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Abstract – The ground moving target indicator
(GMTI) radar sensor plays an important role in
situation awareness of the battlefield, surveillance,
and precision tracking of ground targets. The
extended Kalman filter (EKF)  is usually used either
alone or in the Interacting Multiple Model (IMM)
framework to solve nonlinear filtering problems. Since
the GMTI measurement model is nonlinear, the use of
an EKF is not the best solution. The particle filter
(PF) has been shown recently as a robust algorithm
for a wide range of nonlinear estimation problems.
The disadvantage of particle filters is the high
computational load. In this paper, we compare the
performance of the EKF and PF for the GMTI
measurement problem using the  nearly constant
velocity (NCV) model in two dimensions. We analyze
the differences in the performance of the EKF and PF
using simulated data..

Keywords: Nonlinear Filtering, Extended Kalman
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1 Introduction

Airborne surveillance of ground moving vehicles and
helicopters  using the Ground Moving Target Indicator
(GMTI) radar sensor was proved extremely successful
during the 1991 Gulf War [1]. Measurements from a
GMTI radar are range, azimuth, and range-rate. The
GMTI measurements are nonlinear functions of the
target state, which includes the position and velocity.
The objective of the GMTI tracking is to estimate the
state of a target sequentially by processing  GMTI
measurements from one or more sensors. The state
estimation problem is nonlinear due to the nonlinear
GMTI measurement model. The Bayesian  approach
[2],[8]-[15] provides a rigorous framework for
estimating the state of a target in general conditions. In
the Bayesian approach, the conditional posterior
density of the state given the measurements is
computed recursively.  However, closed form solutions
cannot be obtained in all cases. If  the dynamic and
measurement models are linear and the probability

distributions are Gaussian, then the Kalman filter (KF)
represents an optimal estimator in the Bayesian
framework. When the dynamic or measurement model
is nonlinear or the distributions are non-Gaussian,
numerical solutions using the Bayesian approach are
required  [8]-[15].

The extended Kalman filter (EKF) [2]-[6] and
Interacting Multiple Model (IMM) filter [6],[7] are
widely used as approximate filters for nonlinear
filtering problems. In recent years, the particle filter
(PF) [8]-[15]  has proven to be a robust and
numerically efficient approach for nonlinear filtering
problems. Pioneering work using the PF for the
tracking problem was performed by Gordon, Salmond,
and Smith in [8]. Challa presents an excellent review of
the applications of the PF to a wide range of tracking
problems in [14]. In this paper, we compare the
performances of the EKF and PF using the GMTI
measurements.

The Cartesian coordinates for position and velocity are
commonly used to represent the target state for most
ground target tracking problems.  A topographic
coordinate frame (TCF) [3] with origin at a given point
on the WGS 84 reference ellipsoid and axes along the
local East, North, and upward directions is used for
tracking ground targets. Motion of vehicles on the
surface of the Earth is more complex than air targets
due to the three-dimensional terrain and motion
constraints impose by the terrain and road networks. In
order to keep our analysis simple, we ignore the motion
of the target on the 3D terrain and the effects of road
networks.  We assume that the target moves in the XY
plane with a nearly constant velocity (NCV) motion
and the radar sensor moves with constant velocity at a
fixed height above the XY plane.

Sections 2 and 3 present the dynamic model and GMTI
measurement models, respectively. In the EKF,
linearization is usually performed about the predicted
state.  The measurement-updated state can be further
improved by iteratively  computing the updated state ,
measurement gradient matrix, gain , and measurement



updated covariance matrix. EKF with this extension is
known as the iterated EKF (IEKF) [5],[6].  In order to
gain a clear understanding of the PF algorithm it is
necessary to understand the general recursive Bayesian
framework[8],[9],[12],[14]. We describe the algorithms
for the IEKF, general recursive Bayesian estimation,
and PF in Sections 4, 5, and 6, respectively.  Sections 7
and 8 present numerical results and conclusions.

