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Abstract Purpose: Accurate estimates of risk are essential for physicians if they are to recommend a
specific management to patients with prostate cancer. Accurate risk estimates are also required
for clinical trial design, to ensure homogeneous patient groups. Because there is more than one
model available for prediction of most outcomes, model comparisons are necessary for selection
of the best model.We describe the criteria based on which to judge predictive tools, describe the
limitations of current predictive tools, and compare the different predictive methodologies that
have been used in the prostate cancer literature.
Experimental Design: Using MEDLINE, a literature search was done on prostate cancer
decision aids fromJanuary1966 toJuly 2007.
Results: The decision aids consist of nomograms, risk groupings, artificial neural networks,
probability tables, and classification and regression tree analyses. The following considerations
need to be applied when the qualities of predictive models are assessed: predictive accuracy
(internal or ideally external validation), calibration (i.e., performance according to risk level or in
specific patient subgroups), generalizability (reproducibility and transportability), and level of
complexity relative to established models, to assess whether the new model offers advantages
relative to available alternatives. Studies comparing decision aids have shown that nomograms
outperform the other methodologies.
Conclusions: Nomograms provide superior individualized disease-related risk estimations that
facilitate management-related decisions. Of currently available prediction tools, the nomograms
have the highest accuracy and the best discriminating characteristics for predicting outcomes in
prostate cancer patients.

Approximately 680,000 men are diagnosed with prostate
cancer worldwide each year (1). In the Unites States, this
cancer is the most common solid malignancy and the second
leading cause of cancer death in men (2). Accurate estimates of
the likelihood of treatment success, complications, and long-
term morbidity are essential for patient counseling and
informed decision making. Properly informing the patient of
the likelihood of success and morbidity will improve patient
satisfaction after treatment (3), particularly when complica-
tions arise (4). Accurate risk estimates are also required for
clinical trial design, to ensure homogeneous patient groups for
whom new cancer therapeutics will be investigated.

Traditionally, physician judgment has formed the basis for
risk estimation, patient counseling, and decision making.
However, humans have difficulty with predicting outcomes
due to the biases that exist at all stages of the prediction process

(5–7). Another mode for risk estimation commonly used by
clinicians and patients consists of the use of averages for risk or
patient categories. With this method, all patients that are
included within one category are given the same risk level.
Although, the risk may vary within a given risk stratum, this
approach offers no possibility for individualization.

To obviate this problem and to obtain more accurate
predictions, researchers have developed predictive (probability
of an outcome without considering the effect of time) and
prognostic (probability of an outcome over time) tools that are
based on statistical models. In general, these models have been
shown to perform as well as or better than clinical judgment
when predicting probabilities of outcome (8). Within the last
5 years, the number of these predictive tools has increased
dramatically. Because there is more than one model available
for prediction of most outcomes, model comparisons are
necessary to identify the most suitable model for a specific
application. In this article, we describe the criteria based on
which to judge predictive tools. We then describe the
limitations of current predictive tools and compare the different
predictive methodologies that have been used in the prostate
cancer literature (Table 1).

Evaluating PredictiveTools

Decision aids consist of the nomograms (9, 10), risk
groupings (11–14), artificial neural networks (ANN; ref. 15),
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probability tables such as the most widely known and applied
‘‘Partin staging tables’’ (16, 17), and classification and
regression tree (CART) analyses (18, 19). Despite the apparent
differences of these prediction tools, their characteristics can be
compared using a common approach. The points of compar-
isons are based on four characteristics: predictive accuracy,
performance characteristics according to risk level, generaliz-
ability, and level of complexity.

Predictive accuracy. Accuracy quantifies the ability of the
model to discriminate between patients with and without the
outcome of interest. The accuracy of the model represents
the most important consideration for comparison of different
models. Determination of the accuracy of the model requires
the application of the model under novel testing conditions
different from the development cohort. In the absence of
an external cohort, models can be subjected to internal
validation. Bootstrapping represents the ideal internal valida-
tion format, where the development data set is used to simulate
model testing under novel conditions (20–24). Split-sample
and crossvalidation (leave-one-out validation) represent
alternatives (23).

Different metrics can be used to quantify the accuracy of the
model. The receiver operating characteristic area under the
curve quantifies the accuracy of binary models that do not rely
on censored observations. Conversely, the concordance index
applies to models that rely on censored data. The concordance
index quantifies the probability that, given two randomly
drawn patients, the patient who relapses first had a higher
probability of the event of interest.

