2.2 Conjugate Gradient backpropagation with Fletcher-Reeves Updates (traincgf) is the ratio of the norm

squared of the current gradient to the norm squared of the previous gradient. The conjugate gradient algorithms

are usually much faster than other algorithms but the result depends on the problem [14].

2.2.3 Conjugate Gradient backpropagation with Polak-Riebre Updates (traincgp) is the ratio of the inner

product of the previous change in the gradient with the current gradient to the norm squared of the previous

gradient. The storage requirements for Polak-Ribiére (four vectors) are slightly larger than for Fletcher-Reeves

[15].

Comparison of Neural Network Training Functions for Hematoma Classification in Brain CT Images

www.iosrjournals.org 33 | Page

2.3 Quasi-Newton algorithms

Newton’s method gives better and fast optimization than conjugate gradient methods. The basic step of

Newton’s method is the Hessian matrix (second derivatives) of the performance index at the current values of

the weights and biases. Newton’s method converges faster than conjugate gradient methods but these methods

are complex and take more time to compute the Hessian matrix for feed forward neural networks. Based on

Newton’s method which doesn’t require calculation of second derivatives is called quasi-Newton or secant

method. They update an approximate Hessian matrix in each iteration of the algorithm.

2.3.1 BFGS(Broyden–Fletcher–Goldfarb–Shanno) (trainbfg) algorithm approximates Newton's method, a

class of hill-climbing optimization techniques that seeks a stationary point of a function. For such problems,

a necessary condition for optimality is that the gradient be zero [16]. This algorithm requires more storage and

computation than the conjugate gradient methods, but it converges in fewer iterations. BFGS have good

performance even for non smooth optimizations and an efficient training function for smaller networks.

2.3.2 Levenberg–Marquardt backpropagation (trainlm) algorithm locates the minimum of a multivariate

function that can be expressed as the sum of squares of non-linear real-valued functions. It is an iterative

technique that works in such a way that performance function will always be reduced in each iteration of the

algorithm. This feature makes trainlm the fastest training algorithm for networks of moderate size. Similar to

trainbfg, trainlm function has drawback of memory and computation overhead caused due to the calculation of

the gradient and approximated Hessian matrix [17].

III. Experimental Results And Discussion
All these experiments were carried out on windows 7 (32-bit) operating system with i5 processor and 4

GB RAM. All training functions used are coded in MATLAB using ANN toolbox. The experiment data consists

of 100 brain CT images. The selected images are of same quality but with different resolutions. Images have

various types of hematoma with different sizes, shapes and at different locations in brain. The sample data of

100 images having 16 features for each image were presented to the ANN. For learning process, data was

divided into sets for training (70%), validation (15%) and for testing (15%). To avoid possible bias in the

presentation order of the sample patterns to the ANN these sample sets were randomized. Sigmoid transfer

function is used for the hidden layer.

Basic system training parameters are max_epochs=1000, show=5, performance goal=0, time=Inf,

min_grad=1e-010, max_fail=6 are fixed for each training function. The parameters for comparison are CPU

time elapsed, no of epoch (E) at the end of training, correct classification (C) percentage, Regression (R) on

training, R on validation. All these parameters are checked for 10, 20 and 30 number of neurons (H) in hidden

layer. The network is trained until the mean squared error is less than 0.0.

