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Abstract: Using efficient methods to calculate heat transfer in building components is an important
issue. In the current work, 14 numerical methods are examined to solve the heat transfer problem
inside building walls. Not only heat conduction but convection and radiation are considered as well,
in addition to heat generation. Five of the used methods are recently invented explicit algorithms,
which are unconditionally stable for conduction problems. First, the algorithms are verified in a
1D case by comparing the results of the methods to an analytical solution. Then they are tested on
real-life cases in the case of surface area (made of brick) and cross-sectional area (two-layer brick
and insulator) walls with and without thermal bridging. Equidistant and non-equidistant grids are
used as well. The goal was to determine how the errors depend on the properties of the materials,
the mesh type, and the time step size. The results show that the best algorithms are typically the
leapfrog-hopscotch and the modified Dufort–Frankel and odd–even hopscotch algorithms since they
are quite accurate for larger time step sizes, even for 100 s as well.

Keywords: heat conduction; thermal insulation; thermal bridge; explicit time-integration; unconditionally
stable numerical methods

1. Introduction

Energy management plays an important role in both energy generation and energy
consumption, as well as in the struggle against global climate change by reducing CO2
emissions. Climate change measures that tackle the problem by reducing greenhouse gas
emissions are likely to be a major influence on global socio-economic development during
the 21st Century. Changes in mean temperatures will affect several energy technologies. The
most important impact is on fossil and nuclear thermal energy generation, in which higher
ambient temperatures reduce the efficiency of thermal conversion (Carnot’s rule) and, by
heating up ambient water bodies, the efficiency of cooling. Higher mean temperatures also
increase the evaporation rates in hydropower reservoirs, hence reducing the resource base
for power generation. Increasing temperatures in permafrost regions can destabilize energy
infrastructure such as wells and pipelines [1]. The energy control in the construction of
new buildings dependent on renewable energy can make a positive difference for climate
change and the economy.

There are many methods to increase the energy efficiency of buildings [2]. One of
the most effective ways is to improve the thermal behavior of the building envelope by
consuming the heat energy for domestic use or converting it to electricity by using solar
cells in the exterior envelope and also reducing the heat loss through walls [3]. The actual
space has different performances according to the position in the building, which can
be the walls, roof, or floor. For optimization of this, one needs to efficiently calculate
heat transfer. The heat transfer in building components can be calculated by using the
general heat transfer equation, which depends on many parameters: most importantly, the
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material properties and boundary conditions. If a material with good thermal properties is
used, a high heat transfer performance can be achieved. The boundary conditions mostly
depend on the environment inside and outside of the building, and they are used as input
parameters to calculate the heat through the building.

Most building heat transfer problems are multi-dimensional and transient. Moreover,
the material properties, such as the specific heat and heat conductivity, can widely vary
in the system [4] (p. 15). These make numerical computer simulations unavoidable. To
efficiently calculate the heat flow through the building components, one needs to have a
good numerical method that can handle the heat transfer parameters properly.

We are aware that plenty of numerical methods are used to solve heat transfer and
similar problems, such as finite difference schemes (FDM) [5–7] and finite element methods
(FEM) [8]. However, they can be extremely time-consuming since the examined system
must be fully discretized both in space and time. Due to material inhomogeneities, the
eigenvalues of the problem can have a very wide range (several orders of magnitude). In
these cases, the problem is rather stiff, and the so-called CFL (Courant–Friedrichs–Lewy)
threshold for the time step size is very small. When conventional explicit finite difference
methods are applied to these problems, they will be unstable when the used time step size is
larger than this small limit. That is why implicit methods, which have much better stability
properties, are typically used for solving these kinds of equations; see, for example, [9–15].
They solve equation systems containing the whole system matrix; thus, they can use a lot
of CPU time and computer memory, especially when the number of cells is large, which is
always the case in three dimensions.

It is well known that the former rapid increase in CPU clock frequencies is over, and
the tendency toward increasing parallelization in high-performance computing is very
strong [16,17]. Thus, we think that time is on the side of the explicit methods because they
can be much more straightforwardly parallelized. That is why we started to investigate
explicit algorithms with improved stability properties, along with other scholars; see [18–26]
for examples. These explicit methods can also serve as a basis for implicit methods, as in the
paper [27].

