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The performance and iron losses of an axial flux permanent-magnet synchronous machine (AFPMSM) using nonoriented (NO) steel
are compared with the performance and iron losses of an AFPMSM using grain-oriented (GO) material. The machine is modeled by sev-
eral 2-D finite element models in circumferential direction, at different radii. The material model for the GO material is an anhysteretic
anisotropic model based on the magnetic energy. The magnetic energy is computed by using several measured quasi-static -loops on
an Epstein frame in seven directions starting from the rolling direction to the transverse direction. The losses are calculated a posteriori,
based on the principles of loss separation and dynamic loop measurements. A loss model was made for each of the seven directions,
assuming unidirectional fields. In comparison with the more usual NO material, both the saturation induction and the torque are higher
with GO material. The magnetic field in the GO material is lower than for NO material in the major part of the iron, but higher in the
tooth tips where the field is not in the rolling direction. The stator iron losses are about 7 times lower for the considered GO compared
to the NO material.

Index Terms—Finite element methods, losses, permanent magnet machines.

I. INTRODUCTION

A
XIAL flux permanent-magnet synchronous machines
(AFPMSMs) have become popular in the last few

decades because they may have a higher torque at low speed in
comparison with radial flux machines. They can be attractive
when the axial length is small and the pole number is high [1].

The property of high torque at low speed is interesting for
several applications, such as traction and energy generation.
The AFPMSM is investigated as a high efficiency generator for
e.g., wind energy systems, in particular “direct-drive” genera-
tors with direct coupling to the shaft, causing the nominal speed
of the machine to be very low. In [2] and [3], a single stator
AFPMSM, respectively a dual stator AFPMSM is designed for
direct-drive wind applications.

In literature, many aspects have been investigated. A first
aspect is the type of windings. AFPMSMs—but also radial
PMSMs—can have either distributed windings on the stator,
or concentrated pole windings. The advantage of concentrated
pole windings is the easy manufacturing, the short coil ends,
and the higher iron section for a given coil dimension. A
disadvantage is that for a three-phase machine several windings
should be connected in series. When connecting concentrated
windings in series, the total electromotive force is not times
the voltage of a single winding, because of phase shift in
neighboring windings. An alternative is to make a machine
with many phases [3].

Cogging torque reduction is another aspect that has been
studied intensively in literature. This can be done by the
skewing of magnets and the displacement of stator teeth [4].
Another possibility is to use a coreless machine [2].
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The aspect of the material choice in the machines with stator
core is not much investigated. Most electrical machines use lam-
inated nonoriented (NO) silicon steel, but also grain-oriented
(GO) material is possible in some cases. For AFPMSM, the
stator is difficult to make by stacking thin laminations regard-
less if they are NO or GO. In [4], the stator core and stator teeth
are manufactured from a single silicon iron strip that is wound
in a spiral construction. Based on the given -characteristic,
it can be assumed that this machine is made in grain oriented
material, although the authors do not mention it. As the flux in
the stator teeth is perpendicular to the flux in the stator core, it
is impossible to benefit from the GO material in both the stator
core and the stator teeth.

An alternative to thin sheets of silicon steel is the use of soft
magnetic composites (powdered iron) [5]. Manufacturing 3-D
shapes is possible with this material. The disadvantage of this
material is the relatively low permeability, and higher losses at
low frequencies. Because of the high resistivity, the cited paper
shows that the losses of iron powder (Somaloy 550 0.6%LB1)
become lower than those of NO Si steel (Cogent M400–50A)
for a frequency higher than about 1 kHz.

The AFPMSM studied in this paper is designed for a speed
of 2000 rpm and a power of about 3.6 kW, for use in a com-
bined heat and power application. As the machine has 16 poles,
the nominal stator frequency is quite high: 267 Hz. At this fre-
quency, it is necessary to choose a stator with sufficiently thin
sheets in order to limit the iron losses. The chosen machine con-
figuration was the same as [6]: a single stator, dual rotor config-
uration with concentrated stator coils wound around stator teeth
in laminated soft magnetic material.