Calibration. The accuracy of the model indicates the overall
ability to predict the outcome of interest. However, overall
accuracy does not indicate the ability of the model to predict
the outcome of interest in specific patient groups or according
to risk level. For example, a model that is 80% accurate may
predict virtually perfectly well in high-risk patients but may
show dismal performance in low-risk ones. The relationship
between predicted risk and observed rate of the outcome of
interest should be provided for each new model, along with its
overall accuracy. Calibration plots provide this type of
information and can be obtained for internal as well as
external data (20, 22–25).

Generalizability. Due to differences in the patterns of early
detection and in the extent of screening, the characteristics of
newly diagnosed prostate cancers might not be the same across

populations (26). These population differences may undermine
the accuracy of predictive and prognostic models. Moreover,
models may perform better in patients who share a specific
characteristic but may show significantly worse performance
characteristics in other patients. Therefore, it is imperative
that the clinician knows whether a specific model is indeed
generalizable to the population they intend to apply it to
(20, 22–25).

Level of complexity. The level of complexity of a predictive or
prognostic model represents an important practical consider-
ation. Excessively complex models, ones that rely on multiple
variables, are clearly impractical in busy clinical practice.
Similarly, models that rely on variables that are not routinely
available are impractical.

Head-to-head comparison. When judging a new tool, one
should examine its predictive accuracy, validity, and perfor-
mance characteristics relative to established models, with
the intent of determining whether the new model offers
advantages relative to available alternatives (21, 23, 24,
27–30). Head-to-head comparisons represent the most direct
and unbiased comparison of objective attributes (accuracy and
performance characteristics) of various models. Subsequently,
complexity, generalizability, and other considerations can be
compared. With this approach, the alternatives are compared
directly, without having to judge the concordance index in
isolation or against a possibly arbitrary threshold.

The main steps required in a head-to-head comparison
consist of the application of the original model to a common
external data set that will serve for testing of all models that will
be compared with one another. The regression coefficients,
taken from the original model, are then applied to each
individual observation to derive probabilities (if logistic
regression was originally used) or to define the linear predictor
(if Cox regression was used). Either metric is then tested against
observed rates of the outcome of interest. This results in
accuracy that is defined as either the area under the curve or the
c-index, respectively, for binary outcomes or for censored data.
These steps are repeated for each of the tested models.

A common mistake consists of refitting a new model that
relies on the same variables as the original model and calling it
the original model. A second common mistake is to perform an
internal validation (for example the development data set is
used for bootstrapping) and to interpret it as an external
validation.

Table 1. Techniques for the development of a clinical prediction model or rule

Technique Advantages/strengths Disadvantages/limitations

Univariate analysis Simple statistical methods Reduced accuracy
Easy clinical application

Multivariable analysis
(e.g., logistic regression)

Improved accuracy More involved statistical methods

Relatively ease of clinical application May miss complex variable relationships
Neural network Improved accuracy Difficult clinical application and dissemination

Incorporation of complex variable relationships Less intuitive
Unknown effect of any single variable

Nomogram Improved accuracy Advanced statistics
Ease of clinical application

CART analysis Improved accuracy Advanced statistics
Ease of clinical application
Intuitive partitioning
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Limitations of Predictive and Prognostic Tools

Besides obvious limitations related to accuracy, performance
characteristics, generalizability, and the level of complexity, the
most common potential additional limitations of currently
available predictive and prognostic tools may be classified in
one or several of the following categories:

Study selection criteria. Specific model criteria, such as
inclusion and exclusion criteria, do not allow the use of
models for patients with different characteristics or who have
been exposed to different treatment modalities. For example, if
a model development cohort excluded patients treated with
neoadjuvant hormonal therapy, then predictions cannot be

made for such patients. Similarly, models developed in patients
treated with external beam radiotherapy cannot be applied
to patients treated with brachytherapy, intensity-modulated
radiotherapy, or any other treatment modality no matter how
similar they might seem.

Change over time of the predictive value of model ingredients.
Stage and grade migration represent important phenomena
that affect cancer control rates. In general, more contemporary
prostate cancer patients are diagnosed with more favorable stage
and grade. In consequence, tools require periodic reappraisals
in contemporary cohorts to ensure temporal validity.