2 Kinematic Model

We consider the nearly constant velocity (NCV)
motion of a target in the XY plane. Let nt ℜ∈)(x
denote the state of the target at time t. The state
consists of the position and velocity:
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The continuous time dynamics of the state for the NCV
motion is described by [5]
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and )(tw  is known as the process noise. We assume

2,1),( =itwi  as zero-mean white noise accele rations:
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where 2,1, =iqi  are the power spectral densities of the
process noise.

Let )(: kk txx =  denote the discrete time state of the

target at time kt .  Discretization of (2-2) gives [5],[6]
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where ),(:)1,( 1−Φ=−Φ kk ttkk  is the state transition

matrix and ),(:)1,( 1−=− kk ttkk ww  is the integrated
process noise. The state transition matrix and the
integrated process noise for the NCV motion are given
by
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)1,( −kkQ  is the covariance of the  process noise with

the following form:
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3 GMTI Measurement Model

A GMTI radar sensor measures the range )(r , azimuth
( )α , and range-rate )(r&  of a target. The GMTI
measurement model at time k  is described by [3]

,),()13( kkkk vsxhz +=−

where  3ℜ∈ks  and 3ℜ∈kv  are sensor position and

measurement noise at time k , respectively:
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 We assume the sensor position ks  as error-free. We

assume that kv is a zero-mean independent Gaussian

noise with diagonal covariance kR :
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Dropping the subscript k , the GMTI measurement
model is described by
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4 Iterated Extended Kalman Filter
(IEKF)

Linearization is usually performed about the predicted
state 1|ˆ −kkx  at time k .  The measurement-updated

state kk|x̂ can be further  improved by iteratively

computing the updated state ,ˆ |kkx  measurement

gradient matrix ,kH gain ,kK  and measurement

updated covariance matrix kk|P . Let ),ˆ(,ˆ ||
i

kkk
i

kk xHx
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i

kkk xK  and i
kk|P  denote the values at the

,...2,1,0,th =ii  iteration. A number of iterations are
carried out until no significant change in the updated
state is achieved.  The steps of the iterated IEKF
algorithm are given below:

State and covariance propagation
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State and covariance update
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process.

Computation of measurement gradient matrix

Let r and u be the range vector and unit vector along
the radar LOS, respectively:
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The measurement gradient matrix required in the
measurement update step  is
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Filter state initialization

Given the range and azimuth measurements
),( 11 αr from the first GMTI measurement 1z , the

initial maximum likelihood estimate of the target
position is
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Assuming no error in the sensor position, the
covariance of position error is
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The velocity of the target can not be observed from a
single measurement of range-rate. For simplicity, we
set the initial velocity to zero and standard deviations
of the X and Y components of the velocity to the
maximum feasible velocity maxv . Thus the initial state

estimate and covariance using the first range and
azimuth measurement are
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Then the first range-rate measurement 1r& is used to

update the state and covariance in (4-18) and (4-19)

5 Recursive Bayesian Estimation

A general discrete time dynamics for the state
n

k ℜ∈x of a system is described by [8]
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where  npn
k ℜ→ℜ×ℜ− :1f  is the system evolution

function and p
k ℜ∈−1w  is a white noise sequence

(known as the process noise) independent of the past
and current states. We assume that the probability
density (pdf) of 1−kw  is known. The function 1−kf
may be a linear or  nonlinear function of 1−kx  and

1−kw , and the pdf of 1−kw  may be arbitrary.

 We assume that measurements }{ m
k ℜ∈z are

available at discrete times and a functional relationship
between the measurement kz  and the state kx  is

known:
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 where nrn
k ℜ→ℜ×ℜ:h  is the measurement model

function and r
k ℜ∈v  is a white noise sequence

(known as the measurement noise) with known pdf.
We assume that kv  is independent of the past and
current states and  process noise.  The measurement
function kh  may be a linear or  nonlinear function of

kx  and kv , and  the pdf of kv may be arbitrary. Let

kZ denote the set of measurements },...,,{ 21 kzzz .

Our objective is to compute the conditional density
)|( kkp Zx of the state kx  given all the measurements

kZ  at time k .  Suppose )|( 11 −− kkp Zx is known. Then

)|( kkp Zx  can be computed from )|( 11 −− kkp Zx
using the prediction and the measurement update steps.
Using the prediction step, the prior pdf of the state at
time kt  is given by
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where )|( 1−kkp xx  is known as the state transition

density and is determined by the system dynamics
model (5-1). Then prior pdf of the state

)|( 1−kkp Zx can be updated at time k  by Bayes’ rule

using the measurement kz :
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where
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)|( kkp xz  is known as the likelihood function and is
determined by the measurement model (5-2).

