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Abstract

Background: In shotgun metagenomics, microbial communities are studied through direct sequencing of DNA
without any prior cultivation. By comparing gene abundances estimated from the generated sequencing reads,
functional differences between the communities can be identified. However, gene abundance data is affected by
high levels of systematic variability, which can greatly reduce the statistical power and introduce false positives.
Normalization, which is the process where systematic variability is identified and removed, is therefore a vital part of
the data analysis. A wide range of normalization methods for high-dimensional count data has been proposed but
their performance on the analysis of shotgun metagenomic data has not been evaluated.

Results: Here, we present a systematic evaluation of nine normalization methods for gene abundance data. The
methods were evaluated through resampling of three comprehensive datasets, creating a realistic setting that
preserved the unique characteristics of metagenomic data. Performance was measured in terms of the methods ability
to identify differentially abundant genes (DAGs), correctly calculate unbiased p-values and control the false discovery
rate (FDR). Our results showed that the choice of normalization method has a large impact on the end results. When
the DAGs were asymmetrically present between the experimental conditions, many normalization methods had a
reduced true positive rate (TPR) and a high false positive rate (FPR). The methods trimmed mean of M-values (TMM)
and relative log expression (RLE) had the overall highest performance and are therefore recommended for the analysis
of gene abundance data. For larger sample sizes, CSS also showed satisfactory performance.

Conclusions: This study emphasizes the importance of selecting a suitable normalization methods in the analysis of
data from shotgun metagenomics. Our results also demonstrate that improper methods may result in unacceptably
high levels of false positives, which in turn may lead to incorrect or obfuscated biological interpretation.

Keywords: Shotgun metagenomics, Gene abundances, Normalization, High-dimensional data, Systematic variability,
False discovery rate

Background
In shotgun metagenomics, microorganisms are studied by

sequencing DNA fragments directly from samples with-

out the need for cultivation of individual isolates [1]. Since

shotgun metagenomics is culture-independent, it pro-

vides an efficient and unbiased way to describe microbial

communities, their taxonomic structure and biochemi-

cal potential [2]. The increasing performance of high-

throughput DNA sequencing technologies has rapidly
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expanded the potential of metagenomics, making it a

key measurement technique in the analysis of the human

microbiome and environmental microbial communities

[3–6]. The data produced by shotgun metagenomics is

often analyzed based on the presence of genes and their

abundances in and between samples from different exper-

imental conditions. The gene abundances are estimated

by matching each generated sequence read against a com-

prehensive and annotated reference database [7–9]. The

database typically consists of previously characterized

microbial genomes, a catalog of genes or de novo assem-

bled contiguous sequences. The gene abundances are then
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calculated by counting the number of readsmatching each

gene in the reference database. Finally, statistical analy-

sis is used to identify the genes that have a significant

differential abundance between the studied conditions.

Gene abundance data generated by shotgun metage-

nomics is however affected with multiple sources of

variability which makes it notoriously hard to interpret

[10–12]. A substantial part of this variability is system-

atic and affects multiple genes and/or samples in a similar

way. One example of systematic variability is the differ-

ences in sequence depth, where each sample is repre-

sented by a varying number of reads [13]. Systematic

variability also comes from other technical sources, such

as inconsistencies in the DNA extraction and sample han-

dling, varying quality between sequencing runs, errors

in the read mapping, and incompleteness of the refer-

ence databases [14]. In addition, systematic variabilitymay

also be of biological nature, where, for example, sample-

specific differences in average genome size, species rich-

ness and GC-content of the reads can affect the gene

abundance [15, 16]. Regardless of its source, systematic

variability significantly increases the variation between

samples and thereby decrease the ability to identify genes

that differ in abundance. Removal of systematic variabil-

ity, a process referred to as normalization, is therefore

vital to achieve a satisfactory statistical power and an

acceptable FPR.

A wide range of different methods has been applied to

normalize shotgun metagenomic data. The majority of

these normalization methods are based on scaling, where

a sample-specific factor is estimated and then used to cor-

rect the gene abundances. One approach is to derive the

scaling factor from the total gene counts present in the

sample [17, 18]. This enables removal of the often substan-

tial differences in sequencing depth. However, the total

gene counts is heavily dominated by the most abundant

genes such that their variability may have a major impact

on the scaling factor. To avoid the variability caused by

high-abundant genes, the median and upper quartile nor-

malization methods have been proposed as more robust

alternatives [12, 19]. These methods estimate the scaling

factors based on the 50th and 75th percentile of the gene

count distribution, respectively. Similarly, the normaliza-

tion method cumulative sum scaling (CSS) calculates the

scaling factors as a sum of gene counts up to a threshold

[20]. Themethod optimizes the threshold from the data in

order to minimize the influence of variable high-abundant

genes. Another method that robustly estimates the scaling

factor is the TMM [21], which compares the gene abun-

dances in the samples against a reference, typically set

as one of the samples in the study. The scaling factor is

then derived using a weighted trimmedmean over the dif-

ferences of the log-transformed gene-count fold-change

between the sample and the reference. Similarly to TMM,

relative log expression (RLE) calculates scaling factors

by comparing the samples to a reference [22]. However,

in contrast to TMM, RLE uses a pseudo-reference cal-

culated using the geometric mean of the gene-specific

abundances over all samples in the study. The scaling fac-

tors are then calculated as the median of the gene counts

ratios between the samples and the reference. A com-

monly used normalization method that is not based on

scaling is rarefying, where reads in the different samples

are randomly removed until the same predefined number

has been reached, thereby assuring a uniform sequence

depth [13, 23]. Another method that avoids scaling is

the quantile-quantile normalization, in which the gene

abundance distributions in different samples are made

identical by adjusting their quantiles according to a refer-

ence distribution derived by averaging over all the samples

[19, 24, 25].

Comparisons of normalizationmethods have previously

been done for RNA-seq data [19, 26] as well as count data

produced from the study of operational taxonomic units

(OTUs) generated by amplicon sequencing [13, 23]. These

studies found a large dependency between performance

and data characteristics. Thus, it is likely that normaliza-

tion methods that have previously been shown to perform

well for other forms of count data are not appropriate

for shotgun metagenomics. Indeed, metagenomic gene

abundance data is almost always highly undersampled and

plagued by high technical noise and biological between-

sample variability, which makes it dependent on proper

normalization [12]. However, no evaluation of data-driven

normalization methods for shotgun metagenomics has

been performed. It is therefore unclear how the normal-

ization should be performed to ensure a correct interpre-

tation of the end results.

To address this knowledge gap and to provide guidance

in choosing a suitable data-driven normalization method,

we have performed a systematic evaluation of nine meth-

ods on gene abundance data from shotgunmetagenomics.

