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Comparison of Objective Image Quality Metrics
to Expert Radiologists’ Scoring of Diagnostic

Quality of MR Images
Allister Mason , James Rioux, Sharon E. Clarke, Andreu Costa, Matthias Schmidt,

Valerie Keough, Thien Huynh, and Steven Beyea

Abstract— Image quality metrics (IQMs) such as root
mean square error (RMSE) and structural similarity index
(SSIM) are commonly used in the evaluation and opti-
mization of accelerated magnetic resonance imaging (MRI)
acquisition and reconstruction strategies. However, it is
unknown how well these indices relate to a radiologist’s
perception of diagnostic image quality. In this study,
we compare the image quality scores of five radiolo-
gists with the RMSE, SSIM, and other potentially useful
IQMs: peak signal to noise ratio (PSNR) multi-scale SSIM
(MSSSIM), information-weighted SSIM (IWSSIM), gradient
magnitude similarity deviation (GMSD), feature similarity
index (FSIM), high dynamic range visible difference pre-
dictor (HDRVDP), noise quality metric (NQM), and visual
information fidelity (VIF). The comparison uses a database
of MR images of the brain and abdomen that have been
retrospectivelydegraded by noise, blurring, undersampling,
motion, and wavelet compression for a total of 414 degraded
images. A total of 1017 subjective scores were assigned
by five radiologists. IQM performance was measured via
the Spearman rank order correlation coefficient (SROCC)
and statistically significant differences in the residuals of
the IQM scores and radiologists’ scores were tested. When
considering SROCC calculated from combining scores from
all radiologists across all image types, RMSE and SSIM
had lower SROCC than six of the other IQMs included in
the study (VIF, FSIM, NQM, GMSD, IWSSIM, and HDRVDP).
In no case did SSIM have a higher SROCC or signifi-
cantly smaller residuals than RMSE. These results should
be considered when choosing an IQM in future imaging
studies.
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I. INTRODUCTION

T
HE quality of a magnetic resonance (MR) image can

be difficult to assess in a robust, objective and quan-

titative manner. This leads to challenges in the comparison

of different image acquisition and reconstruction techniques

and the validation of new ones. In practice, clinical MR

images are typically viewed by an expert radiologist, so the

radiologist’s opinion of the diagnostic quality of the image

can then be considered an appropriate measure of MR image

quality. However, applying this standard on a large scale is

often infeasible due to large image library sizes, limited time

availability of expert radiologists, and the inherent variability

in a subjective scoring technique. Objective image quality

metrics (IQMs) provide an alternative to manual subjective

scoring by allowing image quality to be calculated by a com-

puter. However, the relationship between radiologists’ opinion

of medical image quality and IQM scores is not well explored.

Objective IQMs offer several advantages over subjective

scoring by a radiologist, including the ability to be imple-

mented in an automated pipeline or as a measure within the

cost-function of a reconstruction algorithm. They also provide

a consistent measure of image quality without issues of

inter/intra-rater consistency and bias. Objective IQMs can be

broken into three categories: no-reference, reduced reference,

and full-reference IQMs [1]. No-reference IQMs such as signal

to noise ratio or entropy focus criterion [2] calculate a quality

score when no ground truth is known. Reduced reference

IQMs make use of a partially known ground truth signal.

Full-reference IQMs calculate a score for an image relative to

a known ground truth reference. Common full-reference IQMs

include root mean square error (RMSE), which calculates the

average pixel-by-pixel difference between two images, and the

structural similarity index (SSIM) [1], a more complex metric

that was developed to quantify loss of structure in a degraded

image compared to a reference.

The RMSE and, more recently, SSIM are two of the

most popular full-reference IQMs used in the MRI literature
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for validating new image acquisition [3] and reconstruction

techniques [4], including machine learning algorithms [4]–[9].

This may in part be driven by the fact that they are widely

available and implemented within existing environments such

as MATLAB (MathWorks, MA, USA). Many of these studies

incorporate a similar workflow: acquire fully sampled data,

retrospectively degrade the data, typically through undersam-

pling, and apply the new reconstruction technique. Since a

ground truth image is known from the fully sampled data, full-

reference IQMs are the most logical choice for quality assess-

ment in these studies. These IQMs can also be used when

retrospectively reconstructing golden-angle sampled dynamic

data, as in the GRASP technique [10], where a high quality

reference image could be generated from a large subset of

the collected data [11]. SSIM has also been implemented

as an automated measure of MR image quality directly into

new techniques. For instance, Hansen et al. [12] used SSIM

to estimate singular-value thresholds to denoise C-13 data,

and Akasaka et al. [13] used SSIM to guide the choice of

regularization weight in compressed sensing reconstruction.

