
PUBLISHED VERSION  

1. Matevosyan, Hrayr H.; Miller, Gerald A.; Thomas, Anthony William  
Comparison of nucleon form factors from lattice QCD against the light front cloudy bag 
model and extrapolation to the physical mass regime Physical Review C, 2005; 
71(5):055204  

 © 2005 American Physical Society 

http://link.aps.org/doi/10.1103/PhysRevC.71.055204 
 

   
 

 
 

 

 
 
 

  

 

 
 

 

 

 

 

 

 

 

 
http://hdl.handle.net/2440/58067 

 

 
 
 
 

 
 

PERMISSIONS 

http://publish.aps.org/authors/transfer-of-copyright-agreement 

 

 

“The author(s), and in the case of a Work Made For Hire, as defined in the U.S. 
Copyright Act, 17 U.S.C. 

§101, the employer named [below], shall have the following rights (the “Author Rights”): 

[...] 

3. The right to use all or part of the Article, including the APS-prepared version without 
revision or modification, on the author(s)’ web home page or employer’s website and to 
make copies of all or part of the Article, including the APS-prepared version without 
revision or modification, for the author(s)’ and/or the employer’s use for educational or 
research purposes.” 

 

 

 

27th March 2013 

 

http://hdl.handle.net/2440/58067�
http://hdl.handle.net/2440/58067�
http://link.aps.org/doi/10.1103/PhysRevC.71.055204�
http://hdl.handle.net/2440/58067�
http://publish.aps.org/authors/transfer-of-copyright-agreement�


PHYSICAL REVIEW C 71, 055204 (2005)

Comparison of nucleon form factors from lattice QCD against the light front cloudy bag model and
extrapolation to the physical mass regime

Hrayr H. Matevosyan
Louisiana State University, Department of Physics and Astronomy, 202 Nicholson Hall, Tower Dr., Baton Rouge, Louisiana 70803, USA

and Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, Virginia 23606, USA

Gerald A. Miller
University of Washington, Department of Physics, Box 351560, Seattle, Washington 98195-1560, USA

Anthony W. Thomas
Thomas Jefferson National Accelerator Facility, 12000 Jefferson Ave., Newport News, Virginia 23606, USA

(Received 20 January 2005; published 23 May 2005)

We explore the possibility of extrapolating state of the art lattice QCD calculations of nucleon form factors
to the physical regime. We find that the lattice results can be reproduced using the light front cloudy bag model
by letting its parameters be analytic functions of the quark mass. We then use the model to extend the lattice
calculations to large values of Q2 of interest to current and planned experiments. These functions are also used
to define extrapolations to the physical value of the pion mass, thereby allowing us to study how the predicted
zero in GE(Q2)/GM (Q2) varies as a function of quark mass.
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I. INTRODUCTION

The electromagnetic form factors of the nucleon are an
invaluable source of information on its structure [1]. For
example, observing their fall as Q2 increases from zero
revealed the finite extent of the nucleon, and measuring the
Sachs electric form factor of the neutron, Gn

E [2,3], that it has
a positive core surrounded by a long-range, negative tail [4–6].
In the last few years particular interest has focused on the
ratio of the electric and magnetic form factors of the proton,
GE/GM , where recoil polarization data [7,8] have revealed
a dramatic decrease with Q2—in contrast with earlier work
based on the Rosenbluth separation. These data have allowed
one of us to deduce a fascinating spin dependence of the shape
of the nucleon [9].

While the behavior of GE/GM with Q2 was anticipated in
some models (e.g., see Refs. [10,11]), there is no consensus as
to which explanation best represents how QCD works. Direct
guidance from QCD itself would be most valuable and for that
purpose lattice QCD represents the one and only technique by
which one can obtain nonperturbative solutions to QCD.

The QCDSF Collaboration recently presented lattice QCD
simulations for the form factors of the nucleon over a
wide range of values of momentum transfer [12]. While
these were based on the quenched approximation, with an
unsophisticated action, several lattice spacings were chosen
with the smallest being around 0.05 fm (β = 6.4) and at
present these are the state of the art. The quark masses used
in the simulations correspond to pion masses in the range
(0.6–1.2) GeV. Therefore one needs to parametrize the form
factors as a function of pion mass and extrapolate to the
physical value before comparing these lattice results with the
experimental data.