The evaluation was performed on datasets formed by

individual resampling of three comprehensive metage-

nomic datasets, thereby creating a realistic setting where

the unique characteristics and variance structure of the

data are preserved. The methods were evaluated based on

their impact on the identification of DAGs by comparing

their TPR and FPR as well as their ability to correctly esti-

mate unbiased p-values and control the FDR. Our results

showed that the normalization methods had a substan-

tially different performance in identifying DAGs. Several

of the methods demonstrated a high FPR, especially when

the DAGs were distributed asymmetrically between the

experimental conditions. In some cases, the high FPR also

resulted in an unacceptably high FDR. TMM and RLE had

the overall highest performance, with a high TPR, low

FPR and a low FDR in most of the evaluated scenarios
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and are therefore recommended methods for normaliza-

tion of gene abundance data. We conclude that the choice

of normalization method is critical in shotgun metage-

nomics and may, if not done correctly, result in incorrect

biological interpretations.

Methods

Normalization methods

In this study we evaluate the performance of nine nor-

malization methods for count data, representing gene

abundances from shotgun metagenomics (Table 1). Seven

methods were scaling methods, where a sample-specific

normalization factor is calculated and used to correct the

counts, while two methods operate by replacing the non-

normalized data with new normalized counts. Assume

that gene abundance data is given as counts describing the

number of DNA fragments sampled for each gene from a

microbial community. Let Yij be the counts for gene i =

1, . . . ,m in sample j = 1, . . . , n. The scaling normalization

methods will derive a sample-specific normalization fac-

tor, denotedNj, while non-scaling methods will replace Yij
with the normalized Ỹij.

Total count derives the normalization factor Nj as the

sum of all gene counts in a sample j [17, 18, 27], i.e.

Nj =

m∑

i=1

Yij.

Total count thus adjust the abundance of each gene based

on the total number of DNA fragments that are binned

in the sample. Total count was implemented in R (version

3.2.1) [28] using the ’colSums’ function.

Median calculates the the normalization factor Nj as the

median of genes counts that are non-zero in at least one

sample, i.e.

Nj = median
i∈G∗

Yij, G∗ =

⎧
⎨
⎩i :

n∑

j=1

Yij > 0

⎫
⎬
⎭ .

Median normalization provides a robust alternative to

total counts that is less influenced by most highly abun-

dant genes. Median normalization was performed using

the edgeR Bioconductor package (version 3.10.5) [29].

Upper quartile estimates the normalization factor Nj

as the sample upper quartile (75th percentile) of genes

counts that are non-zero in at least one sample [19], i.e.

Nj = upper quartile
i∈G∗

Yij, G∗ =

⎧
⎨
⎩i :

n∑

j=1

Yij > 0

⎫
⎬
⎭ .

In contrast to median, the upper quartiles of the gene

abundance distribution are used to calculate the scaling

factors which aims to further increase the robustness.

Upper quartile normalization was done using the edgeR

Bioconductor package (version 3.10.5) [29].

TMM calculates the normalization factor Nj using a

robust statistics based on the assumption that most genes

are not differentially abundant and should, in average, be

equal between the samples [21]. First, a sample r is chosen

as reference. For each sample j, genes are filtered based

on their mean abundance and fold-change between the

sample and the reference. An an adjustment f
(r)
j is then

calculated as the mean of the remaining log fold-changes

Table 1 Data-driven methods for normalization of shotgun metagenomic data included in this study

Method Description Availability

Total counts Calculates scaling factors based on the total gene
abundances

-

Median Calculates scaling factors based on the median gene
abundance

edgeR package in Bioconductor

Upper quartile [19] Calculates scaling factors based on the upper quartile
of the gene abundances

edgeR package in Bioconductor

Trimmed mean ofM-values (TMM) [21] Calculates scaling factors based on robust analysis of
the difference in relative abundance between sam-
ples.

edgeR package in Bioconductor

Relative Log Expression (RLE) [30] Calculates scaling factors using the ratio between
gene abundances and their geometric mean

DESeq package in Bioconductor

Cumulative sum scaling (CSS) [20] Calculates scaling factors as the cumulative sum of
gene abundances up to a data-derived threshold

metagenomeSeq package in Bioconductor

Reversed cumulative sum scaling (RCSS) Calculates scaling factors as the cumulative sum of
high abundant genes

-

Quantile-quantile [19] Transforms each sample to follow a data-derived ref-
erence distribution

-

Rarefying [55] Randomly removes gene fragments until the
sequencing depth is equal in all samples

phyloseq package in Bioconductor



Pereira et al. BMC Genomics  (2018) 19:274 Page 4 of 17

weighted by the inverse of the variance. The normalization

factor is then given by

Nj = f
(r)
j

m∑

i=1

Yij.

TMM normalization was performed using the edgeR

Bioconductor package (version 3.10.5), which, by

default, trims 30% of log fold-change and 5% of mean

abundance [29].

RLE assumes most genes are non-DAGs and uses the

relative gene abundances to calculate the normalization

factor [22]. First, a reference is created for each gene i by

taking the geometric mean its abundances across all sam-

ples. The normalization factor Nj is then calculated as the

median of all ratios between gene counts in sample j and

the reference, i.e.

Nj = median
i

Yij
(∏n

j′=1 Yij′
)1/n .

Normalization using RLE was done using the DESeq2

Bioconductor package (version 1.14.1) [30].

CSS is based on the assumption that the count distri-

butions in each sample are equivalent for low abundant

genes up to a certain threshold ql̂j , which is calculated

from the data [20]. First, the median of each lth quan-

tile across all samples is calculated. The threshold ql̂j is set

as the largest quantile where the difference between the

sample-specific quantiles is sufficiently small (measured

based on the distance to the median quantile). Note that

the threshold is set to be at least the 50th percentile. The

normalization factor for sample j is then computed as the

sum over the genes counts up to the threshold ql̂j , i.e.

Nj =
∑

i:Yij≤ql̂j

Yij.

CSS normalization was done using metagenomeSeq Bio-

conductor package (version 1.10.0) [20].

Reversed cumulative sum scaling (RCSS) is a variant of

CSS that utilize the observation that high-abundant genes

in shotgun metagenomic data have, in general, a lower

coefficient of variation [11]. RCSS therefore calculates the

normalization factor Nj as the sum of all genes with an

abundance larger than the median. The normalization

factor is thus given by,

Nj =
∑

i:Yij≥0.5

Yij.

RCSS was implemented in R (version 3.2.1) [28] using the

‘colQuantiles’ function from ‘matrixStats’ package (ver-

sion 0.51.0) and ’sum’ over a logical vector.

Quantile-quantile normalizes the data by transforming

each sample to follow a reference distribution [19]. The

reference distribution is calculated by taking the median

of all quantiles across the samples, i.e.

q̄l = median
j∈S

qlj ,

where qlj is the lth quantile in the jth sample. The counts

Yij are then replaced by Ỹij such that qlj = q̄l. If two

genes have same number of counts, i.e. Yaj = Ybj for

any a, b, such that a �= b, the choice of which gene

receives which quantile is made randomly. We imple-

mented quantile-quantile in R (version 3.2.1) [28] adapted

from the algorithm presented in [24]. In order to preserve

the discrete structure of the data, the median over the

quantiles was calculated as outlined above and if the num-

ber of samples were even, one of the two middle values

was randomly selected.