An implicit assumption in these studies is that RMSE/SSIM

will correlate well with image quality in a medical setting.

Taking a model observer framework [14], the quality of a

medical image can be defined as how well a clinical task

(e.g. diagnosis) can be performed on it [15]. In this sense, the

gold standard of MR image quality would be some task-based

measurement such as rating the visibility of a lesion/particular

anatomical feature or measuring the diagnostic accuracy when

the image is evaluated by a radiologist. However, these can

be difficult to implement effectively, so it is common to use

a radiologist’s subjective rating of overall diagnostic quality

as a surrogate. For an IQM to perform well on MR images,

it should then correlate with radiologists’ opinion of diagnostic

image quality for a variety of image contrasts and degradations

that can affect the diagnostic quality of an MR image such as

noise or motion. Moreover, many other objective IQMs besides

RMSE/SSIM have been developed in the image processing

literature, and there may exist a more appropriate choice of

IQM for assessment of MR image quality. To our knowledge,

the efficacy of RMSE and SSIM has not been previously

studied in this specific manner.

Some previous studies that have attempted to quantify

performance of common full reference objective IQMs for

MR images have used non-expert raters [16], [17]. For many

non-medical IQM studies (for example, rating the quality of

a television picture) the use of non-expert raters is sufficient

because the quality is to be optimized for the target audi-

ence [18], which is usually a non-expert. This is not the case

for medical images because medical images are designed to

be viewed by expert radiologists. Through their specialized

training, radiologists learn to evaluate images from a unique

clinical perspective and so may have different opinions of

image quality compared to non-expert raters [19]. A previous

study by Renieblas et al. used expert raters, but only studied

IQMs from the SSIM family [20]. Our work is extended to a

more diverse group of IQMs.

An understanding of the performance of different objective

IQMs for MR images is important because, as discussed

Fig. 1. Representative set of reference images. (a) T2 Flair, (b) T2 PRO-
PELLER, (c) T1 Flair, (d) T1 LAVA-Flex (post contrast), (e) T1 Lava-Flex
(pre-contrast), (f) T2 PROPELLER.

above, these metrics are increasingly used to validate and

design new imaging techniques. Therefore, it is imperative that

the choice of metric reflect the goal: a high-quality diagnos-

tic image for radiologist assessment. This study investigates

correlations between RMSE, SSIM, and eight other common

objective IQMs with radiologists’ scoring of diagnostic MR

image quality. We hypothesized that the IQMs will exhibit a

broad range of correlations to radiologists’ ratings of image

quality. High performing IQMs should have consistently high

correlations across image type, anatomical regions, and degra-

dation types. Methods and Materials.

A. Generation of Image Library

Reference images were selected from our hospital’s Picture

Archiving and Communication System with Research Ethics

Board approval. All images were anonymized before being

transferred to a research server. The need for patient con-

sent was waived. These MR images – clinically indicated

and previously interpreted diagnostically as being negative

for clinically relevant pathology - were chosen by a Royal

College certified radiologist to have high signal to noise ratio,

no visible artifacts, and no visible malignancy. The decision

to use images void of pathology was made pointedly, given

that intraindividual variation in pathology leads to differences

in lesion conspicuity, whereas for this study the only desired

differences were those introduced by the degradations. Nine

reference images were selected from the abdomen (by A.C.)

and from the brain (by M.S.) each. All reference images were

acquired with either a GE 3T MR 750 Discovery or 1.5T

Signa HDxt scanner. Of the nine abdominal images, three

each were of the liver (post-contrast axial T1 LAVA-Flex),

pancreas (pre-contrast axial T1 LAVA-Flex), and prostate

(axial T2 PROPELLER). For the brain images, three axial

T2 FLAIR, three axial T2 PROPELLER, and three sagittal

T1 FLAIR images were used (Fig. 1). All reference images

were of size 512 × 512, except for two of the axial T2

FLAIR images, which were 256 × 256. The reference images

were originally stored as 16-bit integers with varying dynamic

range. The differences in dynamic range complicated the
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TABLE I

DESCRIPTION OF THE SIX DEGRADATION TYPES USED. THE

STRENGTH PARAMETER CONTROLS THE DEGREE OF EACH

DEGRADATION. DEGRADATION STRENGTHS FOR

PARAMETERS WERE CHOSEN AT RANDOM BETWEEN

THE MINIMUM/MAXIMUM VALUES

objective image quality assessment step, so images were first

converted to 32-bit floating point and normalized to unit

intensity.

