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Abstract: The C57BL/6 (B6) mouse is the background strain most frequently used for 

genetically-modified mice. Previous studies have found significant behavioral and genetic 

differences between the B6J (The Jackson Laboratory) and B6N substrains (National 

Institutes of Health); however, most studies employed only male mice. We performed  

a comprehensive battery of motor function and learning and memory tests on male and 

female mice from both substrains. The B6N male mice had greater improvement in the 

rotarod test. In contrast, B6J female mice had longer latencies to falling from the rotarod.  

In the Morris water maze (MWM), B6J males had significantly shorter latencies to finding 

the hidden platform. However, B6N females had significantly shorter path lengths in the 

reversal and shifted-reduced phases. In open field locomotor activity, B6J males had higher 

activity levels, whereas B6N females took longer to habituate. In the fear conditioning test, 

B6N males had a significantly longer time freezing in the new context compared with B6J males, 
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but no significant differences were found in contextual or cued tests. In summary,  

our findings demonstrate the importance of testing both males and females in 

neurobehavioral studies. Both factors (sex and substrain) must be taken into account when 

designing developmental neurotoxicology studies. 

Keywords: C57BL/6; substrain; sex differences; behavior; neurobiology; genetics 

 

1. Introduction 

Many neurological disorders are linked to genetic defects or gene-environment interactions, so the 

study of genetically-modified mice is invaluable in identifying causal mutations and understanding 

genetic susceptibility to environmental insults. Our recent search of PubMed turned up more than 33,000 

papers on mouse brain development, demonstrating the importance of mouse models in neuroscience 

and developmental neurotoxicity. The existence of numerous inbred strains of mice provides an advantage 

for genetic studies, because a common genetic background makes it easier to discern the role of 

individual genes and the impact of allelic variation [1–3]. Inbreeding also reduces behavioral variability 

within a strain, although it does increase variability among strains. For example, BALb/c, C57BL/6, A/J, 

and BTBR all have distinct behavioral phenotypes [2,4,5]. 

The C57BL/6 (B6) mouse was the first mouse strain to have its genome sequenced [6], and it is the 

most commonly-used background strain for genetically-modified mice [7,8]. The B6 strain originated in 

1921, and a colony was moved to The Jackson Laboratory (Bar Harbor, ME), which gave rise to the B6J 

substrain. The founders of the C57BL/6N (B6N) line were isolated from the Jackson substrain  

at the National Institutes of Health in 1951 [9]. These two substrains are indistinguishable from their 

exterior phenotype; however, genetic drift over the decades produced quantifiable allelic differences.  

These include a null mutation in the nicotinamide nucleotide transhydrogenase (Nnt) gene, which 

reduces insulin secretion in B6J, whereas B6N have the wild-type allele and are unaffected [10].  

Of interest to neurological studies, a subpopulation (B6JOlaHsd) was found to have a mutation in  

the alpha synuclein gene (Snca) [11], and B6N mice are homozygous for a mutation in the cytoplasmic 

FMR1 interacting protein 2 gene Cyfip, resulting in an attenuated response to cocaine and  

methamphetamine [12]. Mekada et al. [13] and Zurita et al. [14] used an Illumina platform to identify 

11 additional single-nucleotide polymorphisms (SNPs), further distinguishing the B6J and B6N substrains. 

B6 substrains also differ in behavioral phenotype based on reported results from rotarod,  

fear conditioning, pain sensitivity, open field locomotor activity, elevated plus maze and prepulse  

inhibition [7,15,16]. However, these studies only used male mice. Consistent with recent recommendations 

by the U.S. National Institutes of Health [17], we performed a battery of neurobehavioral tests on male 

and female B6J and B6N mice in sequential experiments to see if the effects reported in male mice would 

be replicated in the females. We also purchased all mice from the same vendor to avoid confounding by 

source [15,18]. 