At Q2 = 0 there have been a number of studies of the chiral
extrapolation of baryon magnetic moments [13–16]. However,

there is no model independent way to respect the constraints of
chiral symmetry over the range of Q2 and mπ required by the
QCDSF data. Instead, at finite Q2, one has been led to study
various phenomenological parametrizations [17], which have
at least ensured the correct leading order nonanalytic structure
as mπ → 0. Our purpose here is threefold. First, we wish to
use the lattice data to investigate whether a particular quark
model is capable of describing the properties of the nucleon
in this additional dimension of varying mπ—an important test
which any respectable quark model should satisfy.1 Second,
having confirmed that the model is consistent with the lattice
data over the range of mπ noted earlier, we use the model to
extrapolate to large values of Q2 (for lattice values of mπ ).
Third, we also use the model to extrapolate to the physical
pion mass.

The model which we consider here is the light front cloudy
bag model (LFCBM) [19], which was developed as a means of
preserving the successes of the original cloudy bag model [6],
while ensuring covariance in order to deal unambiguously with
modern high energy experiments. The light front constituent
quark model, upon which it is built [10], predicted the rapid
decrease of GE/GM with Q2 and, as the pion cloud is
expected to be relatively unimportant at large Q2, this success
carries over to the LFCBM [19]. Furthermore the LFCBM
corresponds to a Lagrangian built upon chiral symmetry, so it
can be extended to the limit of low quark mass as well as low
and high Q2.

The outline of the paper follows. In Sec. II we briefly review
the LFCBM. In Sec. III we present the lattice QCD data,

1Just as the study of QCD as a function of Nc has proven extremely
valuable, so the study of hadron properties as a function of quark
mass, using the results of lattice QCD calculations, undoubtedly offers
significant insight into QCD, as well as new ways to model it [18].
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explain the fitting procedure, and present the results.
Section IV contains some concluding remarks.

II. REVIEW OF THE LFCBM

The light front cloudy bag model (LFCBM) respects
chiral symmetry and Lorentz invariance and reproduces the
four nucleon electromagnetic form factors. Therefore it is
reasonable to try to use it to extrapolate the form factors
computed using lattice QCD to the physical pion mass. We
begin by briefly introducing the key features of the LFCBM.

The LFCBM is a relativistic constituent quark model
incorporating the effect of pion-loops, key features motivated
by chiral symmetry. The light-front dynamics is employed
to maintain the Poincaré invariance, and one pion-loop
corrections are added to incorporate significant pion cloud
effects (particularly in the neutron electric form factor and
magnetic moments) as well as the leading nonanalytic behavior
imposed by chiral symmetry. In light-front dynamics the fields
are quantized at a fixed “time” = τ = x0 + x3 ≡ x+. The
light front time or τ -development operator is then P 0 − P 3 ≡
P −. The canonical spatial variable is x− = x0 − x3, with a
canonical momentum P + = P 0 + P 3. The other coordinates
are x⊥ and P⊥. The relation between the energy and momentum
of a free particle is given by p− = (p2

⊥ + m2)/p+, with the
quadratic form allowing the separation of center of mass and
relative coordinates. The resulting wave functions are frame
independent. The light front technique is particularly relevant
for calculating form factors because one uses boosts that are
independent of interactions.

Our goal is to calculate the Dirac F1 and Pauli F2 form
factors given by

〈N, λ′p′|Jµ|N, λp〉
= uλ′(p′)

[
F1(Q2)γ µ + F2(Q2)

2MN

iσµν(p′ − p)ν

]
uλ(p).

(1)

The momentum transfer is qµ = ( p′ − p)µ,Q2 = −q2 and
Jµ is taken to be the electromagnetic current operator for a free
quark. For Q2 = 0 the form factors F1 and F2 are, respectively,
equal to the charge and the anomalous magnetic moment κ in
units of e and e/(2MN ), and the magnetic moment is µ =
F1(0) + F2(0) = 1 + κ . The evaluation of the form factors is
simplified by using the so-called Drell-Yan reference frame
in which q+ = 0, so that Q2 = q2

⊥ = q2
1 . If light-front spinors

for the nucleons are used, the form factors can be expressed
in terms of matrix elements of the plus component of the
current [21]:

F1(Q2) = 〈N,↑ |J+|N,↑〉
and

QF2(Q2) = (−2MN )〈N,↑ |J+|N,↓〉. (2)

The form factors are calculated using the “good” component
of the current, J+, to suppress the effects of quark-pair terms.
Finally, we note that in our fits we will use the Sachs form

N N

(a)

N N N N

k

(b)

k
N

N
N

(c)

FIG. 1. Diagrams.

factors, which are defined as

GE = F1 − Q2

4M2
N

F2, GM = F1 + F2. (3)