One of six degradation techniques was individually applied

to each image: white Gaussian noise, Gaussian blurring, Rician

noise, undersampling of k-space data, wavelet compression,

and motion artifacts. All degradation techniques were ret-

rospectively applied in varying strengths to each reference

image, with the exception of motion, which was only applied

to the brain reference images. Retrospectively degrading the

images allowed for controlled and consistent degradation of

the images. Further, a ground truth image is available with

this approach, which is how full reference IQMs are used

in practice. The degradation techniques were chosen for their

commonality in MR images and use in other similar imaging

studies [21]. For each degradation type, a control parameter

was determined that controlled the strength of the degradation.

Each degradation was applied to each reference at four differ-

ent strengths. This yielded a total image library of 414 images

including the reference images. Table I provides a summary

of degradation methods and control parameter ranges, and a

representative set of the degradations is shown in Fig. 2.

The Gaussian white noise and Rician noise images were

generated by adding noise of a Gaussian distribution either

directly to the image, or to the real and imaginary compo-

nents of the Fourier transforms of the image, respectively.

Gaussian blurred images were generated by convolving the

image with a 2D Gaussian smoothing kernel of specified stan-

dard deviation, which defines the strength of the degradation.

To implement motion artifacts, the 2D image was repeatedly

Fourier transformed as it was translated horizontally across the

frame to simulate motion during k-space acquisition, similar

to Braun et al. [22]. After each Fourier transform, four lines

of k-space were kept. Once the k-space was filled, it was

Fourier transformed back to the image domain. Undersampling

was introduced by retrospectively removing components from

the Fourier transform of the images. While any pattern of

under-sampling could have been arbitrarily used (e.g., Poisson

disc, radial, etc.) in this work we used the CIRcular Carte-

sian UnderSampling pattern [23]. Undersampled images were

reconstructed with the BART toolbox [24] wavelet regular-

ization with a regularization weight of 0.01. Finally, wavelet

compressed images were generated by applying a global

threshold of a specified value to the wavelet transform of the

reference image. Wavelet transforms were generated for four

levels with sym8 type wavelets.

B. Objective IQMs

Ten full-reference objective IQMs were included in this

study: RMSE, peak signal to noise ratio (PSNR), SSIM, multi-

scale SSIM (MSSSIM [25]), information-weighted SSIM

(IWSSIM [26]), gradient magnitude similarity deviation

(GMSD [27]), feature similarity index (FSIM [28]), high

dynamic range visible difference predictor (HDRVDP [29]),

noise quality metric (NQM [30]), and visual information

fidelity (VIF [31]). Other IQMs have been proposed in the lit-

erature, but these metrics were chosen for their prevalence, per-

formance, and ease of implementation for diagnostic images.

The RMSE is a measure of the voxel-by-voxel difference

between the reference and degraded image. PSNR is a trans-

form of the RMSE (PSNR = 20∗log(max/RMSE), where

max is the maximum pixel value in the image). SSIM is a

measure of the similarity in luminance, contrast, and structural

content of the two images. MSSSIM and IWSSIM extend

SSIM by calculating it on multiple scales and incorporating

a more advanced pooling strategy of the local SSIM map by

considering local information content, respectively. GMSD is

the standard deviation of the gradient magnitude similarity

map of the two images. FSIM considers low level features such

as the phase congruency as well as the gradient magnitude.

HDRVDP is a human visual system-based metric that provides

a score based on the probability a human would detect a

difference between two images. Although originally based on a

visual difference predictor, it has been used as a quality metric

for CT images in the past [32]. Like SSIM, NQM accounts

for differences in luminance and contrast, but considers how

these effects are affected by spatial frequencies, distance,

and contrast masking effects. Finally, VIF uses natural scene

statistics to measure how much information is shared between

the reference and degraded image. A higher IQM value

corresponds to a higher quality image for all metrics except

GMSD and RMSE, where 0 denotes perfect agreement. The

reader is directed to the reference papers of each metric for

more detailed descriptions.

