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Abstract — The ground moving target indicator
(GMTI) radar sensor plays an important role in
situation awareness of the battlefield, surveillance,
and precision tracking of ground targets. The
extended Kalman filter (EKF) is usually used either
alone or in the Interacting Multiple Model (IMM)
framework to solve nonlinear filtering problems. Since
the GMTI measurement model is nonlinear, the use of
an EKF is not the best solution. The particle filter
(PF) has been shown recently as a robust algorithm
for a wide range of nonlinear estimation problems.
The disadvantage of particle filters is the high
computational load. In this paper, we compare the
performance of the EKF and PF for the GMTI
measurement problem using the nearly constant
velocity (NCV) model in two dimensions. We analyze
the differences in the performance of the EKF and PF
using simulated data..

Keywords: Nonlinear Filtering, Extended Kalman
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1 Introduction

Airborne surveillance of ground moving vehicles and
helicopters using the Ground Moving Target Indicator
(GMTI) radar sensor was proved extremely successful
during the 1991 Gulf War [1]. Measurements from a
GMTI radar are range, azimuth, and range-rate. The
GMTI measurements are nonlinear functions of the
target state, which includes the position and velocity.
The objective of the GMTI tracking isto estimate the
state of atarget sequentially by processing GMTI
measurements from one or more sensors. The state
estimation problem is nonlinear due to the nonlinear
GMTI measurement model. The Bayesian approach
[2],[8]-[15] provides arigorous framework for
estimating the state of atarget in general conditions. In
the Bayesian approach, the conditional posterior
density of the state given the measurementsis
computed recursively. However, closed form solutions
cannot be obtained in all cases. If the dynamic and
measurement models are linear and the probability

distributions are Gaussian, then the Kalman filter (KF)
represents an optimal estimator in the Bayesian
framework. When the dynamic or measurement model
isnonlinear or the distributions are non-Gaussian,
numerical solutions using the Bayesian approach are
required [8]-[15].

The extended Kalman filter (EKF) [2]-[6] and
Interacting Multiple Model (IMM) filter [6],[7] are
widely used as approximate filters for nonlinear
filtering problems. In recent years, the particle filter
(PF) [8]-[15] has proven to be arobust and
numerically efficient approach for nonlinear filtering
problems. Pioneering work using the PF for the
tracking problem was performed by Gordon, Salmond,
and Smith in [8]. Challa presents an excellent review of
the applications of the PF to awide range of tracking
problemsin [14]. In this paper, we compare the
performances of the EKF and PF using the GMTI
measurements.

The Cartesian coordinates for position and velocity are
commonly used to represent the target state for most
ground target tracking problems. A topographic
coordinate frame (TCF) [3] with origin at a given point
on the WGS 84 reference ellipsoid and axes along the
local East, North, and upward directionsis used for
tracking ground targets. Motion of vehicles on the
surface of the Earth is more complex than air targets
due to the three-dimensional terrain and motion
constraints impose by the terrain and road networks. In
order to keep our analysis simple, we ignore the motion
of the target on the 3D terrain and the effects of road
networks. We assume that the target movesin the XY
plane with a nearly constant velocity (NCV) motion
and the radar sensor moves with constant velocity at a
fixed height above the XY plane.

Sections 2 and 3 present the dynamic model and GMTI
measurement models, respectively. In the EKF,
linearization is usually performed about the predicted
state. The measurement-updated state can be further
improved by iteratively computing the updated state ,
measurement gradient matrix, gain , and measurement



updated covariance matrix. EKF with this extension is
known astheiterated EKF (IEKF) [5],[6]. In order to
gain aclear understanding of the PF algorithmiitis
necessary to understand the general recursive Bayesian
framework[8],[9],[12],[14]. We describe the algorithms
for the IEKF, general recursive Bayesian estimation,
and PF in Sections 4, 5, and 6, respectively. Sections7
and 8 present numerical results and conclusions.

2 Kinematic M oddl

We consider the nearly constant velocity (NCV)
motion of atarget inthe XY plane. Let x(t)T A"

denote the state of the target at timet. The state
consists of the position and velocity:
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The continuous time dynamics of the state for the NCV
motion is described by [5]
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and w(t) is known as the process noise. We assume
w, (t),i =1,2 as zero-mean white noise accelerations:

(2-5) Ew®}=0 Ew(Hw;t)$=0qd;d-t),

where g;,i =12 arethe power spectral densities of the
process noise.