Our research group recently constructed many explicit algorithms that are uncondi-
tionally stable for the heat conduction equation in arbitrary space dimensions [28–32]. In
those original papers, the algorithms were tested using completely discontinuous random
material parameters and initial conditions. It turned out that they can supply us with quite
accurate results, and they are orders of magnitude faster than the widely used MATLAB
‘ode’ routines. Then, in our last paper [33], we examined 13 methods for heat conduction
problems in an insulated wall. This current paper can be considered as a continuation of
that paper and contains novelties from several points of view. Most importantly, here we
consider not only conduction but convection and radiation as well. This latter one is nonlin-
ear; thus, now we have a much more difficult problem. We have to adapt the algorithms to
the conduction–convection–radiation equation, which, however, can be performed in more
than one different way. In the case of the CNe-type methods, these ways are so nontrivial
that we omitted them from this publication and included other methods instead, such as
the explicit Euler scheme. Note that, apart from our works, no comparative study has
been performed even about the known explicit and stable methods examined in this paper,
namely the UPFD, Dufort–Frankel (DF), odd–even hopscotch, and rational Runge–Kutta
methods (for the definitions, see the next section). For example, Gasparin et al. [34] made a
comparison of the DF scheme with the Explicit (Euler), Crank–Nicolson, and hyperboliza-
tion schemes to simulate moisture transfer in porous materials. Then they investigate the
DF, the implicit and the explicit Euler, as well as the alternating direction implicit methods
to simulate heat transfer in building envelopes [26], but they do not even mention that other
explicit and stable schemes exist. Their results also suggest that stable explicit methods
(DF in their case) can be proposed to solve these problems. The goal of this paper is to
persuade the scientific community of this by the examination of how the performance of
these methods changes by varying some parameters of the physical system and of the mesh
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and which of them can be proposed under different circumstances. In this paper, the tests
are performed in the building walls containing a metallic thermal bridge, which is also a
novelty compared to our previous paper.

The outline of the paper is as follows:

Section 2 Problem statement, discretization and time integration methods.
Section 2.1 The studied system with the equations, discretization for spatially uniform and
non-uniform cases.
Section 2.2 The studied numerical algorithms.
Section 3 Verification in one space dimension.
Section 3.1 Weak nonlinearity with the domination of convection.
Section 3.2 Strong nonlinearity due to large temperatures.
Section 4 Preliminaries for the simulation of the wall: materials, mesh construction, initial
and boundary conditions.
Section 5 Results of the wall simulation.
Section 5.1 Surface of the wall.
Section 5.2 Cross-section of a brick wall with insulation, equidistant and non-equidistant mesh.
Section 5.3 Cross-section of the insulated wall with a thermal bridge, equidistant and
non-equidistant mesh.
Section 6 Discussion, summary and future plans.

2. The Studied Problem and the Methods
2.1. The Equation and Its Spatial Discretization

The following linear parabolic PDE describes the phenomenon of the simplest Fourier-
type conduction of heat in a homogeneous medium with a heat source:

∂u
∂t

= α ∇2u + q, (1)

where u = u(
→
r , t) is the temperature, α is the thermal diffusivity, and q is the heat source

or heat generation. Based on Newton’s law of cooling, convective heat transfer can be
taken into account [35] by a term K(ua − u), where the ambient temperature ua may be
considered as it does not depend on u, and thus can obviously be included into the heat
source term q. It means that a term −Ku + q can represent heat convection. In Section 4, it
will be explained how this K = K(

→
r ) coefficient is connected to the usual convection heat

transfer coefficient h usually used in building energetics.
On the other hand, based on the Stefan–Boltzmann law [36] (Chapter 8), the radiative

heat loss of a surface can be expressed by a term −σu4, where the proportionality constant
σ is now the product of the surface area and the Stefan–Boltzmann constant, all of which
are nonnegative quantities. The incoming radiation, which may include direct sunlight, can
be similarly incorporated into the source term q as the Kua term above. Therefore, one can
extend the heat conduction Equation (1) to include the heat generation source, convection,
and radiation terms as follows:

∂u
∂t

= α ∇2u + q− K · u− σ · u4. (2)

If the material properties such as the heat conductivity depend on space, one has to
use an even more general equation

∂u
∂t

=
1
cρ
∇(k∇u) + q− K · u− σ · u4, (3)

where k = k(
→
r , t), c = c(

→
r , t) and ρ = ρ(

→
r , t) are the heat conductivity, specific heat and

the mass density, respectively. Let us assume that the c and ρ functions are positive and the
α = k/(cρ) equation holds.
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In the case of Equation (2) in one dimension, the most standard central differ-
ence formula

∂2

∂x2 u(xi) ≈
u(xi+1)−u(xi)