C. Radiologist Image Quality Assessment

Three body radiologists and two neuro radiologists were

involved in the study. The radiologists scored only images
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Fig. 2. Five degradations applied to a 512×512 T2 PROPELLER image of the brain. (a) Reference image. (b) White noise (σ = 0.04). (c) Gaussian
blur (σ = 3). (d) Motion (percent shift = 6). (e) Undersampling (R = 8) and CS reconstruction. (f) Wavelet compression (threshold = 0.2). Rician
noise is omitted from the figure due to its visual similarity to Gaussian noise at this degradation level.

from their subspecialties, using a 1-5 Likert scale. The radiol-

ogists were asked to rate the diagnostic quality of the images

with respect to delineation of relevant anatomy and ability to

confidently exclude a lesion on a 5-point scale as follows:

excellent diagnostic quality (5), good diagnostic quality (4),

fair diagnostic quality (3), poor diagnostic quality (2), and

non-diagnostic (1). This scale was calibrated by consensus

of radiologists in each subspecialty based on a training set

consisting of three reference MR images (different from

those in the testing set) and degraded images generated by

applying each degradation technique to each reference at two

representative strengths. All judgments of quality were made

in their opinion as diagnostic radiologists (e.g. their ability

to discriminate relevant tissues, their confidence in using the

image to detect, or in this case not detect, pathology, etc.).

All subsequent scoring was performed individually.

D. Data Analysis

The diagnostic image quality scores for the radiologists

were not evaluated in their raw form [33]. To account for

potential differences in quality of each reference image, raw

scores were converted first to a difference score:

Dmn = sm,re f − smn, (1)

where Dmn is the difference score for the mth radiologist

on the nth degraded image, sm,re f is the raw score of the

mth radiologist for the reference image corresponding to the

nth degraded image, and smn is the raw score of the mth

radiologist on the nth degraded image. These scores were then

converted to a z-score to account for differences in mean and

standard deviation for each radiologist:

zmn = (Dmn − µm)/σm , (2)

where µm and σm are the mean and standard deviation of the

difference scores of the mth radiologist. This converts all the

scores to a zero mean, unit standard deviation distribution.

The z-scores from each radiologist were then averaged and

rescaled from 0-100.

The Spearman rank order correlation coefficient (SROCC)

was calculated between the transformed radiologist scores and

each of the IQM scores. The SROCC is equivalent to a linear

correlation coefficient on the rank order of the data. A higher

SROCC would then correspond to a better performing IQM.

This metric was used because of the nonlinear relationship

between subjective scores and objective IQM scores [33]

(visible in Fig. 3).

Correlations were calculated under three scenarios: when

scores were divided by individual radiologists, by image type,

and by degradation type. For the first division, SROCCs were

calculated between each individual radiologist’s scores and

the IQM scores of the images they scored. This division

also includes the “combined” group, which combines all



1068 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 39, NO. 4, APRIL 2020

Fig. 3. Relationship between subjective radiologist score and IQMs for the full image library (414 images). Images are sorted by degradation type.
The fit is calculated on all images using the non-linear regression in (3).

TABLE II

INFORMATION ABOUT EACH GROUP OF IMAGES IN THE TESTING SET FOR EACH OF THE THREE SUBDIVISIONS USED FOR ANALYSIS. N IS THE

NUMBER OF IMAGES IN EACH GROUP. FOR GROUPS IN WHICH SOME IMAGES RECEIVED DIFFERENT NUMBERS OF RATINGS, THE NUMBER IN

PARENTHESIS IN THE RATINGS PER IMAGE COLUMN IS THE NUMBER OF IMAGES RATED BY THE ACCOMPANYING NUMBER OF

RADIOLOGISTS, I.E. 36 IMAGES DEGRADED BY WHITE NOISE WERE RATED BY 3 RADIOLOGISTS AND

THE OTHER 36 WERE ONLY RATED BY 2 RADIOLOGISTS

radiologists’ scores for all images in the study. The image type

division presents SROCCs for each group of reference image.

The radiologists’ scores for images in each group are averaged

and the SROCC is calculated with the corresponding IQM

scores. Finally, images are grouped by degradation type where

all images degraded by a particular technique are grouped

and the SROCC is calculated. The sizes of each group are

described in Table II.