Equations (5-4) and (5-5) represent a general recursive
solution for the state estimation problem in the
Bayesian framework.  These equations are valid for
any pdf of the state, process noise, and measurement
noise with general system dynamics and measurement
models. However, closed form solutions are not always
possible. When kf  and kh  are linear, and kw  and kv
are additive Gaussian noises with known pdf,  (5-4)
and (5-5) give rise to the well-known Kalman filter
(KF) algorithm. Since kh  for the GMTI measurement

model is nonlinear, the EKF is not an optimal estimator
for the problem.

Given kZ , the conditional mean estimator [4],[6]
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represents the minimum variance or minimum mean-
square error (MMSE) estimator. The covariance of the
conditional mean estimate is given by [4],[6]
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6 Particle Filter (PF)

Particle filters approximate the continuous conditional
pdf  )|( kkp Zx  by an independent set of random

samples  (also known as particles) N
i

i
k 1} { =x and

associated positive weights N
i

i
kw 1}0 { =>  [8],[12],[14].

The PF is an algorithm for propagating and updating
the samples and weights numerically such that the
random samples are approximately distributed as
independent samples arising from  the pdf

)|( kkp Zx . The numerical approximation for the
prediction step is

,)|()/1(

)|()|(

)|()16(

1
11

1111

1

∑

∫

=
−−

−−−−

−

=≈

=

−

N

i

i
kkk

kkkkk

kk

pN

dpp

p

xxx

xZxxx

Zx

where N
i

i
k 11}{ =−x  are N independent, identically

distributed (iid) samples drawn from )|( 11 −− kkp Zx .

The detailed steps of the PF with sampling importance
resampling (SIR) [8],[12],[14],[15] are:

1. Select the number of particles (N) to be generated
and the threshold for resampling )( thresN  [9],[15]

2. Initialization
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3. Increment k : k=k+1
4. Prediction
    Generate N samples .)}1,(,0(~)1,( { 1
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     Compute N  predicted state vectors:
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5. State update with measurement kz

Compute the likelihoods: N
i

i
kkp 1)}|({ =xz .

Update the weights: N
iN

i

i
kk

i
k

i
kk

i
ki

k
pw

pw
w 1

1
1

1 }
)|(

)|(
{ =

=
−

−

∑
=

xz

xz

Compute the measurement updated state estimate:
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• Go to step 3.
Else
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• Go to step 3.
End

7 Simulation and Results

The geometry of the nominal target trajectory and
sensor trajectory is shown in Figure 1. The standard
deviations of the range, azimuth, and range-rate for the
sensor measurements are 20 meters, 0.001 radian, and
1 m/s, respectively. The height and speed of the sensor
are 10,000 m above the XY plane and 166.7 m/s,
respectively. Each component of the power spectral
density ),( 21 qq of the process noise used for

simulating the truth trajectory is 0.1 -32sm . We used
The same values of the power spectral density

),( 21 qq of the process noise in the IEKF and PF.
Results presented in Figures 2-8 are based on sensor
measurements with a revisit time of two seconds. The
truth trajectory of the target and GMTI report locations
from range and azimuth are shown in Figure 2. The
truth trajectory, IEKF, and PF estimated trajectories,
and IEKF and PF estimated velocities are shown in
Figures 3-8 on page 7 at the end of the paper for easy
comparison of the IEKF and PF solutions. We used
20,000 random samples in the PF algorithm. The root
mean square (RMS) position and velocity estimation
errors using the IEKF and PF are presented in Table 1.