Adjustment for competing risks. Because of the protracted
course of prostate cancer, competing causes of mortality are

Fig. 1. A, preoperative nomogram estimating the1- to
10-year biochemical recurrence-free probability after radical
prostatectomy alone. B, calibration plot of the nomogram in
external validation.The 45j line represents an ideal model in
which estimates of recurrence are perfectly calibrated with
outcome.Vertical bars, 95% confidence intervals for quintiles
in the validation set. Reprinted with permission of the
Oxford University Press from Stephenson et al. (35).
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extremely important in this patient population (31). Therefore,
there is a need for competing-risk modeling to better situate the
risk of prostate cancer in the framework of other cause
mortality. Such predictions are important to clinicians as well
as to patients, especially when overtreatment or suboptimal
treatment considerations are addressed. To date, the only
modeling tool that allows adjustment for competing risks is the
nomogram (32, 33).

Conditional probabilities. Because the risk of disease pro-
gression improves with increasing disease-free interval, ab-
sence of adjustment for disease-free interval presents the
clinician with an excessively somber estimate of cancer control
over time. To date, the only modeling tool that allows
adjustment for competing risks is the nomogram (Fig. 1;
refs. 34, 35).

Nomograms

The statistical definition of a nomogram is a graphical
representation of a mathematical formula or algorithm that
incorporates several predictors modeled as continuous varia-
bles to predict a particular end point based on traditional
statistical methods such as multivariable logistic regression or
Cox proportional hazards analysis (Fig. 1; refs. 10, 35, 36). By
using continuous scales, nomograms calculate the continuous
probability of a particular outcome. This obviates the effect of
spectrum bias that might be operational, when predictors are
stratified. Spectrum bias consists of a forced central effect that is
applied to the entire range of observations that decrease within
the limits of a given category.

Cubic splines represent one of the strengths of nomogram
modeling. Like in neural networks, where all shapes of
variables are used, cubic splines allow for nonlinear effects of
predictor variables (37). Moreover, nomograms are perfect
examples of a predictive or prognostic application that allows
graphical representation of variable interactions and depiction
of their combined effects.

Comparison of Nomogramswith Other Prediction
Tools

As more than one model is available for prediction of most
outcomes, model comparison is necessary for selection of the
best model. Below, we compare the different predictive
methodologies that have been used in the prostate cancer
literature. Because there is no study comparing the different
prediction methods based on prospective data, comparisons are
based on retrospective data.

Nomogram versus risk grouping. Physicians often use risk
groups to determine the risk of an event. This approach consists
of grouping patients with similar characteristics to discriminate
between those at low-risk versus those at high-risk for a specific
event. Although risk grouping is a logical approach, grouping
patients is an inefficient use of the data and tends to reduce
the predictive accuracy of a prognostic model (spectrum bias).
The misconception related to this approach is that it assumes
that all patients within a risk group are equal. However, risk
group comprise a heterogeneous group of patients. For
example, some patients with clinical stage T1c may have a very
favorable prognosis [low prostate-specific antigen (PSA) and
biopsy Gleason score of 4-6], whereas others may show less
favorable characteristics (elevated PSA and Gleason score of
7-10; ref. 13).

A commonly used risk grouping tool is that developed by
D’Amico et al. (11) for pretreatment prediction of biochemical
recurrence in patients treated with radical prostatectomy,
external-beam radiotherapy, or brachytherapy by placing
patients into mutually exclusive risk groups based on clinical
stage, biopsy Gleason sum, and pretreatment PSA level (12–14,
38–42). When predicting the outcome for a subset of patients,
the relative importance of prognostic variables in another
patient group is ignored. In addition, risk grouping requires the
conversion of continuous to categorical variables, which limits
information about the actual value.