The next step is to construct the bare (pionless) nucleon
wave function 	, which is a symmetric function of the quark
momenta, independent of reference frame, and an eigenstate
of the canonical spin operator. The commonly used ansatz is

	(pi) = 

(
M2

0

)
u(p1)u(p2)u(p3)ψ(p1, p2, p3),

(4)
pi = pi si , τi ,

where ψ is a spin-isospin color amplitude factor, the pi are
expressed in terms of relative coordinates, the u(pi) are Dirac
spinors and 
 is a momentum distribution wave function. The
specific form of ψ is given in Eq. (12) of Ref. [20] and earlier
in Ref. [11]. This is a relativistic version of the familiar SU(6)
wave function, with no configuration mixing included. The no-
tation is that pi = (p+

i , pi⊥). The total momentum is P = p1 +
p2 + p3, the relative coordinates are ξ = p+

1 /(p+
1 + p+

2 ), η =
(p+

1 + p+
2 )/P +, and k⊥ = (1 − ξ )p1⊥ − ξp2⊥, K⊥ = (1 −

η)(p1⊥ + p2⊥) − ηp3⊥. In computing a form factor, we take
quark 3 to be the one struck by the photon. The value of 1 − η

is not changed (q+ = 0), so only one relative momentum, K⊥
is changed: K′

⊥ = K⊥ − ηq⊥. The form of the momentum
distribution wave function is taken from Schlumpf [22]:


(M0) = N
(
M2

0 + β2
)γ

, (5)

with M2
0 the mass-squared operator for a noninteracting

system:

M2
0 = K2

⊥
η(1 − η)

+ k2
⊥ + M2

ηξ (1 − ξ )
+ M2

1 − η
. (6)

Schlumpf’s parameters were β = 0.607 GeV, γ = −3.5,

M = 0.267 GeV, where the value of γ was chosen so that
Q4GM (Q2) is approximately constant for Q2 > 4 GeV2, in
accord with experimental data. The parameter β helps govern
the values of the transverse momenta allowed by the wave
function 
 and is closely related to the rms charge radius. The
constituent quark mass, M, was primarily determined by the
magnetic moment of the proton. We shall use different values
when including the pion cloud and fitting lattice data.

A physical nucleon can sometimes undergo a quantum
fluctuation so that it consists of a bare nucleon and a virtual
pion. In this case, an incident photon can interact electromag-
netically with a bare nucleon, Fig. 1(a), with a nucleon while a
pion is present, Fig. 1(b), or with a charged pion in flight,
Fig. 1(c). These effects are especially pronounced for the
neutron GE [6], at small values of Q2. The tail of the negatively
charged pion distribution extends far out into space, causing
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the mean square charge radius, R2
n, to be negative. The effects

of the pion cloud need to be computed relativistically if one is
to confront data taken at large Q2. This involves evaluating the
Feynman diagrams of Fig. 1 using photon-bare-nucleon form
factors from the relativistic model, and using a relativistic π -
nucleon form factor. The resulting model is defined as the light-
front cloudy bag model LFCBM [19]. The light-front treatment
is implemented by evaluating the integral over the virtual
pion four-momentum k±, k⊥, by first performing the integral
over k− analytically, reexpressing the remaining integrals in
terms of relative variables (α = k+/p+), and shifting the
relative ⊥ variable to L⊥ to simplify the numerators. Thus the
Feynman graphs, Fig. 1, are represented by a single τ -ordered
diagram. The use of J+ and the Yan identity [23] SF (p) =∑

s u(p, s)u(p, s)/(p2 − m2 + iε) + γ +/2p+ allows one to
see that the nucleon current operators appearing in Fig. 1(b)
act between on-mass-shell spinors.

The results can be stated as

Fiα(Q2) = Z
[
F

(0)
iα (Q2) + Fibα(Q2) + Ficα(Q2)

]
, (7)

where i = 1, 2 denotes the Dirac and Pauli form factors, α =
n, p determines the identity of the nucleon, and F

(0)
iα (Q2) are

the form factors computed in the absence of pionic effects.
The wave function renormalization constant, Z, is determined
from the condition that the charge of the proton be unity:
F1p(Q2 = 0) = 1. For illustration we start with the calculation
of the neutron form factors. Then, evaluating the graph in
Fig. 1(b) gives

F1bn(Q2) = g2
0

∫ 1

0
dαα

∫
d2L

(2π )3
RN(L(+) 2

,α)RN(L(−) 2
,α)

× {(
F

(0)
1p (Q2) + F

(0)
1n (Q2)/2

)
[α2(M2 − Q2/4) + L2]