Our behavioral battery was selected to be representative of the most commonly-used tests  

for learning and memory, activity and motor function. For replication, we included two  

previously-reported tests (open field locomotor activity and fear conditioning). The learning and 



Toxics 2015, 3 3 

 

 

memory tests were selected to expand upon previous findings and for their ability to identify deficits in 

spatial, non-spatial and fear learning (i.e., deficits in the medial prefrontal cortex, hippocampus or 

amygdala) [3,19]. 

2. Experimental Section 

2.1. Animals and Handling 

Nine-week-old C57BL/6J (B6J) and C57BL/6N (B6N) mice were purchased from The Jackson 

Laboratory (Bar Harbor, ME, USA). All mice were group housed, four per cage, by sex and substrain, 

in standard static micro-isolator polysulfone shoebox cages with corn cob bedding and one nestlet for 

enrichment. Water and lab chow (Purina 5015) were provided ad libitum. Cages were changed once per 

week. During experiments, cages were changed following behavioral testing to avoid confounding by 

stress [20]. No significant adverse health issues were reported in the vivarium during the period when 

the experiments were performed (e.g., fungal, viral, bacterial or parasitic infections). 

Behavior experiments began after an acclimation period of one week. All protocols were approved 

by the Northern Kentucky University (NKU) Institutional Animal Care and Use Committee in 

accordance with the Guide for the Care and Use of Laboratory Animals [21]. The experiment began with 

a sample size of 20 per group. Two B6N males were removed from the study after suffering fight 

wounds, leaving one cage with two mice. The final group size was n = 18 for B6N males and n = 20 for 

all other groups. In keeping with the recommendations of Sorge et al. [22], we report that all experiments 

were conducted entirely by female investigators. 

All experiments were conducted during the same 4-h time block during the light portion of a  

12 h:12 h light-dark cycle. Animals received only one test per day. The order of experiments is the  

same as the order in which we report them: open field locomotor, rotarod, novel object recognition,  

Morris water maze and conditioned fear. The general order is from least stressful to most stressful.  

Mice were tested in the same order for all tests. The initial cohort consisted of 40 males. A follow-up 

experiment was conducted with 40 females. All equipment was sanitized and deodorized between test 

animals using 70% ethanol. The Morris water maze was drained and cleaned weekly. 

2.2. Open Field Locomotor Activity 

Mice were placed in arenas (41 cm × 41 cm) that contained a 16 × 16 LED photobeam array in the  

x- and y-planes, with a third row of photobeams in the z-plane to detect rearing [23]. Locomotor activity 

was recorded for 1 h in 5-min intervals using Photobeam Activity System software (San Diego Instruments, 

San Diego, CA, USA). Activity was measured as total beam breaks. 

2.3. Rotarod 

The rotarod (IITC Life Science, Woodland Hills, CA, USA) was used to assess cerebellar function.  

For stationary training, each mouse was placed on the stationary rotarod facing the back wall of the lane 

for a maximum of 60 s with a 15-s intertrial interval. To proceed to the second phase of training, mice 

passed three consecutive trials without falling. On the second day of training, the rotarod was set at a 

constant speed of 2 revolutions per minute (rpm), and each trial lasted a maximum of 60 s. The intertrial 
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interval was 15 s. To proceed to acceleration testing, mice passed three consecutive trials without falling. 

All mice successfully passed each training phase. During the acceleration test phase, the rotarod 

accelerated from 1 to 20 rpm over 180 s with a maximum trial length of 300 s. There were three trials 

per day with a 10-min intertrial interval and five days of testing. The latency to fall was compared.  

A fall was defined as physically falling off the rotarod or slipping in a way that only the front paws were 

still grasping the rod. 