Various studies have documented the superior performance
of nomograms compared with risk grouping (21, 27, 28,
30, 43–45). This might stem from the fact that risk groups
consist of patients with similar (albeit not identical) character-
istics, resulting in heterogeneity within a risk group that reduces
the predictive accuracy (28, 45–47). In contrast to risk groups, a
nomogram provides an individualized estimate of the predicted
probability of the event of interest, which is entirely based on
the individual’s disease characteristics, without averaging or
combining within a category. The heterogeneity inherent in risk
groups is illustrated in Fig. 2 (10, 41, 48), where the 5-year
recurrence-free probability after radical prostatectomy was
calculated using a continuous, multivariable preoperative
nomogram among patients classified as low-, medium-, and
high-risk using the criteria of D’Amico et al. (41). Although low-
risk patients uniformly had a high likelihood of being free of
biochemical recurrence based on the probability calculated
using the nomogram, a substantial proportion of intermediate-
and even high-risk patients had a calculated 5-year recurrence-
free probability of z90%. Moreover, a considerable overlap in
the risk grouping predictions was evident among intermediate-
and high-risk patients.

A risk group is composed of a mixture of patients and is only
useful for gauging the prognosis for that group of patients. An
individual patient might not be concerned about the outcomes

Fig. 2. Preoperative nomogram predicting the 5-year recurrence-free probability
after radical prostatectomy (60) for patients classified as low-, intermediate-, or
high-risk by D’Amico et al. (41) Reprinted with permission from Mitchell et al. (48).
Copyright Elsevier 2005.
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of his (heterogeneous) group peers. Instead, patients are
interested in their own prognosis. Moreover, by incorporating
all relevant and informative predictors, nomograms provide
more accurate predictions than models based on risk grouping
(Kattan, 2001 #4388; Meehl, 1986 #3577; refs. 21, 27, 28,
30, 43–45). Although nomograms are more complex than risk
groups, this added complexity results in a better predictive
accuracy for both patients and physicians. Moreover, the
complexity can be offset, when the electronic versions of
nomograms are used.

Finally, the method of counting risk factors/variables should
also be avoided because this assumes that each variable exerts
an equal prognostic weight on the outcome, which is unlikely
to represent the true relationship between variables and
prognosis (49–51).

Nomogram versus look-up table. The superior predictive
accuracy of multivariable nomograms that rely on variables
in their unaltered formats (continuous or categorical) versus
look-up tables is illustrated by comparing nomograms with
the ‘‘Partin tables’’ (16, 17, 52) predict pathologic features.
The Partin tables combined serum PSA level (four categories),
clinical stage (seven categories), and biopsy Gleason sum
(five categories) to predict the pathologic stage of prostate
cancer that is assigned as one of four mutually exclusive

groups, i.e., organ-confined, established extracapsular exten-
sion only, seminal vesicle invasion, and lymph node
involvement. These tables underestimate the probability of
established extracapsular extension as a substantial propor-
tion of patients with lymph node metastases and seminal
vesicle invasion will also have established extracapsular
extension. Therefore, several studies found that nomograms
incorporating PSA level, clinical stage, and Gleason sum
modeled as continuous variables had a superior predictive
accuracy compared with the Partin tables for predicting
organ-confined disease, seminal vesicle invasion, and lymph
node invasion (21, 27, 53–57).

Another example of the superiority of nomograms over look-
up tables has been shown by Chun et al. (30, 58). They showed
that a logistic regression-based nomogram that included
preoperative PSA, clinical stage, primary, and secondary biopsy
Gleason grades had an accuracy of 80.4% for prediction of the
probability of Gleason sum upgrading between biopsy and
radical prostatectomy. In contrast, a previously published
look-up table (59) based on preoperative PSA, clinical stage,
and prostate gland volume had an accuracy of only 52.3%
(P < 0.001). In addition, the nomogram had a virtually ideal
performance, whereas the look-up table had important
departures from ideal prediction. Taken together, these findings

Fig. 3. Four-year actuarial progression-free probability after salvage radiotherapy. Progression-free probability (PFP) stratified by Gleason sum, preradiotherapy PSA
level, surgical margins, and PSA doubling time (PSADT). Patients receiving neoadjuvant androgen deprivation therapy (ADT) were excluded from this analysis. All values in
parentheses are 95% confidence intervals. RT, radiotherapy. Reprinted with permission from Stephenson et al. (60), JAMA 2004;291:1325^32. Copyright#2004. American
Medical Association. All rights reserved.
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support that nomograms are more accurate than look-up tables
and perform better throughout the range of predicted
probabilities.