− [
F

(0)
2p (Q2) + F

(0)
2n (Q2)/2

]
(α2Q2/2)

}
, (8)

F2bn(Q2) = −g2
0

∫ 1

0
dαα

∫
d2L

(2π )3
RN(L(+) 2

,α)RN(L(−) 2
,α)

×
{(

F
(0)
1p (Q2) + 1

2
F

(0)
1n (Q2)

)
(2α2M2)

+
(

F
(0)
2p (Q2) + 1

2
F

(0)
2n (Q2)

)

× [
α2M2(1 − Q2/4M2) + (

L2
x − L2

y

)]}
(9)

where g0 is the bare πN coupling constant, and the renormal-
ized coupling constant Zg2

0 = g2/4π = 13.5, L(±)
⊥ ≡ L⊥ ±

αq⊥/2, α ≡ k+/p+,DN (k2
⊥, α) ≡ M2α2 + k2

⊥ + µ2(1 − α),
and RN (k2

⊥, α) ≡ [FN
πN (k2

⊥, α)]/[DN (k2
⊥, α)]. The πN form

factor is taken as [24,25]

FπN (k2
⊥, α) = e−(DN (k2

⊥,α)/2α(1−α)�2), (10)

and maintains charge conservation [27]. The constant � is a
free parameter, but very large values are excluded by the small
flavor asymmetry of the nucleon sea.

From Eqs. (8) and (9) we see that each term in the nucleon
current operator contributes to both F1 and F2. The evaluation

of graph 1(c) yields

F1cn(Q2) = −g2
0Fπ (Q2)

∫ 1

0
dαα

∫
d2K

(2π )3
R(K(+) 2

, α)

×R(K(−) 2
, α)

[
K2 + M2α2 − (1 − α)2 Q2

4

]
(11)

F2cn(Q2) = −g2
0(2M2)Fπ (Q2)

∫ 1

0
dαα2(1 − α)

×
∫

d2K

(2π )3
R(K(+) 2

, α)R(K(−) 2
, α), (12)

where K(±)
⊥ ≡ K⊥ ± (1 − α)q⊥/2.2

The proton form factors can be obtained by simply making
the replacements n → p in Eqs. (8), (9) and −g2

0 → g2
0 in

Eqs. (11), (12). The change in sign accounts for the feature that
the π− cloud of the neutron becomes a π+ cloud for the pro-
ton. The mean-square isovector radii 〈r2〉Vi , computed using
Eq. (7), and then taken to the chiral limit at low Q2, have the
same singular log terms as those of the relativistic results of
Beg and Zepeda [26].

The LFCBM was defined by choosing four free parameters:
m,β, γ,� so as to best reproduce the four experimentally
measured electromagnetic form factors of the nucleon [19]. In
the present work, the most relevant of these parameters will be
varied to reproduce lattice data, and the resulting dependence
on the quark mass and lattice spacing used to extrapolate to
the physical region.

III. FITTING THE QCDSF FORM FACTORS AND
EXTRAPOLATING TO THE PHYSICAL PION MASS

In this section we discuss the fitting procedure used to
parametrize the nucleon form factors calculated in lattice
QCD. We use data produced by the QCDSF Collaboration [12]
and employ the LFCBM to calculate the corresponding form
factors, varying the model parameters to find the best fit to the
different sets of lattice data obtained for different values of the
current quark mass, mq . The behavior of the fitting parameters
is then represented by a polynomial function of the quark
mass mq . This polynomial fit in mq , or equivalently in pion
mass squared, m2

π , can then be used to extrapolate the values
of the fitting parameters to the physical pion mass. Nucleon
form factors for the physical pion mass are then calculated
using the extrapolated values for the model parameters. In
the following few subsections a more elaborate explanation is
given and the results are presented. In Sec. III A we describe
the available data and the analysis procedure used to extract the
quantities necessary for further fits. In Sec. III B we describe
the details of the fitting and extrapolation process and in
the Sec. III C we present the nucleon form factors resulting

2These formulas are slightly different from those of Ref. [19].
This leads to slight changes in the parameters that will be discussed
elsewhere.
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from the extrapolation to the physical pion mass and make
comparisons with experiment.

A. QCDSF data and its analysis

The form factor calculations in Ref. [12] were carried
out for three different values of the lattice spacing, a =
{0.47, 0.34, 0.26} GeV−1. For each value of a several sets
of pion (or equivalently nucleon) masses were considered.
For each mass set Dirac and Pauli form factors for both the
proton and neutron were calculated at several values of Q2.
The typical range for the pion mass used varied from 1.2 to
0.6 GeV, with the corresponding nucleon mass ranging from
approximately 2 to 1.5 GeV. The typical range for Q2 was 0.6
to 2.3 GeV2.