A variance-based hypothesis test was performed to measure

statistical significance in the difference in the performance of

the IQMs. First, a non-linear regression was performed on the

IQM scores according to the equation [33]:

Q p = β1

(

1

2
−

1

1 + exp (β2 (Q − β3))

)

+ β4 Q + β5, (3)

where Q are the original IQM scores and β are the model

parameters. The residuals between the IQM scores after the

regression and the radiologists scores were calculated and

Gaussianity was confirmed by measuring the kurtosis of the

residuals. Residuals with a kurtosis between 2 and 4 was taken

to be Gaussian (97% were found to be Gaussian). To test for

statistical differences in the variance of residuals an F-test of

equality of variances was performed, with the null hypothesis

being that the residuals of two IQMs come from distributions

of equal variance (with 95% confidence). Since each IQM

was compared to all nine other IQMs, a Benjamini-Hochberg

correction for false discovery rate controlling was per-

formed [34]. An IQM performed statistically better than

another IQM if the variance of its residuals is statistically less

than the variance of the residuals of the other IQMs.

E. IQM Calculation Times

The time required by various IQM algorithms to calculate

a quality score is also of interest to researchers looking to

adopt these metrics. To measure this, we repeatedly calculated

(50 times) all IQMs for all body images (512×512, N = 189).

Timing calculations were performed in MATLAB 2017b

running on a 24 CPU Linux research server (Intel X5650,

2.67GHz).

II. RESULTS

Fig. 3 shows the radiologists’ scores versus each IQM for

the “combined” subgroup, which is the combination of all

images and all radiologist scores. The data is sub-divided by

degradation type. The IQMs are ordered by decreasing average

SROCC when the data is broken up by each radiologist. This

order is kept throughout all results for consistency. As shown

in Fig. 3, all IQM scores demonstrated a trend to improve

(decrease for RMSE and GMSD, increase for all others) as

radiologists’ image quality scores increase. However, a varying

strength of this trend is seen among IQMs. The sensitivities
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TABLE III

WEIGHTED COHEN’S KAPPA FOR SCORES BETWEEN

RADIOLOGISTS RATING THE SAME SET OF IMAGES

Fig. 4. Spearman rank order correlation coefficient for each IQM when
data is divided by radiologist (top), reference type (middle), or degrada-
tion type (bottom).

of each of the IQMs to different degradation types can also be

clearly seen. The weighted kappa [35] between radiologists

who rated the same set of images is presented in Table III.

Moderate to substantial agreement was found [36].

The SROCC of each IQM with each radiologist’s scores

are shown in Fig. 4. This ordering of the IQMs show the

decreasing correlations of the IQMs with the radiologist scores

in each subgroup. Note that RMSE and SSIM are among

the metrics with the lowest SROCC. Overall, VIF had the

highest SROCC values. Results of the hypothesis testing on the

variance in the residuals for each IQM in for each radiologist

are shown in Table IV. The sorted IQMs show that for many

of the radiologists in the study, VIF, FSIM, and NQM perform

statistically better than the other IQMs included in the study.

SSIM did not perform statistically better than any another

IQM including RMSE. When dividing data by reference image

type, similar results were obtained (Fig. 4). The same metrics

demonstrated higher correlation with radiologists’ scores. The

statistical differences in performance based on the variance in

the residuals of IQMs also demonstrated a similar behaviour

(Table V). The fewer significant differences is likely due

to fewer images in each subgroup. When dividing the data

by degradation type, the variation in SROCC between IQMs

is less clear (Fig. 4). This lack of variation is shown by

the small number of statistically different performance of

the IQMs (Table VI). NQM appears to perform particularly

well for images degraded by noise as it has a statistically

better performance than all other IQMs except FSIM for these

images. IWSSIM performed poorly for images degraded by

undersampling artifacts, showing statistically larger residuals

compared to all other IQMs for these images.

The calculation times of the IQMs are shown in Table VII.

The simple and rapid algorithms of RMSE, PSNR, and GMSD

demonstrate short calculation times (all less than 2 seconds).

SSIM and MSSSIM have slightly longer calculation times

(less than 20 seconds) and FSIM, NQM, and IWSSIM are

longer still (less than 45 seconds). The VIF (241 ± 6seconds)

and HDRVDP (403 ± 5seconds) IQMs are shown to have the

longest calculation times of the metrics in this study.