Table 1: Comparison of Training Functions
Algorithm Trainingf

unction

H Best validation MSE at

epoch

Epoch Classification

%

R on

training

R on

validation

Gradient

Descent

traingd 10 0.20919at 1000 1000 73% 0.2045 0.3385

20 0.13524at 1000 1000 72% 0.6887 0.6830

30 0.27341at 1000 1000 73% 0.4303 0.2693

traingdm 10 0.15082at 1000 1000 82% 0.5975 0.5676

20 0.13215at 1000 1000 88% 0.6080 0.6556

30 0.10244at881 1000 88% 0.5442 0.7620

trainrp 10 0.000166 at 30 36 95% 0.9976 0.9952

20 0.201113 at 33 39 97% 0.9986 0.9349

30 0.027887 at29 35 95% 0.9981 0.9203

Conjugate
Gradient

trainscg 10 0.003119at26 32 99% 1 0.9985

20 0.00430at 33 39 98% 0.9973 0.9847

30 0.02733 at 40 46 98% 0.9988 0.8959

traincgp 10 0.21541at 16 20 56% 0.1683 0.1304

20 0.24983at 20 26 57% 0.1674 0.1279

30 0.01003 at 50 56 56% 0.0392 0.0760

traincgf 10 0.00008at 79 85 67% 0.4427 0.5997

20 0.93732at 34 35 66% 0.2214 0.4818

30 0.13689at 26 32 67% 0.5582 0.6905

Quasi Newton

trainbfg 10 0.45559at 18 24 62% 0.3848 0.8121

20 0.10043at 13 19 62% 0.8573 0.7780

30 0.00722 at30 36 68% 0.8554 0.8653

trainlm 10 0.13564 at 10 16 97% 1 0.9989

20 0.00550 at 11 17 99% 1 0.9686

30 0.00016at40 44 99% 0.9128 0.9985

http://en.wikipedia.org/wiki/Charles_George_Broyden
http://en.wikipedia.org/wiki/Roger_Fletcher_(mathematician)
http://en.wikipedia.org/w/index.php?title=Daniel_Goldfarb&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=David_F._Shanno&action=edit&redlink=1
http://en.wikipedia.org/wiki/Approximation_theory
http://en.wikipedia.org/wiki/Newton%27s_method_in_optimization
http://en.wikipedia.org/wiki/Hill_climbing
http://en.wikipedia.org/wiki/Stationary_point
http://en.wikipedia.org/wiki/Kuhn%E2%80%93Tucker_conditions
http://en.wikipedia.org/wiki/Gradient

Comparison of Neural Network Training Functions for Hematoma Classification in Brain CT Images

www.iosrjournals.org 34 | Page

CPU time elapsed at the end of training is only few seconds for each algorithm. traingdm is usually

faster than simple gradient descent, traingd, because while maintaining stability it allows higher learning rates.

Memory requirements of trainrp function are relatively small and much faster than standard gradient descent

algorithms. The trainscg and trainlm are almost as fast as trainrp. Other training function requires more time

than these functions. For small networks, trainbfg is an efficient training function and converges in a few

iterations. Similarly trainlm and trainscg converges in lesser number of iterations than the all other training

functions. Within 30 epochs (iteration), trainbfg and trainlm and trainscg achieve the performance goal while

other function takes more epochs. Table 1, provides detailed information on the training performances of these

functions.

Networks simulated using various training functions are affected according to the number of neurons in

their hidden layer. Functions trainrp and trianscg are not much affected by increasing no of neurons in hidden

layers. Table 1 shows the number of iterations (epochs) at the end of training and also the best validation

performance (MSE) at epoch. Convergence rate increases or more epochs required for each training function as

number of neurons are increase in hidden layer.

The confusion matrix gives the percentage of correct and incorrect classifications in the simulated feed-

forward back propagation networks. Table 1 shows the overall classification percentage for each training

function. Among those trainrp, trainscg and trainlm classification percentage is acceptable but trainlm gives

high percentage than the other functions.

The Regression analysis function compares the actual outputs of the neural network with the

corresponding desired outputs (targets). It returns the correlation coefficient (R) between them and also the

slope and the intercept of the best-linear-fit equation. R can be in the range [0.0,1.0].The more the values of R

are near to 1.0 and the more correct the response of the network. Regression value on training and validation in

Table 1 clearly indicates trainrp, trainscg and trainlm training functions qualifies among other functions and

suits for classification task. We further analyzed these functions on other parameters like increasing number of

layers, reducing error goal and increasing the sample size of input patterns presented to the network. Increasing

the number of layers in network does not affect performance or correct classification for all the training

functions only the rate of convergence increases.

Table 2: MSE vs. number of epochs
Training

function
1E-01 1E-02 1E-03 1E-04 1E-05

trainrp 39 36 36 37 37

trainscg 22 18 20 18 20

trainlm 11 16 17 17 16

Table 3: Sample size vs. number of epochs
Training

function
100 200 400 800 1600

trainrp 33 55 111 138 142

trainscg 39 47 72 92 100

trainlm 11 18 22 24 44

For different values of MSE the number of epochs used to train network was tabulated in Table 2. It is

clear from the table that if we decrease the performance goal or mean square error value, the number of epochs

does not vary much and best performance remains within a range for all the functions. If we keep trying to

reduce the error goal there is problem of overfitting in all the training functions. From the table it is clear that

trainlm needs least number of epochs to converge.