Let x, =X(t,) denotethe discretetime state of the
target at time t, . Discretization of (2-2) gives[5],[6]

(2-6) x, = F(kKk-1x,_, +w(k k- 1),

where F (k,k- 1) =F (t,,t,_,) is the state transition
matrix and w(k, k- 1) :=w(t,,t,_ ;) is the integrated
process noise. The state transition matrix and the

integrated process noise for the NCV motion are given
by
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Q(k, k- 1) isthe covariance of the process noise with

the following form:
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3GMTI Measurement Model

A GMTI radar sensor measures the range (r) , azimuth
(@), and range-rate (f) of a target. The GMTI
measurement model at time k is described by [3]

(3-1)  z, =h{X,,s)+V,,

where s, 1 A®and v, T A® are sensor position and
measurement noise at timek, respectively:
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We assume the sensor position s, as error-free. We
assume that v, is a zero-mean independent Gaussian
noise with diagonal covariance R, :

(3- 4) v, ~NO,R,),
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Dropping the subscript k, the GMTI measurement
model is described by

(3-8 h(x9=[(x-5)?+(y- 5,)> +s71"?,

(B-7) hy(x9)=
ftan'(x- s,,y-5), if tan"'(x- s,y-s,)>0,
ftan i(x- 5, y-5,)+ P, if tanl(x- 5.y~ §) <0,
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4 |terated Extended Kalman Filter
(IEKF)

Linearization is usually performed about the predicted
state Xyy.; atimek. The measurement-updated

state X wk can befurther improved by iteratively
computing the updated state %, , measurement
gradient matrix H,, gain K, and measurement
updated covariance matrix Py, - Let Kj, H  Kig),
K (Kig), and P}, denotethevaluesat the

i"i=012,.. iteration. A number of iterations are

carried out until no significant change in the updated
stateis achieved. The steps of theiterated |IEKF
algorithm are given below:

State and covariance propagation
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State and covariance update
(4-3)  XPk =K1, initidliza tion
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Gy (f(iklk) represents the covariance of theinnovations
process.

Computation of measurement gradient matrix

Let r and u bethe range vector and unit vector along
the radar LOS, respectively:

(4-9 r=[x-s y-s, -sf
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The measurement gradient matrix required in the
measurement update step is

(4- 11) H(x,9):= Th(x.s)
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Filter stateinitialization

Given the range and azimuth measurements
(ry,a,) from the first GMTI measurement z, , the

initial maximum likelihood estimate of the target
positionis

éxu és, +rysna;u
(4-19 g lg=e . oty
eyl gSy tricosa;y
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Assuming no error in the sensor position, the
covariance of position error is

(4-15) B, = (r[—lsinal)zs Z+(Fcosa;)’s 2,
1

(4-16) P (22)= (rf—lcosal)zs 2.4 (f,sna,)?s 2,
1
sin2a,

(4-17) PLy(12) = Py(2]) :T[<rf—l)2s - F 3.
1

The velocity of the target can not be observed from a
single measurement of range-rate. For simplicity, we
set theinitial velocity to zero and standard deviations
of the X and Y components of the velocity to the
maximum feasible velocity v, . Thustheinitial state

estimate and covariance using the first range and
azimuth measurement are

o o o ¢
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Then the first range-rate measurement r,is used to

update the state and covariance in (4-18) and (4-19)

5 Recursive Bayesian Estimation

A general discrete time dynamics for the state
x, T A" of asystem is described by [8]



(5-D X =f 1 Xy Wi q),

where f,_,:A"" AP ® A" isthe system evolution
functionandw,_, T AP isawhite noise sequence

(known as the process noise) independent of the past
and current states. We assume that the probability
density (pdf) of w,_, isknown. Thefunction f,_;

may be alinear or nonlinear functionof x,_, and
W, _;,and the pdf of w,_; may bearbitrary.

We assume that measurements {z, T A ™} are

available at discrete times and a functional relationship
between the measurement z, and the state x, is

known:

(5-2) z, =h (X, V),

where h, :A"" A" ® A" isthe measurement model

functionand v, T A" isawhite noise sequence

(known as the measurement noise) with known pdf.
We assume that v, isindependent of the past and

current statesand process noise. The measurement
function h, may be alinear or nonlinear function of

X, and v, , and the pdf of v, may be arbitrary. Let
Z  denote the set of measurements{z,,z,,..,Z,} .

Our objectiveisto compute the conditional density
p(x, 1Z, ) of the state x, given all the measurements

Z, atimek. Suppose p(X,.,|Z.;)isknown. Then
p(x, 1Z,) canbecomputed from p(x,_ ,|Z,_ ;)

using the prediction and the measurement update steps.

Using the prediction step, the prior pdf of the state at
time t, isgiven by

(5-3  p(Xk 1Zk-1)
= 0P(Xk [Xk-1) P(Xk-1 [ Z - 1) AX - 1

where p(x, |X,_;) isknown asthe state transition

density and is determined by the system dynamics
model (5-1). Then prior pdf of the state
p(X, | Z.,) can be updated at time k by Bayes' rule

using the measurement z, :

p(z, | X )p(Xy 12 1)
Pz 1Zy.1)

(5-4)  p(x1Zy)=

where

(5-9  p(zk|Zk-1) = 0P(zk [XK)P(X | Z k1) AX -

p(z, |x,) isknown asthe likelihood function and is
determined by the measurement model (5-2).