2.4. Novel Object Recognition 

For the first two training days, mice were placed in a plastic, circular arena (61 cm in diameter) for  

10 min of acclimation. For the next two acclimation days, mice were placed in the arena with two practice 

objects placed equidistantly from each other for 10 min each day. The practice objects were distinctly 

different from the objects used in testing and used to reduce neophobia. All objects were heavy enough 

that the mice could not move them and were constructed out of sturdy glass or ceramic materials. Testing 

took place on Day 5 and was monitored by the same observer using a remote camera. Two identical, 

familiarization objects were placed in the arena, and mice were given 10 min to accumulate 30 s of 

exploration of the objects. The percent of time exploring each familiarization object was recorded to 

determine if there was a place preference or left-right bias. Exploration was defined as being within  

1 cm of the object and oriented towards the object. One hour after the familiarization phase, mice were 

placed in the arena with an identical copy of the familiar object and a novel object. The percent of 

exploration time of the novel object out of the total 30 s was recorded. Test and familiarization objects 

were counterbalanced to avoid object preference [24]. 

2.5. Morris Water Maze 

Four phases were used for the Morris water maze (Table 1) with a 122-cm diameter pool filled with  

non-toxic white tempera paint and kept at 22 °C (±1 °C), which are optimal conditions for testing B6  

mice [25]. In the cued phase, mice were placed facing the wall and given 60 s to find a submerged 10-cm 

diameter escape platform that had an orange ball attached to a 10 cm-tall pole in the middle of the 

platform. Day 1 of the cued phase consisted of 6 trials per day with fixed start and platform locations. 

On Days 2–6, mice received 2 trials per day with random start and platform locations. During the cued 

platform phase, curtains surrounding the pool were closed, but opened during the hidden platform phases 

(acquisition, reversal and shift-reduced) to reveal distal visual cues. The escape platform was submerged 

1 cm under the water. For each hidden platform phase, the diameter of the platform was progressively 

smaller (10 cm, 7 cm and 5 cm) and the location was moved for each week of testing. There were six 

days of testing and four trials per day. Each trial had a maximum of 60 s and a 15-s intertrial interval. 

Mice failing to find the platform in 60 s were placed on the platform for 10 s. On Day 7, mice received 

one 30-s probe trial with no platform. Path length, latency to reach the escape platform and swim speed 

were recorded using ANY-maze™ software (Stoelting, Inc., Wood Dale, IL, USA). Platform crossings 

and time in the target quadrant were compared for the probe trials. 
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Table 1. Platform positions and cues for the Morris water maze. 

Schedule Platform Size Platform Location Cues 

Week 1-Cued 10 cm Varies each day Proximal cue on platform 

Week 2-Acquistion 10 cm Southwest Distal cues on walls 

Week 3-Reversal 7 cm Northeast Distal cues on walls 

Week 4-Shift-reduced 5 cm Northwest Distal cues on walls 

2.6. Fear Conditioning 

The fear conditioning protocol was based on a protocol described in Bardgett et al. [26] and  

Yin et al. [27]. Mice were placed in an operant chamber in a sound-attenuating apparatus  

(Med-Associates, St. Albans, VT, USA) for 5 min on the training day. A single observer scored all 

behavior. Freezing behavior, defined as no movement excluding normal respiratory movement,  

was sampled for 2 s every 10 s. An 80-dB tone at 2800 Hz was presented for 20 s after 3 min.  

Mice received a 0.8-mA continuous foot shock at the last second of the tone. The tone and shock pairing 

was repeated every minute for the last 2 min. Mice were removed from the test cage 40 s after the third 

shock and returned to their home cage. The presentation of the conditioned and unconditioned stimuli 

was automated using MED-PC software (Med-Associates). Animals were returned to the original 

operant chamber 48 h after training for contextual fear conditioning. For 8 min, freezing behavior was 

recorded every 10 s by an observer. Twenty-four hours after the contextual fear conditioning phase, 

animals were placed in a white polycarbonate cage approximately the same size as the original operant 

chamber to test for cued fear conditioning. A speaker was placed on top of the testing cage, which emitted 

the same tone used on the training day. Freezing behavior was recorded every 10 s in the test cage.  

After 2 min, the same auditory cue was emitted continuously for the last 8 min. Any freezing behavior 

during this time represented the conditioned response to the auditory cue. Fear conditioning tests were 

only performed on male mice, because the same observer was not available to test the female mice. 