Rarefying is a normalization method that discards frag-

ments from each sample until a predefined number of

fragments is the same for all samples [13, 23]. For each

sample, fragments are sampled without replacement. The

fragments that are not selected in this process are dis-

carded. In this study, the predefined number of fragments

was set to the lowest sample size among all included in the

dataset.

Identification of differentially abundant genes

The number of counts Yij in gene i and sample j was

modeled using a over-dispersed Poisson generalized linear

model (OGLM) [31, 32], i.e.

log
(
E

[
Yij|xj

])
= αi + βixj + log

(
Nj

)
,

where, αi is the log of the baseline counts expected for a

gene i, βi is the effect parameter that describes the relative

abundance of gene i between the two conditions, and xj is

an indicator function, such that xj = 1 if sample j belongs

to condition 1 and 0, otherwise. The counts Yij is assumed

to follow a Poisson distribution with a gene-specific scal-

ing of the variance (i.e. the so called quasi-Poisson model).

Furthermore, Nj was set to the factor corresponding to

the method used to normalize the data. For method

that does not use a normalization factor (rarefying and

quantile-quantile normalization), Nj was set to 1. The

model parameters αi and βi were estimated using maxi-

mum likelihood. Then, a gene is classified as a DAG using

an F-test, which decides whether the model with an effect

parameter is a better fit than the model without. FDR

was estimated using the Benjamini-Hochberg algorithm
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[33]. The OGLM was chosen for identification of DAGs

since it incorporates gene-specific between-sample vari-

ability and has previously been shown to have a high and

robust performance for many forms of shotgun metage-

nomic data. For a comparison between statistical methods

for identification of DAGs we refer the reader to [32].

Datasets

The normalization methods had their performance eval-

uated in three different publicly available metagenomic

datasets, here denoted Human gut I, Human gut II and

Marine. Human gut I contained 74 samples of sequenced

DNA from gut microbiome of control patients in a type-

2 diabetes study [5]. The choice of only using the controls

was done to exclude potentially large effects that may be

present between the healthy and sick individuals in this

study. The DNA was obtained from fecal samples, and it

was sequenced using Illumina sequencing to an average of

3.2·107 high quality reads per sample. Reads were mapped

to a common gene catalog and quantified. The gene cat-

alog was in turn mapped to eggNOG database v3.0 [34].

Human gut II contains 110 samples of sequenced DNA

from microbiomes in the human gut of healthy individu-

als in North and South America [35]. DNAwas sequenced

using massively parallel sequencing (454 sequencing) with

an average of 1.6 · 105 reads per sample. The reads were

downloaded from MG-RAST database [36], and trans-

lated into all six reading frames, which were in turn

mapped to eggNOG database v4.5 [37] using HMMER

[38]. Mapped reads with e-value of max 10−5 were kept.

The Marine dataset contains a set of samples from TARA

ocean project, a large oceanic metagenome study with a

total of 243 samples collected in 68 different locations

across the globe [6]. DNA was sequenced using Illumina

sequencing resulting in an average of 3.2 · 108 reads per

sample. Reads were mapped to an oceanic gene catalog

using MOCAT v1.2 [39] using the eggNOG database v3.0.

The count data was received directly from the project

authors. We selected the largest homogeneous experi-

mental condition consisting of 45 metagenomes extracted

from surface aquatic ocean samples using a filter sizes

between .22 to 3 µm. For all datasets, genes with more

than 75% zeros or mean abundance less than three were

excluded from the analysis, resulting in 3573, 2345 and

4372 genes for Human gut I, Human gut II and Marine,

respectively. The count data used in this study is available

at [40].

Resampling of data

The normalization methods were evaluated on artificial

data created by randomly sampling metagenomes with-

out replacement from each of the comprehensive datasets.

The artificial data was divided in two groups, represent-

ing two experimental conditions, each consisting of m

samples. Differentially abundant genes were introduced

by random selection of genes that had their number of

observed DNA fragments in one of the groups downsam-

pled. Thus, for gene i and sample j, the counts Yij were

replaced with a number generated by sampling from a

binomial distribution, such that

Ŷij|Yij ∼ Binomial(Yij, q),

where q is the effect size describing the average fold-

change in abundance. In the evaluation, the number of

samples in the groups as well as the total number of DAGs,

the distribution of DAGs between the groups and the

effect size q were varied.

Performance measures

The performance of the normalization methods was eval-

uated based on the TPR, which represents the ability to

correctly identify the DAGs, and on the FPR, which rep-

resents the amount of non-DAGs that were incorrectly

identified as DAGs. Given a ranking list of genes sorted

based on their p-values calculated by the statistical analy-

sis described above, the TPR and FPR at position k were

calculated as

TPR(k) =
TP(k)

#{DAGs}
and FPR(k) =

FP(k)

#{non-DAGs}
,

where TP(k) is the number of true positive above posi-

tion k, FP(k) is the number of false positives above posi-

tion k and #{DAGs} and #{non-DAGs} were the total

number of DAGs and non-DAGs in the dataset, respec-

tively. The true FDR (tFDR) at position k was calculated as

tFDR(k) =
FP(k)

TP(k) + FP(k)
.

while the estimated FDR (eFDR) was given by the

Benjamini-Hochberg algorithm [33]. All performance

measures were calculated based on 100 resampled

datasets. The cut-off position k was chosen as follows: for

the TPR analysis k corresponds to the position where FPR

is 0.01, for the FPR analysis k corresponds to the position

where TPR is 0.50, and for tFDR analysis k is the position

where eFDR is 0.05.

Results
In this study, we compared the performance of nine

normalization methods for shotgun metagenomic gene

abundance data. The comparison was made on artifi-

cial data consisting of two groups, created by individual

resampling without replacement of three comprehensive

metagenomic datasets. In the resampling, DAGs were

introduced by randomly selecting genes to have their

number of counts in one of the two groups downsam-

pled. Each artificial dataset was normalized using the nine

different methods and the ability to correctly identify
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the DAGs was assessed. This set-up was used to investi-

gate how the performance of the normalization methods

changed under different characteristics of the data such

as group size, proportion of DAGs and their distribution

between the two groups.

First, all methods were evaluated with the DAGs sym-

metrically distributed between the two groups. Here, 10%

of the genes were selected to be DAGs with an average

fold-change of 3 and the group size was set to 10 + 10.