The LFCBM is basically a relativistic constituent quark
model, so we need to relate the model constituent mass of
Eq. (6) to the masses of the nucleon and pion. To do so we use
the approach of Ref. [18], [Eq. (8)]

M = Mχ + cm
phys
q(

m
phys
π

)2 m2
π , (13)

where Mχ is the constituent quark mass in the chiral limit,
m

phys
q is the current quark mass and c is of order 1. In the

study of octet magnetic moments in the AccessQM model of
Ref. [18], the best fit value for Mχ was 0.42 GeV, while for
cm

phys
q it was 0.0059 GeV.

B. Lattice data fit and extrapolation

The first step in our extrapolation of the lattice results to the
physical quark mass is to fit the lattice results for each quark
mass mq by adjusting the parameters of the LFCBM calcu-
lation. For that purpose two fitting parameters were chosen.
The first parameter is Mχ in Eq. (13), which determines the
constituent quark mass. This parameter was varied for each
lattice spacing separately, since some dependence upon lattice
spacing was anticipated. The second parameter is the internal
parameter, γ , in the nucleon wave function Eq. (5), which is
varied separately for each pion (or equivalently nucleon) mass.
For convenience, we express all magnetic form factors GM in
“physical” units of e/2M

Physical
N . Since the LFCBM uses the

mass of the ρ meson included in the pion electromagnetic form
factor, we need the extrapolated value for its mass. We use the
simple fitting function from Ref. [28]:

mρ = c0 + c1m
2
π , (14)

with c0 = 0.776 GeV and c1 = 0.427 GeV−1.
A function representing the χ2 for the deviation between

the lattice data and the values calculated using the LFCBM was
constructed and minimized by varying the fitting parameters.
Changing the value of Mχ causes the calculated form factors to
move up or down by an amount approximately independent of
Q2, thereby causing a relatively small change in χ2. Therefore
a simple grid variation for that parameter was employed,
with grid boundaries Mχ ∈ [0.15, 0.45] GeV, and step size
of δMχ

= 0.01 GeV. As for the parameter, γ , the variation of
χ2 was much stronger and the Minuit package of CERN’s

)2 (GeV2Q
0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

P E
G

0.1

0.2

0.3

0.4

0.5

0.6

FIG. 2. (Color online) LFCBM fit to QCDSF data for
GP

E (in units of e) for a lattice spacing a = 0.26 GeV−1, MP =
1.80 GeV, and mπ = 0.93 GeV.

Root framework [29] was used for the minimization. At first
the boundaries for γ were set to keep it in the physical region,
but successful boundless runs were also performed in order to
confirm the true minimum and error sizes. The pion masses
used in the lattice calculation are very large, and the resulting
pionic effects are very small. Therefore the value of � could
not be determined from lattice data and its value was held
fixed at � = 0.58 GeV Similarly, varying β did not change
the description of the lattice data, so it was held fixed at
β = 0.607 GeV/c. The resulting fits are in good agreement
with data, as one can see in Figs. 2–5. The best-fit values
of the parameters are shown in Table I. The figures show
results for the smallest lattice spacing, a = 0.26 GeV−1, but
the reproduction of lattice data is equally successful for larger
values of a.

The next step is to extrapolate the fitting parameters to the
physical quark mass. This is done using the assumption that the
parameters vary smoothly as functions of the quark mass, and
the fact that mq ∼ m2

π over the mass range investigated. We
limited the extrapolation function to a low order polynomial
in m2

π . The resulting fits for two lattice spacings are presented
in Figs. 6 and 7, from which we see that the fitting function
provides a very accurate representation of the values obtained
from lattice data. The fitted values of γ and the extrapolation
to the physical value of mπ , with their corresponding errors,
are shown in Figs. 6 and 7.