III. DISCUSSION

The results of this study have important implications for

researchers who are developing MR image acquisition and

reconstruction techniques and using objective IQMs to test,

validate and/or optimize their techniques. Recently, SSIM has

gained popularity as a surrogate for RMSE as the IQM of

choice, with the underlying assumption that it provides a more

accurate measure of image quality. However, the results of this

study demonstrate that, in the retrospectively degraded images

used, SSIM does not show a significantly stronger correlation

with radiologist opinion of diagnostic image quality than

RMSE, and that there are other objective IQMs that perform

better. This does not imply that previous studies that use

RMSE or SSIM are invalid, since RMSE and SSIM were still

seen to correlate with radiologists’ scores, but that there exist

other metrics that may provide a more accurate measure of

diagnostic image quality.

When considering the trends in Fig. 3 and the bottom of

Fig. 4, it appears as if the factor that most affects IQM

performance is how uniformly the IQM quantifies the quality

of images with different degradations. For instance, in Fig. 3,

VIF shows substantial overlap of all degradation techniques,

but as one progresses through the metrics, the distributions

of degradations in the Rad Score-IQM plane become much

more distinguishable. One can clearly discern the distribu-

tions of different degradation techniques for IQMs such as

PSNR or RMSE. In the extreme case of SSIM, a bimodal

distribution appears between the noise and other degradations.

As seen in Fig. 4, when the images are divided by degradation

type, each IQM has a similar SROCC with the radiologists
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TABLE IV

STATISTICAL SIGNIFICANCE IN RESIDUALS OF IQM SCORES AFTER REGRESSION AND RADIOLOGISTS SCORES (SIGNIFICANCE LEVEL = 0.05

WITH BENJAMINI-HOCHBERG CORRECTION FOR MULTIPLE COMPARISONS) WHEN DATA IS BROKEN UP BY RADIOLOGIST. A ‘1’ MEANS

THE IQM PERFORMED STATISTICALLY BETTER THAN THE IQM OF THE COLUMN. A ‘0’ MEANS IT WAS STATISTICALLY WORSE.

A ‘-’ MEANS NO SIGNIFICANT DIFFERENCE. THE ORDER OF THE SUB-ELEMENTS IS: COMBINED, BODY RADIOLOGIST 1,

BODY RADIOLOGIST 2, BODY RADIOLOGIST 3, NEURORADIOLOGIST 1, AND NEURORADIOLOGIST 2

TABLE V

STATISTICAL SIGNIFICANCE IN RESIDUALS OF IQM SCORES AFTER REGRESSION AND RADIOLOGISTS SCORES (SIGNIFICANCE LEVEL = 0.05

WITH BENJAMINI-HOCHBERG CORRECTION FOR MULTIPLE COMPARISONS) WHEN DATA IS BROKEN UP BY REFERENCE IMAGE TYPE.

A DESCRIPTION OF THE TABLE FORMAT IS PROVIDED IN TABLE IV. THE ORDER OF THE SUB-ELEMENTS IS: T1 FLAIR (BRAIN),

T1 LAVA-FLEX (POST-CONTRAST, LIVER), T1 LAVA-FLEX (PRE-CONTRAST, PANCREAS), T2 FLAIR (BRAIN),

T2 PROPELLER (BRAIN), T2 PROPELLER (PROSTATE)

score. It is only when the different degradations are grouped

together that the differences in performance of IQMs arise.

This is important to notice because, as discussed in the Intro-

duction, an IQM should correlate with radiologists’ opinion

over a range of degradations. This also shows how choice of

degradation types and strengths can affect the results of studies

of this nature.

After normalizing each radiologist’s score and combining

scores across all images, we found that VIF exhibited the

highest SROCC of all the metrics evaluated in this study.

These results suggest that VIF provides the most accurate

surrogate measure of subjective image quality scores of a

radiologist of the IQMs included in this study. VIF is unique

among IQMs in this study in that it generates a quality score

based on shared information between the reference image

and the distorted image, instead of generating a score from

an algorithm based on some definition of signal fidelity.

In VIF, the information in the reference image is calculated

from natural scene statistics. The distorted image is modelled

as the reference image passed through a distortion channel.

The VIF is found from the information remaining in the

degraded image from the reference image. It should be noted

that VIF is designed with natural scene statistics, not med-

ical image statistics, indicating an area of potential future

research.

FSIM and NQM also consistently demonstrated high cor-

relations with the radiologist scores. Indeed, NQM had per-

formed statistically better than VIF for images degraded

with Gaussian noise, undersampling, or wavelet compression.