The Human gut I and Marine datasets showed the over-

all highest performance for detecting DAGs (average TPR

of all methods 0.63 and 0.67 respectively), while Human

gut II, which had a substantially lower sequencing depth,

had an average TPR of 0.61 (at a fixed FPR of 0.01, Fig. 1a

and Table 2). Within each datasets, the normalization

methods showed a similar performance. One exception

was quantile-quantile that had a higher performance in

Human gut I, with median TPR of 0.69 compared to

the other methods that had a TPR around 0.62. Another

exception was normalization using rarefying, which had a

lower performance in Human gut II with a median TPR of

0.49 compared to the other methods with TPR of at least

0.62. In addition, CSS and median had a slighter higher

performance in the Marine datasets, with TPR of 0.69 and

0.68, respectively, while other methods had a TPR around

0.66.

When effects instead were added in an unbalanced way,

i.e. 10% DAGs added to the same group (Fig. 1b and

Table 2), the performance of all methods decreased sub-

stantially, reducing the TPR, in average, with 9.0 p.p. (for

an extended discussion on unbalanced DAGs in metage-

nomics see [41]). In this setting, upper quartile showed a

TPR of 0.42 for the Marine dataset, which was, compared

to its TPR of 0.66 in the balanced case, a reduction of 24

p.p.. The TPR of quantile-quantile normalization was also

reduced to a TPR of 0.54 and 0.46 in the Human gut II and

Marine datasets respectively. Reduced performance was

also observed for CSS and median in at least one dataset

(Table 2). The decrease in performance was, on the other

hand, not as large for TMM and RLE which had a TPR

between 0.55 and 0.61 for the three dataset correspond-

ing to an average reduction in TPR of 4.5 and 5.6 p.p.,

respectively.

Decreasing the group size to 3+ 3 resulted, as expected,

in a reduced TPR (Fig. 2a and Table 3). For this group size,

CSS and median had, compared to other methods, a par-

ticularly low performance. For example, in the balanced

case in Human gut I, the TPR for these methods were 0.20

and 0.22 respectively, compared to othermethods that had

a TPR between 0.28 or 0.29. A similar trend was observed

for quantile-quantile, which for larger group sizes was

one of the highest performing methods. The trend of a

substantially reduced TPR for CSS, median and quantile-

quantile with reduced group size was further accentuated

in the unbalanced case (Fig. 2b and Table 3). As previ-

ously, TMM and RLE had the overall highest TPR at low

group sizes. Their performance was especially high in the

Marine datasets, where the TPR was 0.36 for both TMM

and RLE, respectively (Fig. 2b and Table 3).

Next, we compared the results of the normalization

methods with respect to the underlying gene abundance

distributions. As expected, all scaling methods estimated

scaling factors that were highly correlated with the aver-

age gene abundance (Additional file 1: Figure S1). Several

of the methods estimated scaling factors that were highly

correlated. The correlations were especially high between

total counts and upper quartile (0.99), total counts and

RCSS (0.99), upper quartile and RCSS (0.97) as well as

TMM and RLE (0.952) (Additional file 2: Figure S2) sug-

gesting that these methods are likely to generate similar

normalization results. In contrast, the lowest correlations

were found between CSS and RCSS (0.53), total counts

and CSS (0.63) and median and RCSS (0.65). Further-

more, improper normalization is known to introduce false

correlation between genes and to investigate this, we cal-

culated the average pair-wise gene correlation before and

after normalization (Additional file 3: Figure S3). Most

normalization methods introduced a small increase in the

gene-gene correlation. The increase was highest for upper

quartile (0.035), total counts (0.027) and RCSS (0.027).

However, no increase could be found for quantile-quantile

and median.

In order to further investigate the impact of unbalanced

distribution of DAGs between groups on the normaliza-

tion performance, we fixed the group size to 10 + 10

and the fold-change to 3, and compared all the methods

under four different cases, each representing an increasing

asymmetry of the distribution of DAGs: balanced effect

(10% DAGs equally distributed over the two groups),

lightly-unbalanced effects (10% DAGs, 75% in one group,

25% in the other group), unbalanced effects (10% DAGs,

100% in one group) and heavily-unbalanced effects (20%

DAGs, 100% in one group). First, the impact of unbal-

anced DAGs on the methods performance was measured

in terms of TPR at a fixed FPR of 0.01 (Fig. 3a and Addi-

tional file 4: Table S1). For all methods, the TPR was

reduced with a more unbalanced effect added, and all

methods had their lowest TPR at the heavily-unbalanced

case. The reduction in TPR was lowest for TMM and RLE.

For instance, in the Human gut I, TMM had a TPR of

0.62, 0.61, 0.58 and 0.48, for balanced, lightly-unbalanced,

unbalanced and heavily-unbalanced cases respectively.

The corresponding number for RLE was 0.63, 0.60, 0.55

and 0.42, while quantile-quantile showed 0.69, 0.65, 0.56

and 0.34, upper quartile 0.61, 0.57, 0.49 and 0.28 and

median 0.62, 0.58, 0.50 and 0.33.

Next, we investigated the FPR at a fixed TPR of 0.50

(Fig. 3b and Additional file 5: Table S2). The trend was
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b

a

Fig. 1 True positive rate analysis for group size 10 + 10. True positive rate at a fixed false positive rate of 0.01 (y-axis) for nine normalization methods
and three metagenomic datasets (x-axis). The results were based on resampled data consisting of two groups with 10 samples in each, 10% DAGs
with an average fold-change of 3. The DAGs were added in (a) equal proportion between the groups (‘balanced’) and in (b) in only one of the
groups (’unbalanced’). The following methods are included in the figure: trimmed mean ofM-values (TMM), relative log expression (RLE), cumulative
sum scaling (CSS), reversed cumulative sum scaling (RCSS), quantile-quantile (Quant), upper quartile (UQ), median (Med), total count (TC) and
rarefying (Rare)

Table 2 True positive rate analysis for group size 10 + 10

Method
Human gut I Human gut II Marine

B U B U B U

TMM 0.62 0.58 0.63 0.59 0.66 0.61

RLE 0.63 0.55 0.62 0.60 0.66 0.59

CSS 0.61 0.53 0.65 0.55 0.69 0.61

RCSS 0.61 0.56 0.62 0.59 0.65 0.50

Quantile-quantile 0.69 0.56 0.64 0.54 0.67 0.46

Upper quartile 0.61 0.49 0.63 0.56 0.66 0.42

Median 0.62 0.50 0.64 0.52 0.68 0.59

Total count 0.61 0.54 0.63 0.57 0.65 0.49

Rarefying 0.63 0.57 0.49 0.44 0.66 0.50

True positive rate at a fixed false positive rate of 0.01 for nine normalization methods and three metagenomic datasets using a group size of 10 + 10 for 10% DAGs with an
average fold-change of 3.
B: balanced, 50% of effects added to each group.
U: unbalanced, 100% effects added to one group only
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b

a

Fig. 2 True positive rate analysis for group size 3 + 3. True positive rate at a fixed false positive rate of 0.01 (y-axis) for nine normalization methods
and three metagenomic datasets (x-axis). The results were based on resampled data consisting of two groups with 3 samples in each, 10% DAGs
with an average fold-change of 3. The DAGs were added in (a) equal proportion between the groups (‘balanced’) and in (b) only one of the groups
(‘unbalanced’). The following methods are included in the figure: trimmed mean of M-values (TMM), relative log expression (RLE), cumulative sum
scaling (CSS), reversed cumulative sum scaling (RCSS), quantile-quantile (Quant), upper quartile (UQ), median (Med), total count (TC) and rarefying
(Rare)