In our calculations, Mχ has a very weak dependence on
the pion mass, but it has a rather strong dependence upon the
lattice spacing. As we see in Table I and Figs. 2–5, very good
fits to the lattice data are obtained even without varying Mχ

for each quark mass. By contrast, Fig. 8 and Table I show
rather dramatic variation of Mχ for different values of the
lattice spacing, a. This suggests that the larger values of the
lattice spacing are rather far from the continuum limit and (at
best) only the results for the smallest lattice spacing should be
compared with experimental data. It would clearly be desirable
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TABLE I. Lattice data and LFCBM fitting parameters. (All
expressed in powers of GeV.)

a mπ MN Mχ γ

0.47 1.146 2.062 0.390(5) −6.12(7)
0.47 1.068 1.981 0.390(5) −5.67(6)
0.47 0.873 1.746 0.390(5) −4.95(9)
0.47 0.752 1.567 0.390(5) −4.78(12)
0.47 0.638 1.503 0.390(5) −4.67(15)
0.47 0.135 0.938 0.390(5) −4.79(46)

0.34 1.201 2.141 0.280(5) −5.03(6)
0.34 1.035 1.933 0.280(5) −4.37(5)
0.34 0.881 1.732 0.280(5) −4.99(5)
0.34 0.706 1.522 0.280(5) −3.51(6)
0.34 0.135 0.938 0.280(5) −2.91(29)

0.26 1.237 2.202 0.210(5) −4.78(5)
0.26 1.092 2.028 0.210(5) −4.14(7)
0.26 0.925 1.802 0.210(5) −3.69(5)
0.26 0.744 1.600 0.210(5) −3.09(6)
0.26 0.580 1.379 0.210(5) −3.01(13)
0.26 0.135 0.938 0.210(5) −2.41(22)

to have new data at even smaller a, or using an improved action,
known to provide a good approximation to the continuum limit.

Use of the values of γ,M determined by the lattice data in
the LFCBM defines a lattice version of the LFCBM. We may
use this new model to compute the form factors at arbitrarily
large values of Q2, thereby extending the kinematic range
of the lattice calculations. The results are shown in Figs. 9–
12. In Figs. 13 and 14 we show the corresponding plots of
µ0GE/GM .

)2 (GeV2Q
0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

P M
G

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIG. 3. (Color online) LFCBM fit to QCDSF data for
GP

M [in units of e/(2M
Physical
N )] for a lattice spacing a = 0.26 GeV−1,

MP = 1.80 GeV, and mπ = 0.93 GeV.

)2 (GeV2Q
0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

N E
G

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

FIG. 4. (Color online) LFCBM fit to QCDSF data for
GN

E (in units of e) for a lattice spacing a = 0.26 GeV−1, MP =
1.80 GeV, and mπ = 0.93 GeV.

C. Results at the physical pion mass and
comparison with experiment

We use the extrapolated values of γ and M (Figs. 6–8) to
calculate the nucleon electric and magnetic form factors using
the physical pion and nucleon masses. The resulting plots for
GE,GM and their ratios vs Q2 for both proton and neutron
are shown in Figs. 15–20. Figure 17 shows that our results
are in more or less good agreement with the experimental
data in the low-Q2 region, but yield a slightly lower value of
Q2 for the zero crossover point than that extrapolated from
experiment [30]. A new analysis that includes an estimate of
all of the effects of two photon exchange yields a zero-crossing
value that is somewhat closer to ours [31] but future data will
resolve this unambiguously.

)2 (GeV2Q
0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

N M
G

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

FIG. 5. (Color online) LFCBM fit to QCDSF data for
GN

M [in units of e/(2M
Physical
N )] for a lattice spacing a = 0.26 GeV−1,

MP = 1.80 GeV, and mπ = 0.93 GeV.
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 (GeV)πm
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FIG. 6. (Color online) Polynomial extrapolation of γ vs mπ for
lattice spacing a = 0.47 GeV−1.

An alternative method of determining the value of the Q2

for which GE/GM passes through zero at the physical pion
mass is to fit the crossover values as a linear function of m2

π

and extrapolate again to the physical pion mass. The resulting
plot is shown in Fig. 21. This procedure yields approximately
the same crossover point as found in Fig. 17.

IV. DISCUSSION

Our study of the form factors calculated using the LFCBM
with parameters determined by lattice data and by extrap-
olation to the physical pion masses yields very interesting
results. The ratio G

p

E/G
p

M passes through zero for all of the
calculations. The main variation of the position of the crossover

 (GeV)πm
0.2 0.4 0.6 0.8 1 1.2

γ

-4.5

-4

-3.5

-3

-2.5

FIG. 7. (Color online) Polynomial extrapolation of γ vs mπ for
lattice spacing a = 0.26 GeV−1.
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 (LFCBM)πPhysical m
(AccessQM)πPhysical m

FIG. 8. (Color online) Variation of Mχ with lattice spacing a. The
best-fit values of Mχ for physical mπ using LFCBM and AccessQM
models are presented as well.

between the fitting curves shown in Figs. 13 and 14 comes from
the variation of the nucleon mass, and not the variation of γ .
Even though for the physical pion mass, the ratio varies rapidly
as a function of γ in the region γ ∼ −2, the function GE/GM

for the neutron has a turning point at about γ ∼ −2.3. We shall
explain these features using the LFCBM.