2.7. Statistical Analysis 

Behavioral data for open field locomotor activity, rotarod and the Morris water maze were analyzed 

using SAS 9.2 (SAS Institute, Cary, NC, USA) ProcMixed mixed models analyses of variance 

(ANOVA) with a repeated measures design. Data from males and females were analyzed separately, 

because the experiments were conducted sequentially. Swim speed was used as a covariate (ANCOVA) 

when analyzing the latency to finding the platform in the Morris water maze. In all cases, the best-fit 

model was auto-regressive. When significant differences were found, post hoc analyses were done using 

tests that correct for multiple comparisons. When only two groups were being compared without 

repeated measures, SPSS 19.0 (IBM, Armonk, NY, USA) was used to conduct an independent samples 

t-test. All data are presented as the least square means (ANOVAs and ANCOVAs) or arithmetic means 

(t-tests) ± the standard error of the mean (SEM). 
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3. Results 

3.1. Open Field Locomotor Activity 

C57BL/6J male mice were significantly more active than C57BL/6N males when analyzing total 

beam breaks (Figure 1A) and activity in the central zone (Figure 1B). A different pattern was observed 

in female mice (Figure 1C). B6J females had higher activity in the first 5-min interval, but B6N females 

were more active during the next 20 min. This suggests that B6N females took longer to habituate to the 

test apparatus than the B6J females. 

 

 

Figure 1. (A–C) Open field locomotor. There was a main effect of genotype for males  

(p < 0.01) and a gene × interval interaction for females (F11,418 = 4.97; p < 0.001).  

The B6J males had higher total activity throughout the test session compared with B6N 

males (p < 0.01). The B6J males also had greater activity in the central zone compared with 

the B6N males (p < 0.05). During the first 5-min interval, B6J females were significantly 

more active than B6N females (p < 0.001). The B6N female mice were significantly more 

active during the next three intervals (p < 0.01), and there was a trend for significance  

(p < 0.1) in the fifth interval. Data are the least square means ± S.E.M. * p < 0.5, ** p < 0.01, 

*** p < 0.001. 

  

A. Total activity-males 

* 

B. Central zone activity-males 

** 
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3.2. Rotarod 

There were no significant differences on any of the five days of testing when B6J and B6N males 

were tested; however, B6N males had a greater percent increase in the latency to falling over the  

five-day test compared with B6J males (Figure 2A). B6N males improved 53% by Day 5, whereas B6J 

males only improved 24%. For female mice, there was a significant gene × day interaction (F4,122 = 4.97; 

p = 0.001) (Figure 2B). B6N females had a 76% increase in the latency to falling across the five days of 

testing compared with a 16% increase for B6J females. 

 

Figure 2. (A,B) Rotarod. B6N males showed a greater percent increase in the latency to 

falling from Day 1 to Day 5 of testing compared with B6J males, and there was a significant 

effect of day (F4,144 = 12.75; p < 0.0001). B6N female mice also showed a greater percent 

improvement in the latency to falling over the five days of testing and significantly longer 

latencies to falling on Days 4 and 5. * p < 0.05, ** p < 0.01. Data are the least square  

means ± S.E.M. 

 

Figure 3. (A,B) Novel object recognition. There were no significant differences in the 

percentage of time spent exploring the novel object in male mice or female mice  

(p > 0.05). Data are the means ± S.E.M. 

3.3. Novel Object Recognition 

There were no significant differences in the percent of time exploring either of the familiarization 

objects (left vs. right object). During the test phase, there were no significant differences when comparing 

B. Females 

 

A. Males 

 

B6J 

B6N 

 

B6J 

B6N 

 

A. Males B. Females 
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substrains B6 male (Figure 3A) or female (Figure 3B) performance. All groups of mice spent more time 

exploring the novel object in comparison to the familiar object, indicating that non-spatial learning and 

memory was normal. 

3.4. Morris Water Maze 

There were no significant differences in the cued platform phase for male mice (data not shown).  