The machine uses GO instead of NO soft magnetic material,
with an appropriate stacking method explained in the next sec-
tion. Due to the unidirectional magnetic flux in the majority
of the stator volume, it is expected to have advantages in per-
formances and efficiency of AFPMSM by using GO material
in the stator laminations. These advantages are clarified in the
following sections by a detailed comparison of a AFPMSM
with GO and with NO material, concerning electromotive force

0018-9464/$26.00 © 2010 IEEE
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Fig. 1. (a) Rotor geometry of the AFPMSM; dimensions in mm and (b) single
stator dual rotor configuration.

Fig. 2. Single stator dual rotor AFPMSM with (a) axial (vertical) field in the
stator teeth and azimuthal (horizontal) field in the stator yoke; and (b) axial field
in the stator teeth.

(EMF), torque and losses. The chosen GO material is a relatively
good quality material (0.3 mm thickness, 1 W/kg in the rolling
direction at 50 Hz and 1.5 T), while the NO material is a rather
low quality material (0.5 mm thickness, 7 W/kg at 50 Hz and
1.5 T). By comparing two materials that are strongly different,
it can be observed if it is worth the extra cost of choosing high
quality material for an AFPMSM.

II. AXIAL FLUX PERMANENT-MAGNET MACHINE

The AFPMSM with single stator and dual rotor is shown in
Fig. 1. Two possibilities exist for this machine with single stator
and dual rotor. In the first possibility, the facing magnets on both
rotors have opposite magnetization orientation, and the stator
has both a yoke and teeth [Fig. 2(a)]. The second possibility
has facing magnets with equal magnetization orientation, and a
stator that consists of teeth only [Fig. 2(b)]. The second type was
preferred for two reasons: 1) the absence of a yoke reduces the
weight of iron, and by consequence reduces the iron losses and
cost; 2) the magnetic field is expected to be along the axial di-
rection in the majority of the yoke, which may justify the choice
of GO material.

A. Geometry and Materials

To the surface of each of the two rotor discs, 16 T-shaped,
axially-polarized magnets are glued as presented in Fig. 1. The
T-shape magnets from Vacuumschmelze have a remanence of
1.26 T and they consist of small segments in order to reduce
eddy current losses. Both rotor yokes were made of solid
construction steel of 8 mm thickness. The shaft is made from
aluminum.

In the stator, the 15 teeth are made of 0.3 mm thick laser-cut
GO laminations of 1.0 W/kg losses at 1.5 T and 50 Hz. The

Fig. 3. (a) Stator laminations [mm] and (b) Cross-section of stacked lamina-
tions in stator tooth.

nonoriented material used in the simulations is a M700-50A
with 0.5 mm thickness of the sheets. The following technique
was used to make the 3-D shape for the stator. Two different
geometries of I-profiles were laser-cut [Fig. 3(a)] and stacked
with overlap zone: as depicted on Fig. 3(b), the bottom part is
made of a narrower lamination profile while the part on the top
is wider. This method makes it possible to make a 3-D geom-
etry with only two shapes of profiles and a slight reduction of
the fill factor: in the (small) overlap zones, the fill factor is only
50%. A concentrated copper winding is put around each stator
tooth in two layers with 90 turns in total, resulting in a simple
and robust winding.

B. Numerical Model

An axial flux PMSM has intrinsically a 3-D geometry. As
the conventional 2-D FEM to study a machine is not possible
for this type of machine, many alternatives have been proposed
in literature. In [7], analytical methods were developed to com-
pute the no-load and armature fields in the AF generator. The
analytical method assumes an infinite permeability of the rotor
back iron. The stator is coreless. The analytical method is fast to
evaluate, but it does not take into account magnetic saturation,
so that superposition of no-load and armature field is allowed.
Also in [8], an analytical technique is used: the vector potential
equation is solved by separation of variables. Also here, several
“simplifying” assumptions had to be made, so that the method
becomes “quasi 3-D” rather than 3-D.

In order to avoid a computationally intensive numerical
model, the machine is modeled by several layers of 2-D models
with geometry and boundary conditions in Fig. 4. Only 5
magnets and 5 teeth (1/3) of the machine are modeled. The 2-D
models are taken in azimuthal direction, along the circumfer-
ence of the machine, like in [9]. In total, six layers were chosen
with unequal thicknesses, as shown in Fig. 5. As shown in the
geometry of Fig. 1, the magnets have a T-shape: they are small
at small radius (layers 1–3) and wider at large radius (layers
4–6). This corresponds to the stator laminations: at layers 1–3,
the small I-cores of Fig. 3(a) are taken, while at layers 4–6,
the wide I-cores are modeled. Hence, in each layer, the overlap
region is different.