Table 3 True positive rate analysis for group size 3 + 3

Methods
Human gut I Human gut II Marine

B U B U B U

TMM 0.28 0.25 0.21 0.18 0.40 0.36

RLE 0.28 0.25 0.20 0.17 0.40 0.36

CSS 0.20 0.15 0.18 0.12 0.32 0.28

RCSS 0.28 0.27 0.21 0.18 0.39 0.33

Quantile-quantile 0.28 0.24 0.16 0.13 0.37 0.29

Upper quartile 0.29 0.24 0.21 0.18 0.40 0.29

Median 0.22 0.17 0.18 0.12 0.35 0.28

Total count 0.29 0.26 0.21 0.17 0.39 0.33

Rarefying 0.29 0.26 0.13 0.10 0.40 0.33

True positive rate at a fixed false positive rate of 0.01 for nine normalization methods and three metagenomic datasets using a group size of 3 + 3 for 10% DAGs with an
average fold-change of 3.
B: balanced, 50% of effects added to each group.
U: unbalanced, 100% effects added to one group only
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a

b

Fig. 3 True and false positive rates for increasing unbalanced effects. (a) True positive rate at a fixed false positive rate of 0.01 (y-axis) and (b) false
positive rate at a fix true positive rate of 0.50 (y-axis) for different distributions of effects between groups: balanced (’B’) with 10% of effects divided
equally between the two groups, lightly-unbalanced (‘LU’) with effects added 75%-25% in each group, unbalanced (’U’) with all effects added to only
one group, and heavily-unbalanced (‘HU’) with 20% of effects added to only one group (x-axis). The results were based on resampled data consisting
of two groups with 10 samples in each and an average fold-change of 3. Three metagenomic datasets were used Human gut I, Human gut II and
Marine. The following methods are included in the figure: trimmed mean ofM-values (TMM), relative log expression (RLE), cumulative sum scaling
(CSS), reversed cumulative sum scaling (RCSS), quantile-quantile (Quant), upper quartile (UQ), median (Med), total count (TC) and rarefying (Rare)
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monotone with a increasing number of false positives for

more unbalanced effects. Most methods had a low num-

ber of FPR for the balanced and lightly-unbalanced cases.

Exception was rarefying, which for Human gut II, had an

FPR of 0.011 already in the balanced case, while the other

methods had an FPR of nomore than 0.0022. In the unbal-

anced case, all methods showed an increased FPR. The

increase was especially large for quantile-quantile (FPR

of 0.050 in Marine), upper quartile (FPR of 0.020 in the

Marine dataset) and rarefying (FPR of 0.010 in Human

gut II). For the heavily-unbalanced case, the FPR was fur-

ther increased. The levels were especially high for RCSS,

quantile-quantile, upper quartile, median, total count and

rarefying (Additional file 5: Table S2). It should be noted

that for the Marine, upper quartile reached an FPR above

0.20, indicating that the number of false positives sur-

passed the number of added DAGs (Fig. 3b). TMM, RLE

and CSS, on the other hand, presented an overall sta-

ble performance. For the heavily-unbalanced base, TMM

had an FPR between 0.0036 to 0.016, RLE between 0.012

and 0.028 and CSS between 0.011 and 0.041 for all three

datasets. Note that, the performance of all methods, both

in terms of increased TPR and decreased FPR, was further

pronounced when the fold-change was increased to 5, i.e.

p = 1/5 (Additional file 4: Table S1 and Additional file 5:

Table S2).

In addition, we examined the bias of the effect size esti-

mated by the OGLM under balanced, lightly-unbalanced,

unbalanced and heavily-unbalanced cases (Additional

file 6: Figure S4). For the balanced case, all methods

resulted in estimated effect sizes close to the true fold-

change of 3. However, when the effects became unbal-

anced several methods underestimated the effect size.

This underestimation was especially large for CSS,

upper-quartile and median. In particular, in the heavily-

unbalanced case, median underestimated the effect size

with more than 20%. In contrast, the estimates were less

unbiased for TMM, RLE, RCSS, total counts and rarefying.

False positives are often a result of a skewed non-

uniform p-value distribution under the null hypothe-

sis. We therefore examined the p-value distribution of

the non-DAGs for the different normalization methods

(Fig. 4). In the balanced case where the DAGs were sym-

metrically distributed over the groups, several methods,

in particular TMM, quantile-quantile and total count,

showed small but consistent trends towards too optimistic

p-values, i.e. p-values that are smaller than expected com-

pared to the uniform distribution. However, when the

effect was changed to be heavily-unbalanced, the bias

towards too optimistic p-values increased substantially for

all methods. Methods producing the most biased p-value

distributions were quantile-quantile and upper quartile.

The bias was still present but not as serious for TMM,

RLE, RCSS and CSS.

Finally, the ability to control the FDR was evaluated. For

each normalization method, the true FDR was calculated

at a fixed estimated FDR of 0.05 (Fig. 5 and Additional

file 7: Tables S3). For the balanced case, all methods were

conservative and showed a true FDR that was smaller

than the estimated FDR. This changed, however, when the

DAGs were added in an unbalanced way. For the Marine

dataset in the lightly-unbalanced case, where 75% of the

DAGs were added to one group, quantile-quantile and

upper quartile showed a true FDR of 0.061 and 0.096,

respectively, which was higher than the estimated 0.05. In

the unbalanced case, five out of the nine methods were

not able to control the FDR in at least one dataset. For

instance, upper quartile demonstrated an especially large

true FDR of 0.53 in the Marine. For heavily-unbalanced

cases, none of the methods were able to control the FDR

in any of the datasets. Still, TMM, RLE and CSS had a less

biased true FDR than the other methods. In particular, the

true FDR of TMM was close to 0.10 in all three datasets.

On the other hand, RCSS, quantile-quantile, upper quar-

tile, total count and rarefying resulted in unacceptably

high FDRs (close to or above 50%) in at least one dataset.