We found significant differences in all three phases of hidden platform testing (Figure 4A–C). There 

was a main effect of day in all three phases (p < 0.001) and a gene × day interaction. B6J males had 

significantly shorter latencies on Day 5 of acquisition testing (F1,182 = 4.29; p < 0.05), a trend toward 

significance on Day 6 of reversal testing (F1,148 = 2.76; p < 0.1) and significantly shorter latencies on 

Days 4 (F1,143 = 3.77; p < 0.05) and 5 (F1,143 = 7.29; p < 0.01) of shift-reduced testing after correcting 

for speed as a covariate. B6N males had shorter path lengths in the shift-reduced phase (Figure 5A–C). 

We also found significant differences in swim speed, with B6N males swimming more slowly than B6J 

males (Figure 4D); however, latency differences remained significant even after correcting for this 

covariate. No differences were found in the probe trials for males (Figure 5D). 

 

 

Figure 4. (A–D) Morris water maze latency: males. B6J males had shorter latencies to 

escaping. Swim speed was significantly different in all three phases of hidden platform testing. 
† p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. Data are the least square means ± S.E.M. 

  

† * 
A. Acquisition 

 

B. Reversal 

*** 

** 
* 

C. Shift-reduced 

D. Speed 
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Figure 5. (A–D) Morris water maze path length: males. When analyzing path length,  

there were no significant differences in the acquisition or reversal phases, but a significant 

difference on Days 1–2 in the shift-reduced phase with shorter path lengths in B6N males. 

The number of target crossings during the probe trials was not significantly different for 

males in any of the three phases. * p < 0.5. Data are the least square means ± S.E.M. 

B6J females had shorter latencies on Day 1 of cued platform testing (Figure 6A) compared with B6N 

females, but there were no other significant differences in latency to find the platform on Days 2–6 in 

cued or in any of the three hidden platform phases (data not shown). There was a significant main effect 

of day in all four phases (p < 0.001). When path lengths were compared, there were no significant 

difference during the acquisition phase (Figure 6B). However, B6N females had significantly shorter 

path lengths during the more challenging reversal and shift-reduced phases (F1,122 = 14.34; p < 0.001) 

(Figure 6C,D). B6N females had significantly more platform crossings in the acquisition probe trial 

(F1,38 = 16.21; p < 0.0001), but there were no significant differences in the probe trials for reversal and 

shift-reduced (data not shown). Swim speeds were similar in females, with B6J mice swimming faster 

than B6N females (Figure 7). 

  

* 

* 

C. Shift-reduced 

A. Acquisition B. Reversal 

D. Probe 
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Figure 6. (A–D) Morris water maze: females. B6J females had significantly shorter latencies 

to finding the platform on Day 1 of the cued phase (p < 0.05). Path lengths were significantly 

different on Days 2–5 of the reversal phase and Days 2–4 of the shift-reduced phase with a 

trend on Day 5. † p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. Data are the least square 

means ± S.E.M. 

 

Figure 7. Morris water maze swim speed: females. B6J females swam significantly faster 

than B6N females in all three hidden platform phases. *** p < 0.001. Data are the least 

square means ± S.E.M. 

3.5. Fear Conditioning 

There was no significant difference in the percent of time spent freezing between the B6J and the 

B6N males during the training phase (data not shown) or the context phase test (Figure 8A). Prior to the 

onset of the tone in the cued phase, the B6N males spent a significantly longer time freezing (Figure 8B) 

than the B6J males (p < 0.05). There was no significant difference between the percent time freezing 

between the two substrains during the cued phase (Figure 8C). 

*** 
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Figure 8. (A–C) There were no significant differences in contextual or cued fear 

conditioning. However, B6N males spent a significantly longer time freezing than the B6J 

males when placed in the novel cage used for cued fear conditioning before the tone (cue) 

was presented. * p < 0.05. Data are the least square means ± S.E.M. 

In summary, we found significant behavioral differences in two substrains of C57BL/6 mice 

purchased from the same vendor and have demonstrated that patterns of behavior in male and female 

mice from the B6J and B6N substrains are not identical (Table 2). 