Concerning the electromagnetic properties, the rotor iron is
modelled by a constant permeability of 2000 , because the
thickness of the rotor iron is sufficient to avoid saturation. The

Authorized licensed use limited to: University of Gent. Downloaded on May 21,2010 at 07:44:35 UTC from IEEE Xplore.  Restrictions apply. 



KOWAL et al.: NONORIENTED AND GRAIN-ORIENTED MATERIAL IN AXIAL FLUX PERMANENT-MAGNET MACHINE 281

Fig. 4. Modeled geometry of the AFPMSM and boundary conditions: 1) is
Dirichlet and 2) is Neumann.

Fig. 5. Division of the geometry in layers for the 2-D FEM, illustrated on a
stator tooth. The dotted lines are the edges of the overlap zones.

magnets are represented by their recoil line with slope . For
the stator iron, a different approach is chosen for NO and GO
material. For NO material, a nonlinear characteristic is
determined. The equation for the vector potential is

(1)

with the external current density, the permeability of
vacuum and the relative permeability. For the GO material,
an anisotropic material model was made that gives the magne-
tization . The equation is then

(2)

The waveforms of the magnetic induction are recorded in sev-
eral points of the geometry, for a posteriori calculation of losses
in the magnetic material. In regions with changing direction of
magnetic flux, a dominant direction was recognized and applied
for loss evaluation.

III. MATERIAL MODELS

A. Epstein Measurements

From the considered GO material, several Epstein strips were

cut from a sheet of GO material in seven different directions.

The rolling direction (RD)—along the -axis—is chosen as a

reference, and is assigned angle 0 . The other directions have

angles of 15 , 30 , 45 , 60 , 75 , and 90 , which is the trans-

verse direction (TD), as shown in Fig. 6. We preferred Epstein

measurements instead of single sheet measurements, see [10],

because the dimensions of the Epstein strips approximate to

a large extent the dimensions of the I-profiles of the machine

(Fig. 3).

Fig. 6. Directions in �� �� � plane along which the samples were cut.

Fig. 7. (a) Hysteresis loops for 7200 A/m for GO material along the 0 (RD),
90 (TD), and the 60 direction.

For all GO strips, several quasi-static -loops up to 7200

A/m were measured on an Epstein frame, resulting in

characteristics along all directions. These hysteresis loops are

used for the energy based material model (Section III-B) used

in the finite element routines. Several dynamic loops were mea-

sured up to 200 Hz frequency for the loss model explained in

Section III-C. Evidently, the peak induction in the RD was

much higher than in the other directions, see Fig. 7.

For the NO material, quasi-static and dynamic hysteresis

loops were measured on a ring core, for fields up to 4000

A/m and 200 Hz (Fig. 8). Comparison with the GO loop illus-

trates the lower saturation and the higher enclosed surface of

NO material.

B. Anisotropic Material Model Based on Magnetic Energy

Neglecting Hysteretic Behavior

The material model for the grain oriented material is an

anisotropic model based on the magnetic energy that returns a

magnetization vector as a function of an induction vector

. It is a variant to the model described in [11] that uses the

field as input and is based on coenergy instead of energy.

The material model represents the function that is

used in the FEM—see (2)—to calculate the field patterns. The

iron losses are computed a posteriori.

Complementary to [11], we start from the magnetic energy:

(3)
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Fig. 8. Hysteresis loops for NO material M700-50 and GO loop in rolling di-
rection as reference for comparison.

The magnetic field can be calculated by taking the gradient from

the energy function:

(4)

This expression can be used only in absence of losses. The re-

quired magnetization vector can be found from:

(5)

Notice that vectors and do not necessarily have the

same direction.

The numerical construction of the energy function ,

shown in Fig. 9 for GO material, starts from single valued

magnetization characteristics along the different directions.

A single valued -characteristic is made for each di-

rection by using the peak values of the experimentally de-

termined hysteresis loops. Then, the energy is calculated

using (3). In the plane, quasi-static measure-

ments along a direction with angle give rise to points

on a line through the origin with angle : a function

.

All available points in the energy map are on radial lines shown

in Fig. 6, with a higher resolution near the origin than in the

region for high and . By interpolation, the energy map

was reconstructed in an equidistant rectangular grid of points.