Discussion
In this paper, we compared nine methods for the nor-

malization of metagenomic gene abundance data. The

ultimate aim of the normalization step is the removal of

unwanted systematic effects and thereby the reduction

of the between-sample variability. This can significantly

increase the ability to correctly identify DAGs, and to

reduce the number of false positives. In this study, the

normalization methods were therefore evaluated based

on their statistical performance when identifying DAGs

between experimental conditions. The performance was

measured in terms of TPR, FPR, skewness of the p-value

distributions and the ability to control the FDR. The com-

parison was done under realistic settings by utilizing arti-

ficial datasets created by individual resampling of three

comprehensive metagenomic studies, representing both

different forms of microbial communities and sequencing

techniques. Our results showed that most of the included

methods could satisfactory normalize metagenomic gene

abundance data when the DAGs were equally distributed

between the groups. However, when the distribution of

DAGs become more unbalanced the performance was

substantially reduced. In particular, many methods suf-

fered from decreased TPRs, increased number of false

positives and the inability to control the FDR. The size of

the groups had also a major impact on the relative nor-

malization results with several methods underperforming

when only few samples were present.

TMM and RLE had the overall best performance, both

in terms of TPR and FPR, for all three investigated

datasets. Their performance, in relation to other methods,
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Fig. 4 Quantile-quantile plots for p-values of non-DAGs. Data quantiles for the Human gut I dataset (y-axis) were plotted against the theoretical
quantiles of the uniform distribution (x-axis) for nine normalization methods. The results were based on resampled data consisting of two groups
with 10 samples in each, an average fold-change of 3, for balanced (‘B’) case where 10% effects were equally distributed in the two groups and
heavily-unbalanced (‘HU’) case where 20% effects were added in only one group. Each dashed line is one of the 100 iterations. Lines deviating from
the diagonal indicates biased p-values. The following methods are included in the figure: trimmed mean of M-values (TMM), relative log expression
(RLE), cumulative sum scaling (CSS), reversed cumulative sum scaling (RCSS), quantile-quantile (Quant), upper quartile (UQ), median (Med), total
count (TC) and rarefying (Rare)

was especially high in the unbalanced case. In fact, TMM

and RLE had an FPR less than 0.05 in all evaluations and

datasets. TMM had, in most cases, slightly higher TPR

and lower FPR than RLE, making it the highest perform-

ing method in this study. In addition, both TMM and RLE

showed less biased estimates of the effect size and their

estimated scaling factors showed high correlations. Larger

effects on the gene abundances will significantly alter the

count distributions which may result in incorrectly esti-

mated scaling factors. TMM and RLE try to circumvent

this problem by estimating the scaling factor from the

relative difference of the gene abundance between the

samples. For TMM, this procedure is done by compari-

son of samples against a reference sample and estimating

scaling factors that minimize the pairwise differences.

RLE estimates instead a reference by calculate the average

gene abundance using a geometric mean. Scaling factors

that minimize the difference between the each sample and

reference are then calculated. By using robust statistics,

both methods exclude genes that have a high relative dif-

ference, i.e. genes that are likely to be differentially abun-

dant, which increase the accuracy of the estimated scaling

factor. In contrast, the other scaling method included in

this study (CSS, RCSS, upper quartile, median, and total

count) estimates the scaling factors directly from the abso-

lute gene abundances. This makes it harder to exclude

differentially abundant genes and as a consequence, the

scaling factors may become biased, especially when the

effects are asymmetric. The high performance of TMM

and RLE observed in this study is in line with previous

evaluations on other forms of count data. For example,

McMurdie et al. [13] showed that RLE had a high per-

formance when normalizing data from operational taxo-

nomic units (OTUs) generated by amplicon sequencing.

Also, Dillies et al. [26] showed that TMM and RLE were

the most efficient methods for reducing the between-

sample variability in count data from RNA sequencing.

Our results showed that this also holds true for shotgun

metagenomic data and demonstrated that TMM and RLE

increase the ability to identify DAGs and reduce the false

positives. In addition to TMM and RLE, CSS showed a

high overall performance for larger group sizes. CSS was

particularly good at controlling the FDR, even when the

effect was highly unbalanced. Even though CSS does not

utilize the relative gene abundances, it tries to optimize

what genes to include when calculating the scaling factor.

This is done by summing low-abundant genes up to a cut-

off that is adaptively selected from the data to minimize
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Fig. 5 True false discovery rate at an estimated false discovery rate of 0.05 (y-axis) for different distribution of effects between groups (x-axis):
balanced (‘B’) with 10% of effects divided equally between the two groups, lightly-unbalanced (‘LU’) with effects added 75–25% in each group,
unbalanced (‘U’) with all effects added to only one group, and heavily-unbalanced (’HU’) with 20% of effects added to only one group. The results
were based on resampled data consisting of two groups with 10 samples in each, and an average fold-change of 3. P-values where adjusted using
Benjamini-Hochberg correction. Three metagenomic datasets were used Human gut I, Human gut II and Marine. The following methods are
included in the figure trimmed mean ofM-values (TMM), relative log expression (RLE), cumulative sum scaling (CSS), reversed cumulative sum
scaling (RCSS), quantile-quantile (Quant), upper quartile (UQ), median (Med), total count (TC) and rarefying (Rare)

the variability. It should, however, be noted that CSS had

among the worst performance for the low group size

(Fig. 2), strongly suggesting that this method only should

be applied to datasets with sufficiently many samples.

On the other end of the scale, normalization using

quantile-quantile, median and upper quartile, as well as

rarefying the data, had the overall lowest performance.

The difference in TPR, compared to highest performing

methods, was especially large in the heavily-unbalanced

cases where DAGs were exclusively present in one of the

samples. Taking the Marine dataset as an example, the

TPR for these methods were 20 p.p. lower than TMM

and RLE, which had the highest overall performance. All

these methods also resulted in high FPRs that reached,

in many cases, unacceptable levels. Among these low-

performing methods, upper quartile and rarefying also

resulted in inflated gene-gene correlation. Thus, quantile-

quantile, median, upper quartile and rarefying are not

recommended for normalization of metagenomic gene

abundance data. Interestingly, the straight-forward total

count method, which uses the total abundance of all genes

in a sample as the basis for the normalization, had, over-

all, similar or higher performance than median and upper

quartile. One argument for not using total count is that

the sum of all gene abundances can be heavily domi-

nated by the genes that are most commonly present in the

microbial community. Instead, median and upper quar-

tile should represent robust alternatives that avoid the

most commonly present genes by replacing the sum with

the 50th or 75th percentile of the gene count distribu-

tion as scaling factor. We did not, however, observe any

tendencies that median or upper quartile had an over-

all higher performance than total count. On the contrary,

the scaling factors estimated from total count and upper

quartile had a very high correlation, which has also been

shown in previous studies [42], suggesting that they pro-

duce a similar result. The performance of these methods

were indeed similar with a small advantage for total count,
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which had an overall higher TPR and a lower FPR. It

should, however, be pointed out that upper quartile has

been developed specifically for transcriptomics, and has

previously shown, using spike-in controls, to have a rea-

sonable performance for normalization of RNA-seq [26].