Table 2. Summary of significant findings. 

Behavior Test Function Males Females 

Open field locomotor Baseline activity Higher activity in B6J Slower habituation in B6N 

Rotarod 
Balance and 

coordination 

Greater improvement in B6N 

over five test days 

Significantly longer latencies in B6N;  

greater improvement in B6N over five tests days 

Novel object 

recognition 

Non-spatial learning  

and memory 
No significant differences No significant differences 

Morris water maze 
Spatial learning  

and memory 

Shorter latencies to escape in 

B6J; faster swim speeds in 

B6J; shorter path lengths in 

shift-reduced in B6N 

Shorter path lengths in reversal and shift-reduced 

in B6N; faster swim speeds in B6J 

Fear conditioning Fear learning 
More freezing in cued phase 

before tone by B6N 
Not tested 

4. Discussion 

After sequentially testing male and female mice of the B6J and B6N substrains, we found that B6J 

males were more active in open field locomotor activity compared with B6N males, replicating the 

findings of Matsuo et al. [7]. B6J females were more active during the first 5-min interval, but habituated 

to the chambers more quickly than B6N females. Bothe et al. [28] examined locomotor activity  

during the dark cycle in male and female B6J and C57BL/6NTac mice, reporting higher activity in B6J 

females compared with B6J males and no sex differences for the B6Ntac substrain. All four groups 

showed normal habituation. Further work is needed to explore the effects of circadian rhythms in the 

two substrains. 

B6N males showed greater improvement (53 vs. 24 percent) over five days of rotarod testing, but the 

differences in latency to falling were not significant on any individual test day. In contrast, B6N females 

had significantly longer latencies to falling on the final two days of testing and improved 76% over the 

* 

A. Context phase 

 

B. Cued phase-no tone C. Cued phase w/tone 
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five days of testing compared with only 16% improvement in B6J females. Interestingly,  

Bothe et al. [28] also reported better performance in females compared with male B6 mice and greater 

improvement over three days of testing in C57BL/6NTac mice using a top speed of 15 rpm. In contrast,  

both Matsuo et al. [7] and Bryant et al. [15] reported longer latencies for B6J males using a top speed of 

40 and 60 rpm, respectively. This suggests that the difficulty of the test and the length of testing can alter 

the results for the rotarod. 

There were no significant differences in novel object recognition, indicating no difference in 

hippocampal-dependent, non-spatial visual learning and memory. B6J males had shorter latencies in the 

Morris water maze in the more difficult reversal and shift-reduced phases after correcting for swim 

speed; however, B6N males had shorter path lengths on the first two days of the shift-reduced phase. 

B6J females had shorter latencies to finding the platform on the first day of the cued platform, but B6N 

females had shorter path lengths in both the reversal and shift-reduced hidden platform phases and more 

platform crossings in the acquisition probe trial. Both male and female B6J mice had significantly faster 

swim speeds than their B6N counterparts. This is consistent with their initial higher activity in locomotor 

activity and previous findings [7]. Our findings differ from those of Clapcote and Roder [29],  

who compared females from eight strains of mice, including B6J and B6NTac, and reported longer 

latencies and cumulative distance in the acquisition and reversal phases in B6NTac females and no 

difference in swim speed. This suggests the source of the mice could impact results in tests of spatial 

learning and memory, since our B6N mice came from a different vendor. Alternatively, differences in 

handling are also known to affect the performance of B6 mice in the Morris water maze [30].  

We found no difference in contextual or cued fear conditioning, although B6J males showed less 

freezing when exposed to the new chamber used in the cued test compared with B6N males. This is 

similar to the findings of Bryant et al. [15], who reported significantly more freezing in B6N males 

during the contextual phase and significantly less freezing by B6J males during the altered context,  

but before the cue was given. Bryant also tested pain sensitivity using a hot plate and tail withdrawal test, 

reporting that B6J mice had shorter latencies to respond. This indicates that pain sensitivity is not the 

driving factor for the observed differences in fear conditioning. 