C. Iron Loss Model (Loss Separation)

For the iron loss evaluation in the electrical machine, the sta-

tistical loss model [13], [12] was applied.

From the simulated field waveforms in the machine, we

observe that no minor loops are present (Section IV). Con-

sequently, to find the losses, the considered loss model must

deal with arbitrary flux waveforms, but not with minor loops.

Moreover, we observe that the volume of the soft magnetic

material in which nonunidirectional field patterns are present,

is limited. We neglect the influence of elliptical or rotational

effects on the electromagnetic losses in the material.

Fig. 9. Logarithm of the energy function � �� �� �.

1) Hysteresis Loss Component: As minor loops do not occur,

the hysteresis loss is independent of the waveform. It is deter-

mined by the peak value of the induction. For a fast evaluation

of the loss model, a 2-D lookup table was made that contains

the hysteresis loss for several values of the peak value vector

lying in the plane.

2) Classical Loss Component: The energy loss per cycle of

the lamination with thickness and conductivity depends on

the time derivative of :

(6)

The conductivity was measured based on the 4-point method:

where and are the length and cross-section

of the strip, is the imposed dc current and is the measured

voltage. For GO, is 2.0 MS/m, equal in RD and TD direction.

For the NO material, is 3.2 MS/m.

3) Excess Loss Component: An expression for the instanta-

neous excess loss is given in [12]:

(7)

Here, and are functions of and should be fitted from

measured loops at several frequencies and amplitudes; is the

number of simultaneously active magnetic objects for frequency

and defines the statistics of the magnetic objects. The

dimensionless coefficient and the lamination cross

section are known constants.

The fitting of and is done separately for many

values and for each considered field orientation. From [13, p.

424–425], it is shown that depends on the excess field ,

expecting, as a first approximation, a linear dependence:

(8)

Here, and can be fitted starting from the loss of a mea-

sured loop that is obtained for several and frequencies.

Given , the hysteresis loss and the classical loss computed

as explained above, can be found from

(9)
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Fig. 10. For GO in the RD, � as a function of � .

Fig. 11. For GO (a) active regions � as a function of the frequency; (b) and (c):
functions � �� � and � �� � in the rolling direction.

wherein is the hysteresis loss in W/m , and the clas-

sical loss is obtained by multiplying (6) by or for sinusoidal

fields, as .

With this , the number of active magnetic objects is

(10)

With (9) and (10), the curves (8) for every can be fitted,

as shown in Fig. 11 for GO material. The parameter was

chosen equal to . For all considered directions, the function

is approximated by a straight line. This is an accept-

able approximation. For the NO material, similar curves for

and were determined.

The model is unidirectional, while the field and induction

have an elliptical locus in some parts of the geometry. Fig. 12

shows the loci in several points of the geometry. It is however

observed that in the majority of the surface, the field in the dom-

inant direction is much larger than the field along the small axis

of the ellipse. Therefore, we evaluated the losses as unidirec-

tional losses along the dominant direction of the field in a point.

Fig. 12. Loci in the �� �� � plane at several positions in the stator tooth.

Fig. 13. The stator with 15 teeth can be seen after removal of the rotor.

Both for the direction and the amplitude, an interpolation was

made for the functions and .

IV. SIMULATIONS AND EXPERIMENTS

A. Experimental Setup

The stator of the AFPMSM can be seen in Fig. 13. It is con-

nected to a 2-pole induction machine of 7.5 kW via a torque

sensor. All phase voltages consist of five concentrated windings

(five teeth) in series, but the machine was made in such a way

that the voltage of each of the 15 windings is accessible sep-

arately. The voltage was measured by a National Instruments

data-acquisition system with sampling speed up to 250 kSam-

ples per second. The speed is obtained from an optical position

sensor. The induction machine is supplied by an 11 kW inverter

that is controlled by LabVIEW. The setup was constructed to

measure the EMF and to do the run-out test.

B. Field Waveforms in the GO and NO Material

The magnetic field waveforms obtained from 2-D FEM

during the passing of the magnets is shown in Fig. 14. The

Authorized licensed use limited to: University of Gent. Downloaded on May 21,2010 at 07:44:35 UTC from IEEE Xplore.  Restrictions apply. 