Nomogram versus tree analysis. CART analysis is another
type of predictive model that uses nonparametric techniques to
evaluate data. It has the capacity to account for complex
relationships, and presents the results in a clinically useful
form. In this type of analysis, there is progressive splitting of the
population into subgroups that are based on the predictive
independent variables. The variables that are chosen, the
discriminatory values of the variable, and the order in which
the splitting occurs are all produced by the underlying
mathematical algorithm to maximize predictive accuracy. A
simplified example of a CART-recursive partitioning based
on Cox proportional hazards regression analyses is shown in
Fig. 3 (60). In this analysis, the clinician simply follows the
paths of the tree that best describe the characteristics of
the patient being evaluated and arrives at the prediction of
the outcome of interest for that particular patient.

Tree analysis is relatively easy to use for the clinician. First, in
contrast to many logistic regression models, there are no
complicated equations. The structure of the tree is one that is
appealing intuitively and congruent with methods of decision-
making that a physician already uses on many occasions. For
example, in trying to understand the best diagnostic test or
treatment for a given patient, clinicians will use specific patient
characteristics to determine progressively which modalities are
most appropriate or which outcomes are most likely. The CART
not only uses this type of logic but also provides a formal
structure and quantitative outcome assessment that can
optimize the actual clinical decision.

Thus, CART offer greater model-fitting flexibility than
traditional statistical methods (61), and theoretically might
lead to enhanced predictive accuracy if data sets contain highly
predictive nonlinear or interactive effects. However, there are
several issues to consider when deciding whether to use CART
analysis. It is often important to estimate the overall effect of a
single independent variable on the outcome of interest. This is
especially true in studies with specific hypotheses about the
effects of an independent variable or group of variables on the
outcome. Because CART analysis is intended to identify distinct
population subgroups, its hierarchical nature does not allow
the estimation of net effects of a single variable (62). Regression
techniques, however, are largely used to estimate the ‘‘average’’
effect of an independent variable on the probability of having a
dependent variable while accounting for others factors. Thus,
CART analysis cannot be used as a substitute for proven
regression techniques in this type of situation. Moreover, CART
analysis can become very complex and difficult to interpret.
Trees can grow into multiple levels and thereby result in splits
that are not particularly important.

Several studies have shown that traditional statistical
methods perform better than CART analysis. For example,
using three real world data sets, Kattan (21) found that Cox
proportional hazards regression model provided superior
predictive accuracy than four tree-based methods. Similarly,
Chun et al. (29, 50, 58) compared a CART analysis (19) with a
nomogram (63, 64) for prediction of the side of extracapsular
extension (30). The nomogram yielded a predictive accuracy
of 84% versus 70% for the CART model. Moreover, the
nomogram calibration plot was virtually ideal, whereas the

CART calibration plot had appreciable divergence from ideal
prediction. Thus, the nomogram was statistically significantly
more accurate than the CART model and did better throughout
the range of predicted probabilities.

Nomogram versus ANNs. In the last 10 years, a new class of
techniques known as ANN has been proposed as a supplement
or alternative to standard statistical techniques. For the purpose
of predicting medical outcomes, an ANN can be considered a
computer intensive classification method. It is a computational
method that uses multifactorial analysis. It contains layers of
richly interconnected computing nodes, for which weights are
adjusted when data are presented to the network during a
‘‘training’’ process. Successful training can result in ANNs that
predict output values or recognize patterns in multifactorial
data (65). Theoretically, an ANN should have considerable
advantages over standard statistical approaches. Neural net-
works automatically allow arbitrary nonlinear relations be-
tween the independent and dependent variables and all
possible interactions between the dependent variables. Stan-
dard statistical approaches (e.g., logistic or Cox regression)
require additional modeling to allow this flexibility. In
addition, ANNs do not require explicit distributional assump-
tions (such as normality). These and other proposed advan-
tages have generated considerable interest in the use of neural
network techniques for the classification of medical outcomes.

However, ANNs are not without drawbacks. The primary
disadvantage of an ANN is its black box quality, that is, without
extra effort, it is difficult if not impossible to gain insight into a
problem based on an ANN model. Regression techniques, for
example, allow the user to sequentially eliminate possible
explanatory variables that do not contribute to the fit of the
model. Similarly, based on the underlying statistical theory,
regression techniques allow hypothesis testing regarding both
the univariate and multivariate association between each
explanatory variable and the outcome of interest. Furthermore,
it yields other insights into the prediction model, such as
hazard ratios and tests of significance for the predictors. These
features are not available for ANN. Moreover, regression
analysis offer the added advantage of reproducibility and
interpretability through the generation of hazard ratios and
tests of significance for the predictors (21). The same result is
achieved each time it is run on a particular data set, which is
not necessarily true for machine learning techniques because
they use random processes for sampling and/or coefficient
estimation. In addition, regression analyses are common in
many statistical software packages and are relatively fast to
perform.