)
2

 (GeV2Q
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=0.580πm

FIG. 9. (Color online) LFCBM calculations using parameters
(Figs. 6–8) obtained by fitting the lattice results for the proton electric
form factor, GE , at lattice spacing a = 0.26 GeV−1.
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FIG. 10. (Color online) LFCBM calculations using parameters
(Figs. 6–8) obtained by fitting the lattice results for the proton
magnetic form factor, GM , at lattice spacing a = 0.26 GeV−1.

Let us express the ratio GE/GM in terms of Pauli and Dirac
form factors, F1 and F2, respectively, using Eq. (3)

GE

GM

= F1 − Q2
/(

4M2
N

)
F2

F1 + F2
= 1 − 1 + Q2

/(
4M2

N

)
1 + F1/F2

. (15)
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=0.925πm
=0.744πm
=0.580πm

FIG. 11. (Color online) LFCBM calculations using parameters
(Figs. 6–8) obtained by fitting the lattice results for the neutron electric
form factor, GE , at lattice spacing a = 0.26 GeV−1.
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FIG. 12. (Color online) LFCBM calculations using parameters
(Figs. 6–8) obtained by fitting the lattice results for the neutron
magnetic form factor, GM , at lattice spacing a = 0.26 GeV−1.

Consider first the values of Q2 = (Q2
Cross) where the ratio

GE/GM for the proton passes through zero for the set of
calculations shown in Fig. 13. Equation (15) tells us that

)
2
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FIG. 13. (Color online) LFCBM calculations using parameters
(Figs. 6–8) obtained by reproducing lattice results for the ra-
tio of proton form factors, µ0GE/GM , at lattice spacing a =
0.26 GeV−1.
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FIG. 14. (Color online) LFCBM calculations using parameters
(Figs. 6–8) obtained by reproducing lattice results for the ra-
tio of neutron form factors, µ0GE/GM , at lattice spacing a =
0.26 GeV−1.

Q2
Cross = 4M2

N

F1

F2
. (16)

Now let us consider the formula for Fiα(Q2), Eq. (7). The
second and third terms in Eq. (7) are only significant in the
low-Q2 region for physical pion masses. In the high-Q2 region,
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=0.205χ=-2.624, Mγ
=0.210χ=-2.406, Mγ
=0.215χ=-2.188, Mγ

FIG. 15. (Color online) Extrapolated calculations for the proton
electric form factor, GE , for lattice spacing a = 0.26 GeV−1. The
dashed and dotted curves show the upper and lower limits of variation
of the calculated values due to the uncertainties of the parameters γ

and Mχ .
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FIG. 16. (Color online) Extrapolated calculations for the proton
magnetic form factor, GM , for lattice spacing a = 0.26 GeV−1. The
dashed and dotted curves show the upper and lower limits of variation
of the calculated values due to the uncertainties of the parameters γ

and Mχ .

or for lattice calculations with high pion mass, these terms are
vanishingly small. Indeed the numerical calculations support

)
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P 0µ
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1

FIG. 17. (Color online) Extrapolated calculations for the ratio of
proton form factors, µ0GE/GM , for lattice spacing a = 0.26 GeV−1.
The dashed and dotted curves show the upper and lower limits of
variation of the calculated values due to the uncertainties of the
parameters γ and Mχ .
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FIG. 18. (Color online) Extrapolated calculations for the neutron
electric form factor, GE , for lattice spacing a = 0.26 GeV−1. The
dashed and dotted curves show the upper and lower limits of variation
of the calculated values due to the uncertainties of the parameters γ

and Mχ .

these statements, so we can neglect their contribution in the
rest of the discussion.
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FIG. 19. (Color online) Extrapolated calculations for the neutron
magnetic form factor,GM , for lattice spacing a = 0.26 GeV−1. The
dashed and dotted curves show the upper and lower limits of variation
of the calculated values due to the uncertainties of the parameters γ

and Mχ .
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FIG. 20. (Color online) Extrapolated calculations for the ra-
tio of neutron form factors, µ0GE/GM , for lattice spacing a =
0.26 GeV−1. The dashed and dotted curves show the upper and lower
limits of variation of the calculated values due to the uncertainties of
the parameters γ and Mχ .