Doubling the size of dataset as shown in Table 3 from 100 samples to 1600, we found that rate of

convergence increases for all the training functions. It is almost doubled in trainrp, increases at slower rate in

trainscg but very slowly in case of trainlm. We can say that trainlm fits for small as well as moderate size data

and converges in less iteration and in very less time than others.

IV. Conclusion
Feed-forward back propagation neural network can be used as a highly effective tool for types of brain

hematoma classification with appropriate combination of learning, transfer and training functions. The ANNs

were simulated and trained with all the above mentioned algorithms using the training dataset. In the proposed

work we found no significant differences between the correct classification percentage for trainrp, trainscg and

trainlm, they are in acceptable range. The convergence speed of trainlm and trainscg are higher than other

training functions. Comparing on epochs and MSE parameters, trainlm and trainscg outperformed other training

function. Considering the sample size of input patterns we found that trainlm suits to larger data set. It

converges in less number of iterations and in lesser time than the other training functions.

Comparison of Neural Network Training Functions for Hematoma Classification in Brain CT Images

www.iosrjournals.org 35 | Page

References
[1] Atam P. Dhawan, H. K. Huang, DaeShik Kim, Principles and advanced methods in medical imaging and image analysis(World

Scientific, 2008).

[2] L. Fu., Neural Networks in Computer Intelligence (Tata McGraw-Hill, 2003).
[3] S. Haykin, Neural Networks- A Comprehensive Foundation (2nd ed., Pearson Prentice Hall, 2005).

[4] R. Roja, The Backpropagation Algorithm, Chapter 7: Neural Networks (Springer-Verlag, Berlin, 1996) pp. 151-184.

[5] M. K. S. Alsmadi, K. B. Omar, S. A. Noah, “Back propagation algorithm: The best algorithm among the multi-layer perceptron
algorithm”, International Journal of Computer Science and Network Security, vol., 9(4), 2009, pp. 378 – 383.

[6] Bhavna Sharma, Prof K. Venugopalan, “Performance comparison of standard segmentation techniques for brain CT images”,

International Journal of Computer Engineering and Technology (IJCET), vol. 3(1), Jan-June 2012, pp.126-134.
[7] Bhavna Sharma, Prof K. Venugopalan, “Classification of hematomas in brain CT images using neural network”, Proceedings of

IEEE Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT-2014) (Accepted).

[8] S. Ali and K. A. Smith, “On learning algorithm selection for classification”,Applied Soft Computing, (6), 2006,pp.119–138.
[9] M. Beale, M. Hagan, H. Demut, Neural Network Toolbox User’s Guide, 2010.

[10] A.D. Anastasiadis, G.D. Magoulas, and M.N. Vrahatis, “New globally convergent training scheme based on the resilient

propagation algorithm”,Neurocomputing, 64, 2005, pp.253–270.
[11] http://www-rohan.sdsu.edu/doc/matlab/toolbox/nnet/backpr57.html

[12] W.W. Hager and H. Zhang, “A survey of nonlinear conjugate gradient methods”, Pacific of Journal Optimization, 2:35, 2006, pp.

35–58.
[13] M. F. Moller, “A scaled conjugate gradient algorithm for fast supervised learning”, Neural Networks, 6, 1993, pp. 525–533.

[14] R Fletcher , C. M. Reeves, Computer journal ,vol. 7, 1964, pp.149-153

[15] Demuth, Howard, Mark Beale, and Martin Hagan, “Neural Network Toolbox™ 6”, User Guide, COPYRIGHT2008.
[16] http://www.mathworks.in/help/nnet/ref/trainbfg.html

[17] D.Pham, S. Sagiroglu, “Training multilayered perceptrons for pattern recognition: a comparative study of four training algorithms”,

International Journal of Machine Tools and Manufacture, vol.41, 2001, pp. 419–430.

http://www-rohan.sdsu.edu/doc/matlab/toolbox/nnet/backpr57.html
http://www.mathworks.in/help/nnet/ref/trainbfg.html