Our results may therefore, at least partially, reflect differ-

ences in data structure between shotgun metagenomics

and transcriptomics. It should, finally, be noted that the

RAIDA R-package contains a normalization method for

metagenomic gene abundances that has showed promis-

ing results for unbalanced effects [41]. However, this

method is tightly connected with the specific log-normal

statistical model implemented in the RAIDA package and

since it is not generally applicable, there was no straight-

forward way to include it in this comparison.

The p-values for non-DAGs should, in theory, follow

a uniform distribution. Our results showed that this

was not the case. In the situations where the DAGs

where distributed between the groups in a balanced way,

all methods generated p-value distributions that were

approximately uniform. However, when the DAGs were

only present in one of the groups, the p-value distribution

of the non-DAGs became skewed against low values.

Metagenomic gene abundances are measured relatively

to the sequencing depth and genes that are differentially

abundant will therefore, indirectly, also affect non-DAGs.

If a normalization method fails to compensate for this

’artificial’ effect, it may result in too low p-values for

non-DAGs and, in turn, in an excessive number of false

positives. Our results showed that quantile-quantile and

upper quartile normalization methods had the most

biased p-values, suggesting that this, at least partially, is

likely the cause for their high FPR. Furthermore, previous

studies have shown that statistical models for identifi-

cation of DAGs in shotgun metagenomics can result in

highly biased p-values if their underlying assumptions

are invalid [32]. In particular, gene count models that

does not incorporate gene-specific variability, such as

the popular Fisher’s exact test, can incorrectly interpret

high overdispersion as biological effects which may result

in large numbers of false positives [11, 43]. It should be

emphasized that in contrast to the biased p-values caused

by invalid model assumptions, the skewed p-value distri-

butions generated by improper normalization observed

in this study, can not be addressed by replacing the para-

metric model (the overdispersed Poisson model), with

e.g. a non-parametric method or a permutation-based

approach.

The FDR is used to control the error rate in multiple

testing of high-dimensional data [33]. Correct estimation

of the FDR is highly dependent on a uniform p-value

distribution for non-DAGs. Biased FDR estimation may

result in a large number of false positives genes, i.e.

non-DAGs incorrectly reported as significant. Our results

showed that all normalization methods achieved a cor-

rectly estimated FDR when the effects were balanced.

However, similarly to the p-values, the FDR became

biased when the DAGs were introduced in an unbal-

anced way. Already at the lightly-unbalanced case, where

effects were added to 10% of the genes distributed 75%-

25% between the groups, two methods (quantile-quantile,

upper quartile) were unable to control the FDR for at

least one dataset. At the unbalanced case (10% of the

genes set as DAGs, all in one group), six of the nine

methods resulted in considerably biased FDR estimates.

Only TMM, RLE and CSS were able to correctly con-

trol the FDR and only showed a moderate bias at the

heavily-unbalanced case (20% of the genes set as DAGs,

all in one group). Several of the other methods however

showed an unacceptable FDR bias. In particular, RCSS,

quantile-quantile, upper quartile and total count had a

true FDR close to 50% when the corresponding estimated

FDR was fixed to 5%. Our results thus show that many

normalization methods produce highly skewed p-value

distribution, which results in biased FDRs, as soon as

the DAGs becomes unbalanced between the groups. It

is worth to note that changing the approach for control-

ling the FDR to the more conservative Benjamini-Yekutieli

method or the Storey q-values method did not remove

the bias or resulted in a considerably reduced statistical

power (Additional file 8: Figure S5 and Additional file 9:

Figure S6, respectively). Controlling the number of false

positive genes is vital in high-throughput data analysis

[44, 45], since a high proportion of false positive can result

in incorrect interpretation of the results and, in worst

case, wrong biological conclusions. Using a normalization

method that can reliably analyze gene abundance from

shotgun metagenomics data without generating an unac-

ceptably high false positive rate is thus vital for statistically

sound results.

Rarefying normalizes count data by randomly removal

of DNA fragments until all samples have the same prede-

fined sequencing depth. Rarefying is commonly used in

metagenomics [46–48] and has been both argued for and

against in recent studies [13, 23]. In the present work, we

showed that rarefying had a relatively low performance for

normalization ofmetagenomic gene abundance data, both

in terms of TPR, FPR and the ability to control the FDR.

Since the ability to correctly identify DAGs increase with

increasing number of DNA fragments, discarding data, as

done by the rarefying method, has a negative effect on

the performance. The performance was particularly low

for the Human gut II dataset, where the TPR was low in

all tested cases (e.g. Figs. 1a and 3a). Human gut II had

the lowest sequencing depth of the datasets used in this

study, and the effect was therefore most visible here. How-

ever, even for the two other datasets, which hadmore than

200-fold larger number of DNA fragments, rarefying still
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was among the methods with the lowest performance. For

instance, in the Marine dataset (Fig. 5), rarefying resulted

in a highly biased FDR estimation for both the unbalanced

and the heavily-unbalanced cases. The low performance

of rarefying in the datasets with high sequencing depth

can, at least partially, be explained by the fact that genes

that are low-abundant in a community, are also in gen-

eral represented by few DNA fragments even in datasets

with high sequencing depth, and discarding reads will

have a particularly negative effect on these genes. Our

results are thus in line with [13], who has previously

demonstrated that rarefying has a low performance on

count data from OTUs generated by amplicon sequenc-

ing. It should, in this context, be pointed out that there

are situations where rarefying data may be necessary. This

includes, for example, the estimation of diversity indices

that are dependent on the sequencing depth and that have

no straight-forward to incorporate a normalization scal-

ing factor. However, for the identification of DAGs, the

use of rarefying as a method to correct for differences in

sequencing depth should be avoided.

The evaluation of normalization methods presented

in this study was based on artificial gene count data

generated by individual resampling three comprehensive

metagenomic datasets. DAGs were introduced into the

data by downsampling selected genes to simulate a lower

abundance within the community. Thus, our setup was

non-parametric and conserves important parts of the

complex variance structure present in real metagenomic

data. This includes, for example, the underlying discrete

count distributions, the between-gene correlation and the

sparsity of the data. In contrast, data used in previous

studies (e.g. [13, 23, 26]) were simulated from paramet-

ric distributions and thus represent highly idealized cases.