The corresponding formulas for F
(0)
1 and F

(0)
2 from Ref. [20]

are

F
(0)
1 (Q2) =

∫
d2q⊥dξ

ξ (1 − ξ )

d2K⊥dη

η(1 − η)

̃†(M ′

0)
̃(M0)

× 〈
χ rel

0 (p′
1, p′

2)|χ rel
0 (p1, p2)

〉〈↑ p′
3|↑ p3〉 (17)
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FIG. 21. (Color online) Extrapolation of Q2
Cross where GE/GM

passes through zero for lattice spacing a = 0.26 GeV−1.
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FIG. 22. (Color online) Linear fit of Q2
Cross where GE/GM passes

through zero for lattice spacing a = 0.26 GeV−1.

QF
(0)
2 (Q2)

2MN

=
∫

d2q⊥dξ

ξ (1 − ξ )

d2K⊥dη

η(1 − η)

̃†(M ′

0)
̃(M0)

× 〈
χ rel

0 (p′
1, p′

2)|χ rel
0 (p1, p2)

〉〈↑p′
3|↓p3〉.

(18)

The 
̃(M0) factors are wave functions of the form of Eq. (5),
but using the lattice values of γ,M shown in Figs. 6–8.
We stress that these two integrals differ only by the last
factor, which gives the spin nonflip and spin-flip dependence
of F

(0)
1 and QF

(0)
2 /2MN , respectively. At high Q2 these matrix

elements are each of order Q, causing the ratio QF2/F1 to be
approximately constant. So we can express Q2

Cross as

Q2
Cross = 4M2

N

(∫
↑↑∫
↑↓

)2

, (19)

where
∫
↑↑ denotes the integral for F

(0)
1 , and

∫
↑↓ denotes the

integral for F
(0)
2 .

In the high-Q2 region the ratio in Eq. (19) is approximately
a constant, because the difference comes only from the overlap
factors of the spin-dependent parts of the wave functions
in the integrals (see [9,19]). So the behavior of Q2

Cross is
governed primarily by the factor M2

N . The linear variation
of Q2

Cross vs M2
N presented in Fig. 22 shows the validity of this

interpretation.
We can also understand the behavior of GE/GM versus

γ , by considering its role in the wave function. The factor γ

determines the size of the momenta appearing in the integrands
of Eqs. (17) and (18). The corresponding integrands differ
by terms that are ratios of second order polynomials of the
integration variables. For large absolute values of γ , the high
momenta are cut off more strongly, so that the contribution of
terms that cause differences between the integrals are not very
significant. For small absolute values of γ the integrals become
more sensitive to those terms and we obtain a larger variation
of the ratios of the integrals and hence the ratio GE/GM .

V. CONCLUSION

We have seen that the LFCBM can produce a very good
description of the lattice QCD data for the nucleon form factors
over a wide range of quark masses with a smooth, analytic
variation of the wave function parameter, γ , and the constituent
quark mass, M. The pion cloud plays very little role in the mass
range for which the lattice simulations have been made but
it rapidly becomes more important as we approach the chiral
limit. From the rather strong dependence of the form factors on
the lattice spacing, a, it is not yet clear that we have obtained
a good approximation to the continuum limit, but the form
factors obtained at the smallest value of a are in reasonable
agreement with experimental data in the low-Q2 region for
which the lattice simulations were made.

At present the lattice simulations are limited to values
of the momentum transfer at or below 2 GeV2 and it is
therefore a very big extrapolation to look at the behavior of
the form factors in the region of greatest current interest.
Nevertheless, the behavior of GE/GM which we find is
particularly interesting. The ratio crosses zero for all values
of the quark mass but the position where this happens
varies over a very wide range of Q2. This variation can
be understood almost entirely in terms of the variation
of the corresponding nucleon mass, given that the ratio
QF1/F2 is approximately Q2 independent in the model. We
obtain the same value of Q2 for the crossover whether we
extrapolate the position as a function of quark mass or simply
evaluate the form factors at the physical pion mass, using the
fitted dependence of the wave function parameters on pion
mass.

In the immediate future it is clearly very important to
improve on the lattice data, both by ensuring that we really have
a good approximation to the continuum limit (e.g., by using
a suitably improved action) and by extending the calculations
to higher values of Q2. It would also be important to remove
the need for quenching, even though that may not be such a
limitation at large Q2. From the point of view of developing
a deeper understanding of QCD itself it is important that the
LFCBM is able to describe the present lattice data over such a
wide range of masses. We would encourage a similar exercise
for other models as a novel test of their validity. It remains
to be seen whether the LFCBM has indeed been successful
in predicting the behavior of the form factors at higher
Q2 and indeed whether it will match future experimental
data.
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