284 IEEE TRANSACTIONS ON MAGNETICS, VOL. 46, NO. 2, FEBRUARY 2010

Fig. 14. Waveforms of magnetic field and induction in the center of the stator
yoke at no-load for the NO and GO material.

Fig. 15. Field pattern in layer 2 with 5.8 A stator current for (a) GO material
and (b) NO material. The scale is in A/m.

difference between GO and NO material depends on the stator

current: at no-load, the induction waveform is almost the same

for both materials (peak of 1.6 T), but the corresponding field

is about 2000 A/m in the NO material, and approximately ten

times less in the GO material. When load current is added, the

induction of the NO material remains almost the same, because

it is saturated; the GO material however reaches a much higher

induction, giving rise to higher torque.

The difference in field pattern in a NO and a GO stator tooth

can be seen in Fig. 15. If the stator contains GO material, the

field lines have tendency to align with the RD.

C. Torque and EMF Comparison Between GO and NO

At no load, Fig. 16 shows the EMF of a tooth per 1000

rpm. The total EMF of a phase consists of five teeth in

series, whose EMFs are shifted in phase. The total EMF per

phase can be found as

Fig. 16. Electromotive force at 1000 rpm in a tooth winding at no load, simu-
lated for NO and GO material, and measured. The abscis is the electrical rotor
angle, which is 8 times the mechanical angle.

Fig. 17. Torque of one tooth as a function of the electrical rotor angle. A current
of 5.78 A was injected between 30 and 150 , and between 210 and 330 . The
cogging torque was removed both in measurements and simulations.

(11)

The EMFs in the three phases are shifted 120 so that—when

connecting them in star—the no-load output voltage is

4.7834 . It is observed that the GO material produces

almost the same EMF as the NO at no-load. The difference

between the simulated EMF for GO material and the measured

EMF, is within the tolerance of the measurements and the

numerical accuracy of the simulations.

The torque at large load, shown in Fig. 17, illustrates that the

GO material has about 10% more torque for the same current,

which was the nominal current of 5.78 A. The ripples on the

torque profile are caused by convergence problems in one or

more of the six layers of the FEM. The measured torque profile

corresponds well with the simulations for GO material.

D. Loss Comparison Between GO and NO

Fig. 18 makes a comparison of iron losses in all 15 stator teeth

for several rotor speeds, at no-load. The different components,

i.e., classical, hysteresis and excess loss in the stator teeth, see

e.g., (6) and (7) are shown. It is seen that NO material has about

seven times more losses than GO for the complete speed range.

For a machine of more than 3 kW nominal power, the 30 W
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Fig. 18. Stator iron losses for the whole machine as a function of the speed, for
GO and NO material.

Fig. 19. Run-out test of the machine at no-load starting from 400 rpm.

losses for GO material are low, thanks to the low losses per kg

of the material and to the low mass of iron in the machine.

The losses at no-load can be compared with the losses ob-

tained from a run-out test: , with the

mechanical speed and the loss torque. The inertia was

calculated to be 0.0107 kg m . Fig. 19 shows a run-out test from

400 rpm. The recorded voltage makes it possible to determine at

any moment the speed and its time derivative. From these data,

the experimental total loss can be found as a function of the fre-

quency. This total loss consists of losses in bearings, magnetic

material in stator and rotor, and magnets. A comparison revealed

that the measured total loss (obtained from run-out test) was

much higher than the simulated loss corresponding with stator

iron loss only (Fig. 18): at 400 rpm, it was 15.0 W compared to

2.89 W iron loss in the GO stator teeth. It is assumed that the

losses in the bearings are dominant.

V. CONCLUSION

For an AFPMSM whose stator flux is flowing in axial direc-

tion in the major part of the stator, GO material was compared

with NO material. With GO material, the machine has about 7

times less iron loss at the same speed, and a 10% higher torque

for the same current. Nevertheless, the EMF at no-load is almost

the same for both materials. For a given torque, the GO mate-

rial causes a 10% higher torque-to-current ratio which makes

it possible to reduce the copper losses—quadratic with the cur-

rent—by about 20%. Alternatively, because of the lower iron

losses, it is possible with GO material to allow larger copper

losses without increasing the temperature of the machine. This

means a higher stator current and more torque. We conclude that

for the considered type of PMSM, it is worth the extra cost to

use GO material.
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