Based on a review of 28 studies comparing ANN and
regression modeling, Sargent (66) concluded that ANN should
not replace standard statistical approaches as the method of
choice for the classification of medical data. In the eight largest
studies (sample size, >5,000), regression and ANN tied in seven
cases, with regression winning in the remaining case. In the
more moderate-size data sets, ANN tended to be equivalent or
outperform regression, although it is unclear whether this is an
artifact due to publication bias. The author pointed out that the
regression methods are clearly superior to the ANN with respect
to inferences based on the output. Inference and interpretation
are frequently key desired outcomes of a modeling exercise. In
addition to insight into the disease process, regression models
provide explicit information regarding the relative importance
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of each independent variable. This information can be valuable
in planning subsequent interventions, in eliminating possibly
unnecessary tests and procedures (such as blood or tissue
studies that are shown not to relate to the outcome of interest),
and in determining which are the most critical data to store in a
database.Similarly, in a review of the literature, Schwarzer et al.
(67) concluded that machine learning methods often have
failed to perform better than traditional statistical methods
outlining numerous design flaws in the studies that show the
superiority of neural networks. For example, on numerous
occasions, the neural network was provided with additional
data not available to the statistical method. In addition, many
different neural networks were compared with a single
statistical model, possibly contributing to a chance finding. In
some cases, the wrong statistical model was used as the
benchmark.

Terrin et al. (68) did a simulation study that compared the
external validity of logistic regression analyses, CART, and ANN
on data simulated from a specified population and on data
from perturbed forms of the population not representative of
the original distribution. They found that logistic regression
models had the best performance followed by ANNs, and then
CARTs. Similarly, using three real-world data sets, Kattan (21)
found that Cox proportional hazards regression model
provided comparable or superior predictive accuracy than two
neural networks. Likewise, Chun et al. (29) compared an ANN
(69) with a nomogram (70) for predicting initial biopsy
outcome in a cohort of 3,980 patients subjected to at least
an 8-core initial biopsy. The nomogram (70.6%) was 3.6%
(P < 0.001) more accurate than the ANN (67.0%). The
nomogram calibration plot gave virtually ideal predictions.
Conversely, the ANN had important departures from ideal
predictions, which were manifested by underestimation
throughout the range of predicted probabilities. These exam-
ples of direct comparison between nomograms and ANNs on
the same data set support that nomograms are statistically
significantly more accurate and better calibrated than ANNs.

Conclusions

The above discussion is meant to provide guidelines in the
process of decision aid selection. Continuous, multivariable
models such as nomograms are a highly appealing means of
calculating accurate predictions with or without the use of a
computer. Many nomograms have been constructed for
patients with prostate cancer. Nomograms currently represent
the most accurate and discriminating tools for predicting
outcomes in patients with prostate cancer. When faced with
the difficult decision of choosing among the treatment options
for each clinical stage of prostate cancer, the nomograms
provide patients with accurate estimates of outcomes. Equipped
with this information, the patient is more likely to be confident
in his treatment decision and less likely to experience regret in
the future. However, it should be emphasized that nomogram
predictions must be interpreted as such; they do not make
treatment recommendations or act as a surrogate for physician-
patient interactions, nor do they provide definitive information
on symptomatic disease progression or complications associat-
ed with treatments.

Many more nomograms, as well as improvements to existing
nomograms, are needed. For example, none of the nomograms
predicts with perfect accuracy. Novel biomarkers, larger data
sets, better data collection methods, and more sophisticated
modeling procedures are needed to improve predictive accura-
cy. In addition, better accuracy might be accomplished by
modeling physician and/or hospital-specific data for patients
being treated by that physician or at that hospital. Finally,
nomograms that predict the likelihood of metastatic progres-
sion, cancer-specific mortality, and long-term urinary and
sexual function are likely to have great utility for the patient
and physician when exploring treatment alternatives.
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