Physiological differences across B6 substrains have been reported, as well as the genetic 

polymorphisms and behavioral differences noted earlier. These should also be of interest to those 

conducting neurobehavioral studies, because they could confound the results of tests requiring stamina, 

such as the rotarod, Morris water maze and the Porsolt forced swim test. Garcia-Menendez [31] reported 

differences between B6J and B6N males in response to cardiac overload, while Vaillant et al. [32] 

reported significantly greater cardiac output, cardiac power and heart rate in male B6NCrl compared 

with male B6J. Tests of visual acuity could be affected by rd8 mutations in the Crb1 gene found in B6N 

mice [33], although all B6 mice are susceptible to ocular disorders, such as microphthalmia [34]. 

Metabolic differences could explain the differences in the rates of alopecia and skin lesions in B6 

substrains. Sundberg et al. [35] found that retinoic acid metabolism was upregulated in B6J and B6Tac 

substrains, but not in the resistant B6Crl or B6NCr substrains. Differences in the background substrain 

changed the outcome in a study on acetaminophen toxicity in JNK2 knockout mice [18]. Others have 

reported differences in airway responsiveness in B6 substrains ordered from different vendors, but at 

least some of the observed differences disappeared after an F1 generation was raised, suggesting that 

environmental factors were more important than genetic ones [36]. 
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Although there are fewer studies on other strains of rodents, substrain differences consistently appear 

when other lines are compared. Examples include the 129 strain, which is frequently used as a source of 

embryonic stem cells [37,38]. Eisner-Dorman et al. [39] demonstrated that remnant 129 genes can 

influence behavioral phenotypes, even when mice are back-crossed extensively to a B6 background. The 

129S6/SvEv substrain is important as a potential mode for schizophrenia, because there is a spontaneous 

deletion in the DISC1 gene (disrupted in schizophrenia-1) [40]. Gómez-Sintes et al. [41] found that a 

129-B6J DISC1Del hybrid produced a more robust phenotype than mice with the deletion on a pure B6 

background. Therefore, in some cases, increased genetic variability is beneficial to neurobehavioral 

research and the identification of gene-gene interactions. 

Ultimately, the value of mouse models in developmental neurotoxicology studies will be realized 

when we are able to identify allelic differences and gene-environment interactions that alter normal 

neurodevelopment and neurological function in humans. The promise of these studies remains high,  

but as Kiselycznyk and Holmes [42] correctly noted, both epistatic interactions and penetrance can be 

affected by subtle genetic differences across substrains of mice. A case in point is the recent finding of 

SNPs in the BDNF gene that impair the effectiveness of anxiety treatments. Unfortunately,  

Soliman et al. [43] did not report the substrain nor vendor for the B6 mice used in those studies.  

Our work and that of others [2,5,7,15,28] strongly suggest that this information will be essential to 

replicating and interpreting data from studies using inbred mice, whether those mice are B6 or from 

another widely-used strain, such as 129 [37,38]. 

5. Conclusions 

The behavioral phenotypes of B6J and B6N mice are not identical, and sex differences can further 

confound the interpretation of behavioral tests. Therefore, results from one sex should never be 

extrapolated to the other. Substrain choice should be taken into consideration when choosing the 

background strain for genetically-modified mice and reported to alert other investigators about potential 

gene-gene interactions. Inbred mouse strains and substrains will continue to be useful for identifying 

genetic pathways involved in neurological function and neurodevelopment. The availability of less 

expensive sequencing techniques increases the likelihood that informative SNPs in both coding and  

non-coding regions will be found to explain the observed phenotypic differences. Comparing substrains 

provides a unique opportunity to identify genetic differences associated with these behavioral 

differences, since the number of genetic differences is smaller than comparing one inbred strain to 

another or F1 hybrids. In summary, our findings demonstrate the importance of testing both males and 

females in neurobehavioral and neurotoxicological studies and highlight the importance of identifying 

the specific substrain and vendor used for all rodent experiments. 
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