Even though our results are based on real metagenomic

data, there are still specific assumptions made that are

likely not to be true. The study is, for example, based

on three datasets, which is too few to cover the full

heterogeneity of the data generated within the field of

metagenomics. Also, the resampling to form the artifical

datasets was done independently which removes any cor-

relations that may exist between the metagenomic sam-

ples. The downsampling used to create DAGs was done

independently between the genes, disregarding correla-

tions between effects which has previously been observed

in microbial communities [49, 50]. Furthermore, some of

the analyzed cases, in particular when all effects were

added only to one experimental group, may be unrealistic

and not common for many forms of metagenomic exper-

iments. Nevertheless, unbalanced distribution of DAGs is

not uncommon in metagenomic data, and may, for exam-

ple, be a result of a strong selection pressures affecting

one of the experimental groups [51–53]. Also, the nature

of the effect is also often hard to predict a priori and

normalization methods that do not have an overall high

performance should therefore be avoided. The results

from the current study should, ideally, be complemented

with data that closer resemblance true metagenomic stud-

ies. However, a comprehensive reference dataset for shot-

gun metagenomics, similarly to SEQC in transcriptomics

[54], needs to be established before such an analysis can

be performed. Nevertheless, even if our data generation

approach did not reflect all the nuances of metagenomic

data and our evaluated cases did not represent all possi-

ble forms of biological effects, we argue that our approach

is more sound and provides considerably more realistic

results thanmethod comparisons based on simulated data

from parametric distributions.

Conclusion
In conclusion, our evaluation showed that the choice of

normalization method can greatly affect the quality of

the results in the analysis of gene abundances in shotgun

metagenomic data.When DAGs were asymmetrically dis-

tributed between experimental conditions, several well-

established normalization methods showed a decreased

TPR and an increased FPR. The high FPR resulted, for

many methods, in an unacceptably biased FDR which can

lead to a large number of false positives. The highest per-

forming normalization methods in our study were TMM

and RLE, and for larger group sizes CSS, which showed

a high TPR and low FPR. These methods were also the

best in controlling the FDR. Normalization is an essen-

tial step in the analysis of gene abundances in shotgun

metagenomics. Our results emphasize the importance of

selecting a sound and appropriate method for this task.

They also demonstrates that the use of inappropriate nor-

malization methods may obscure the biological interpre-

tation of data. Further research for improved data-driven

normalization of shotgun metagenomic data is therefore

warranted.

Additional files

Additional file 1: Figure S1. Histograms of Spearman correlations
between normalization factors and raw counts of non-differentially
abundant genes (non-DAGs). Spearman correlations were compute per
gene in the Human gut I, for group size 10+ 10, with 10% of effects divided
equally between the two group, and fold-change 3. Affected genes were
randomly selected in 100 iterations. The following methods are included in
the figure trimmed mean of M-values (TMM), relative log expression (RLE),
cumulative sum scaling (CSS), reversed cumulative sum scaling (RCSS),
upper quartile (UQ), median (Med) and total count (TC). (PDF 76 kb)

Additional file 2: Figure S2. Scatterplot of normalization factors for each
pair of scaling methods. Normalization factors estimated per sample in the
Human gut I, for group size 10 + 10, with 10% of effects divided equally
between the two group, and fold-change 3. Affected genes were randomly
selected in 100 iterations. The number on the top-left of each plot indicates
the Spearman correlation for the normalization factors presented in the
plot. The following methods are included in the figure trimmed mean of
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M-values (TMM), relative log expression (RLE), cumulative sum scaling
(CSS), reversed cumulative sum scaling (RCSS), upper quartile (UQ), median
(Med) and total count (TC). (PDF 316 kb)

Additional file 3: Figure S3.Mean Spearman correlation between raw
and normalized counts. Spearman correlations were compute per gene
before and after normalization in the Human gut I, for group size 10 + 10,
with 10% of effects divided equally between the two group, and fold-
change 3. Affected genes were randomly selected in 100 iterations. The
following methods are included in the figure trimmed mean of M-values
(TMM), relative log expression (RLE), cumulative sum scaling (CSS), reversed
cumulative sum scaling (RCSS), quantile-quantile (Quant), upper quartile
(UQ), median (Med), total count (TC) and rarefying (Rare). (PDF 8 kb)

Additional file 4: Table S1. True positive rate at a fixed false positive rate
of 0.01 for a group size of 10 + 10. (PDF 16 kb)

Additional file 5: Table S2. False positive rate at a fix true positive rate of
0.50 for a group size of 10 + 10. (PDF 16 kb)

Additional file 6: Figure S4. Effect size analysis of DAGs. Estimated effect
size of differentially abundant genes (DAGs) (y-axis) for different distribution
of effects between groups (x-axis): balanced (‘B’) with 10% of effects
divided equally between the two groups, lightly-unbalanced (’LU’) with
effects added 75%-25% in each group, unbalanced (‘U’) with all effects
added to only one group, and heavily-unbalanced (’HU’) with 20% of
effects added to only one group (x-axis). The results were based on
resampled data consisting of two groups with 10 samples in each, and an
average fold-change of 3. Three metagenomic datasets were used Human
gut I, Human gut II and Marine. The following methods are included in the
figure trimmed mean ofM-values (TMM), relative log expression (RLE),
cumulative sum scaling (CSS), reversed cumulative sum scaling (RCSS),
quantile-quantile (Quant), upper quartile (UQ), median (Med), total count
(TC) and rarefying (Rare). (PDF 436 kb)

Additional file 7: Table S3. True false discovery rate at an estimated false
discovery rate of 0.05 for a group size of 10 + 10. (PDF 16 kb)

Additional file 8: Figure S5. True false discovery rate for p-values
adjusted using Benjamini-Yekutieli method at an estimated false discovery
rate of 0.05 (y-axis) for different distribution of effects between groups
(x-axis): balanced (‘B’) with 10% of effects divided equally between the two
groups, lightly-unbalanced (’LU’) with effects added 75%-25% in each
group, unbalanced (‘U’) with all effects added to only one group, and
heavily-unbalanced (’HU’) with 20% of effects added to only one group.
The results were based on resampled data consisting of two groups with
10 samples in each, and an average fold-change of 3. Three metagenomic
datasets were used Human gut I, Human gut II and Marine. The following
methods are included in the figure trimmed mean ofM-values (TMM),
relative log expression (RLE), cumulative sum scaling (CSS), reversed
cumulative sum scaling (RCSS), quantile-quantile (Quant), upper quartile
(UQ), median (Med), total count (TC) and rarefying (Rare). (PDF 40 kb)

Additional file 9: Figure S6. True false discovery rate for p-values
adjusted using Storey q-values method at an estimated false discovery rate
of 0.05 (y-axis) for different distribution of effects between groups (x-axis):
balanced (‘B’) with 10% of effects divided equally between the two groups,
lightly-unbalanced (‘LU’) with effects added 75–25% in each group,
unbalanced (‘U’) with all effects added to only one group, and heavily-
unbalanced (‘HU’) with 20% of effects added to only one group. The results
were based on resampled data consisting of two groups with 10 samples
in each, and an average fold-change of 3. Three metagenomic datasets
were used Human gut I, Human gut II and Marine. The following methods
are included in the figure trimmed mean of M-values (TMM), relative log
expression (RLE), cumulative sum scaling (CSS), reversed cumulative sum
scaling (RCSS), quantile-quantile (Quant), upper quartile (UQ), median
(Med), total count (TC) and rarefying (Rare). (PDF 132 kb)
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