Equations (5-4) and (5-5) represent ageneral recursive
solution for the state estimation problem in the
Bayesian framework. These equations are valid for
any pdf of the state, process noise, and measurement
noise with general system dynamics and measurement
models. However, closed form solutions are not always
possible. When f, and h, arelinear, and w, and v,

are additive Gaussian noises with known pdf, (5-4)
and (5-5) give rise to the well-known Kalman filter
(KF) algorithm. Since h for the GMTI measurement

model is nonlinear, the EKF is not an optimal estimator
for the problem.

Given Z, , the conditional mean estimator [4],[6]

(5- 6 Xy = B Xy [ Zi} = % P(X 12 Jaxy

represents the minimum variance or minimum mean-
square error (MM SE) estimator. The covariance of the
conditional mean estimate is given by [4],[6]

(5- 7 Py = El(Xy - X)Xy - X ) Z, )
= 00Xk = X)Xk = X ) (X [Z ) DX

6 ParticleFilter (PF)

Particle filters approximate the continuous conditional
pdf p(x, |Z,) by anindependent set of random

samples (also known as particles) { xik}i'\':l and
associated positive weights { w, > 0}, [8],[12],[14].
The PF is an algorithm for propagating and updating
the samples and weights numerically such that the
random samples are approximately distributed as

independent samples arising from the pdf
p(X, 1Z) . The numerical approximation for the

prediction stepis

(6-0)  p(Xy1Zy.4)
= 0P(Xk [ Xk-1) P(Kk-1 | Z k- 1) AXg-q
N .
» (1/ N)é. P(Xk [ X1 = Xiee1),
i=
where {x} ,}!, areN independent, identically
distributed (iid) samplesdrawn from p(X,_;|Z,_;)-

The detailed steps of the PF with sampling importance
resampling (SIR) [8],[12],[14],[15] are:

1. Select the number of particles (N) to be generated
and the threshold for resampling (N, ) [9].[15]

2. Initialization
Set k=1

Generate N samples { xil}i’\‘=1 from theprior density

Po (X1)-
Set{wi =1/ N} \,.



3. Increment k: k=k+1
4, Prediction
Generate N samples {w' (k,k- 1) ~ N(©,Q(k.k - 1}V,
Compute N predicted state vectors:
{Xic = F (kK- Dxjeg +w' (k, k- DHY.

5. State update with measurement z,

Compute the likelihoods: { p(z, | X} )}, .
. i [
Update the weights: { W, = M}iﬁl
a W 1Pz, %)
i=1
Compute the measurement updated state estimate:

N

P i

Xkk = a WiXe
i=1

6. Compute effective samplesize (N )

N .
Ner =1/& (W)?.
i=
If Ng > Nyes then
Goto step 3.
Else
Resample anew set { x{:}i’;‘l by sampling
with
replacement N times from the discrete set
{xi 3, where Pr(xik* =x)) =w.
Set {w] =1/ N},
Goto step 3.
End

7 Simulation and Results

The geometry of the nominal target tragjectory and
sensor trgjectory is shown in Figure 1. The standard
deviations of the range, azimuth, and range-rate for the
sensor measurements are 20 meters, 0.001 radian, and
1 m/s, respectively. The height and speed of the sensor
are 10,000 m above the XY plane and 166.7 m/s,
respectively. Each component of the power spectral
density (q,,0,) of the process noise used for

simulating the truth trajectory is 0.1 m?s™>. We used
The same vaues of the power spectral density
(d,,9,) of the process noise in the IEKF and PF.

Results presented in Figures 2-8 are based on sensor
measurements with a revisit time of two seconds. The
truth trgjectory of the target and GMTI report locations
from range and azimuth are shown in Figure 2. The
truth trgjectory, |IEKF, and PF estimated trgjectories,
and |IEKF and PF estimated velocities are shown in
Figures 3-8 on page 7 at the end of the paper for easy
comparison of the IEKF and PF solutions. We used
20,000 random samples in the PF algorithm. The root
mean square (RMS) position and velocity estimation
errors using the IEKF and PF are presented in Table 1.

Nominal Target Trajectory

P X
166.7 m/s

100 Km

Sensor 1 Trajectory

Figure 1. Nominal Target and Sensor Geometry
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Figure 2. Truth Trajectory and GMTI Report Locations

Table 1. Comparison of position and velocity
estimation errors of the |EKF and PF

Algorithm RMS Position | RMS Velocity
Error (m) Error (m/s)
IEKF 65.935 3.243
PF 64.598 2.664

8 Conclusions

We have performed a preliminary comparative study of
the IEKF and PF algorithms applied to the GMTI
tracking problem. The numerical results show that the
accuracies of the position estimation of the two
algorithms are comparable. The velocity estimation
accuracy of the PF is higher than that of the IEKF. We
plan to use more efficient PF algorithmsin our future
work. We also plan to analyze the performance of the
IEKF, IMM, and PF algorithms using realistic GMTI
tracking scenarios which includes motion of the target
on the three dimensional terrain and road-network
using the degree of nonlinearity of the GMTI
measurement model as an independent variable. The
degree of nonlinearity is based on concepts of
differential geometry and uses the parameter-effects




curvature and intrinsic curvature of the measurement
model.
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