This is consistent with other similar studies of MR images
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TABLE VI

STATISTICAL SIGNIFICANCE IN RESIDUALS OF IQM SCORES AFTER REGRESSION AND RADIOLOGISTS SCORES (SIGNIFICANCE LEVEL = 0.05

WITH BENJAMINI-HOCHBERG CORRECTION FOR MULTIPLE COMPARISONS) WHEN DATA IS BROKEN UP BY DEGRADATION TYPE.

A DESCRIPTION OF THE TABLE FORMAT IS PROVIDED IN TABLE IV. THE ORDER OF THE SUB-ELEMENTS IS: GAUSSIAN

NOISE, GAUSSIAN BLUR, MOTION, RICIAN NOISE, UNDERSAMPLING, AND WAVELET COMPRESSION

TABLE VII

AVERAGE FOR CALCULATION TIMES IN SECONDS OF EACH METRIC FOR ALL BODY IMAGES (RESOLUTION: 512 × 512, N = 189)

[16], [17]; however, a key distinction between these stud-

ies and ours is that we correlated with the image qual-

ity scores of expert radiologists instead of non-experts. For

Renieblas et al. [20], who did use expert raters, moderate

agreement in SROCC was found from IQMs used in both

our study and theirs (SSIM: 0.54 versus 0.44; MSSSIM: 0.63

versus 0.60). Differences are likely due to differences in

degradation techniques/strengths, as well as variability in the

subjective scoring by experts.

For all IQMs, there is significant variation in the radiolo-

gists scores for a particular value of the IQM (Fig. 3). For

example, in images that had an averaged scaled radiologist

score of 50, the VIF ranged from 0.30-0.68. Similar trends

can be seen in the results of Chow et al. [17]. This highlights

the difficulties in predicting subjective scoring with objective

IQMs, since there will always be variability in the subjective

scoring and the IQMs and radiologists may have different

sensitivities or preferences for different forms of degradation.

As machine learning algorithms advance, it is possible they

may be able to learn this sensitivity and preferences in ways

objective IQMs cannot.

There are some aspects of our study which may limit the

generalizability of our results. First, we limited the scope of

this study to ten objective IQMs. Since many IQMs exist,

including all of them is not feasible. It is possible that a

metric not included in this study could demonstrate stronger

correlation with radiologists’ opinion of image quality than

any of the IQMs we evaluated. We also limited our choice of

IQM to full-reference IQMs because these are most commonly

used for the validation of imaging techniques. Full-reference

IQMs allowed us to use retrospectively degraded images,

which adds more control to the study, but may add artificiality

to the degraded images and limit the generalizability of the

results in practice. A similar study with no-reference IQMs

may also be considered, particularly for techniques that wish

to assess the diagnostic quality of MR images on the scanner

as part of a built-in quality assurance system. The present

study only included data from brain images and body images,

but presented both independently and together, which allows

for the interpretation of the data for specific applications.

However, our results may not be generalizable to other MRI

systems, anatomical regions, or even different MRI sequences.

Finally, it should be noted that the scoring of diagnostic quality

in a clinically normal MR image is strongly related to but

not necessarily equivalent to scoring of an image containing

pathology. Our current work focused on clinically normal

images, a critical first step in determining if IQMs developed

for non-experts rating natural images would also correlate with

radiologists rating diagnostic quality of MR images .Future

studies will examine whether these same IQMs correlate with

other task based measures such as lesion conspicuity scores

in images containing pathology or diagnostic accuracy.

IV. CONCLUSION

We measured the correlations between 10 full-reference

objective IQMs and the subjective image quality score of five

subspecialty radiologists. When considering images divided by

reference location or combining all images in the study, SSIM
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and RMSE demonstrated statistically worse performances than

other metrics evaluated, suggesting that SSIM and RMSE

are potentially not ideal surrogate measures of MR image

quality as determined by radiologist evaluation. The VIF,

FSIM, and NQM demonstrated the highest correlation with

radiologists’ opinions of MR image quality. However, these

metrics come at the cost of longer calculation times, which

may influence their use in future research. Differences in the

performance of the IQMs was also largely lost when images

are divided by degradation type. Both the IQM SROCC values

and calculation times presented in this study should be con-

sidered in future imaging studies applying an objective IQM

to assess the quality of an MR image, for example in studies

evaluating novel image reconstruction algorithms. These data

also highlight the importance of the ongoing development of

techniques for automatic and objective assessment of image

quality.
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