Figure 1. Nominal Target and Sensor Geometry
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Figure 2. Truth Trajectory and GMTI Report Locations

Table 1. Comparison of  position and velocity
estimation errors of the IEKF and PF

Algorithm RMS Position
Error (m)

RMS Velocity
Error (m/s)

IEKF 65.935 3.243
PF 64.598 2.664

8 Conclusions

We have performed a preliminary comparative study of
the IEKF and  PF algorithms applied to the GMTI
tracking problem. The numerical results show that the
accuracies of the position estimation  of the two
algorithms are comparable. The velocity estimation
accuracy of the PF is higher than that of the IEKF. We
plan to use more efficient PF algorithms in our future
work.  We also plan to analyze the performance of the
IEKF, IMM, and PF algorithms using realistic GMTI
tracking scenarios which includes motion of the target
on the three dimensional terrain and road-network
using the degree of nonlinearity of the GMTI
measurement model as an independent variable. The
degree of nonlinearity is based on concepts of
differential geometry and uses the parameter-effects



curvature and intrinsic curvature of the measurement
model.

References

[1] J. N. Entzminger, Jr., C. A. Fowler, and W. J.
Kenneally, JointSTARS and GMTI, Past, Present, and
Future , IEEE Transactions on Aerospace and
Electronic Systems, vol. 35, pp. 748-761, April 1999.
[2] A. H. Jazwinski, Stochastic Processes and Filtering
Theory, Academic Press, 1970.
[3] J. R. Moore and W. D. Blair, Practical Aspects of
Multisensor Tracking, in Multitarget-Multisensor
Tracking: Applications and Advances, Volume III ,Y.
Bar-Shalom and William Dale Blair, (ed.) pp. 1-76,
Artech House, 2000.
[4] B. D. O. Anderson and J. B. Moore, Optimal
Filtering , Prentice Hall, 1979.
[5] A. Gelb, Ed., Applied Optimal Estimation , The
MIT Press, 1974.
[6] Y. Bar-Shalom and X. R. Li, Estimation and
Tracking: Principles, Techniques, and Software,
Artech House, 1993 (reprinted by YBS Publishing,
1998).
 [7] H. A. P. Blom, and Y. Bar-Shalom, The Interacting
Multiple Model Algorithm for Systems with
Markovian Switching Coefficients, IEEE Transactions
on Automatic Control, 22(3): 302-312, 1977
[8] N. J. Gordon, D. J. Salmond, and A. F. M. Smith,
Novel approach to nonlinear/nonGaussian Bayesian
state estimation, IEE Proceedings-F,  vol. 140, pp.
107-113, April 1993.
[9] A. Doucet, On sequential Monte Carlo sampling
methods for Bayesian filtering, Technical Report,
University of Cambridge, 1998.
[10] J. S. Liu and R. Chen, Sequential Monte Carlo
methods for dynamic systems , Journal of the American
Statistical Assoc., vol. 93, pp. 1032-1044, 1998.
[11] J. Carpenter, P. Clifford, and P. Fernhead, An
improved particle filter for nonlinear problems, IEE
Proceedings-Radar, Sonar, Navig. ,  vol. 146, pp. 2-7,
Feb. 1999.
[12] N. Bergman, Recursive Bayesian Estimation,
Navigation and Tracking Applications, Ph.D. thesis,
Linkoping University, Sweden, 1999.
[13] P. Fernhead, Sequential Monte Carlo methods in
filter theory, Ph.D. thesis, Merton College, University
of Oxford,1998.
[14] S. Challa and N. Gordon, Target Tracking Using
Particle Filters, Proceedings of the Workshop on
Estimation, Tracking, and Fusion: A Tribute to Yaakov
Bar-Shalom, Monterey, CA, May 2001.
[15] Sanjeev Arulampalam and Branko Ristic,
Comparison of the Particle Filter with Range-
Parametrised and Modified Polar EKFs for Angle-Only
Tracking, Signal and Data Processing of Small Targets
2000, Oliver E. Drummond, Ed., Proceedings of the
SPIE, vol. 4048, pp. 288-299, 2000.



Figure 3. Truth and IEKF Estimated Trajectories
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Figure 4. Truth and PF Estimated Trajectories
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Figure 5. Truth and IEKF Estimated Velocity-X
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Figure 6. Truth and PF Estimated Velocity-X
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Figure 7. Truth and IEKF Estimated Velocity-Y
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Figure 8. Truth and PF Estimated Velocity-Y
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