∆x +
u(xi−1)−u(xi)

∆x
∆x

=
ui−1 − 2ui + ui+1

∆x2 ,

is applied to the α ∇2u term, which is second-order in ∆x, i = 1 , . . . , N, where N is the
total number of nodes. With this, we obtain the following spatially discretized form of
Equation (2) in one space dimension:

dui
dt

= α
ui−1 − 2ui + ui+1

∆x2 + q− Kui − σui
4. (4)

Let us now present the similar discretization of Equation (3). This procedure is
described in more detail in Chapter 5 of the book [37], for the case of underground reservoirs.
Let us suppose that the k, c, and ρ quantities are functions of the space variables instead of
being constants. Now if Equation (3) is discretized using a one-dimensional, equidistant
grid, we have

∂2u(xi)

∂x2 =
1

c(xi)ρ(xi)∆x

[
k
(

xi +
∆x
2

)
u(xi + ∆x)− u(xi)

∆x
+ k
(

xi −
∆x
2

)
u(xi − ∆x)− u(xi)

∆x

]
.

Now we switch from node to cell variables, which means that ui, ρi, and ci is going to
be the (average) temperature, density, and specific heat of cell i, respectively, while ki,i+1 is
the heat conductivity between the cell labelled by i and its right-hand side neighbor. Now
the spatially discretized form of Equation (3) will have the form

dui
dt

=
1

ciρi∆x

(
ki,i+1

ui+1 − ui
∆x

+ ki−1,i
ui−1 − ui

∆x

)
+ q− Kui − σui

4

We generalize this for a non-equidistant grid with a non-uniform cross section, which
is still one-dimensional. If the length and the (average) cross section of the cell is denoted
by ∆ xi and Ai, then the distance between the center of the cell i and its neighbor j can
be expressed as dij =

(
∆xi + ∆xj

)
/2. The area of the interface between cell i and its right

neighbor is approximated as Ai,i±1 ≈ Ai ≈ Ai±1. Now, we have

dui
dt

=
1

ciρi∆xi Ai

(
Ai,i+1ki,i+1

ui+1 − ui
di,i+1

+ Ai,i−1ki,i−1
ui−1 − ui

di,i−1

)
+ q− Kui − σui

4.

The volume and the heat capacity of the cell is calculated as Vi = Ai ∆xi and
Ci = ciρiVi, respectively. We introduce the thermal resistance between these neigh-
boring cells, which is estimated as Rij ≈ dij/kij Aij. With these quantities, the spatially
discretized form of Equation (3) can be written as follows:

dui
dt

=
ui−1 − ui
Ri−1,iCi

+
ui+1 − ui
Ri+1,iCi

+ q− Kui − σui
4. (5)

This can be straightforwardly generalized further, thus we have the following system
of ordinary differential equations (ODEs) for the time derivative of each cell variable with
an arbitrary number of neighbors:

dui
dt

= ∑
j 6=i

uj − ui

Ri ,jCi
+ q− Kui − σui

4. (6)

This ODE system can be used in the case of arbitrary (e.g., unstructured) grids, which
may contain cells of various shapes and properties. Of course, irregular discretization can
decrease the spatial accuracy, but in this paper, only rectangle-shaped cells are used.
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2.2. The Applied Numerical Methods

We present the algorithms adapted for Equations (2) and (3), which have the spatially
discretized form (4) and (6), respectively. First, their formula is given for the simplest case,
i.e., one dimensional, equidistant mesh, Equation (4), which is used for verification. The
more general forms, which can be applied to (6) are immediately given because these will
be used to simulate the heat transfer in the wall.

Only equidistant temporal discretization is used in this paper with time step size ∆t,
and un

i denotes the temperature of cell i at the time n∆t. In the case of Equation (4), the
usual expression for the mesh-ratio r = α∆t

∆x2 is used for the 1D equidistant mesh. On the
other hand, for the general discretization (6), the following quantities are introduced

ri = ∆t∑
j 6=i

1
CiRij

and Ai = ∆t∑
j 6=i

un
j

CiRij
+ ∆t · qi. (7)

The first quantity is the generalization of r, and more precisely, for Equation (4), the
ri = 2r relation holds. The second quantity is an aggregated quantity, which mediates the
temperature of the neighbors of cell i.

1. The most widespread explicit algorithm to solve the heat conduction equation is the
FTCS (forward time central space) scheme, in which the time integration is based on
the explicit Euler method. Now this is adapted to our case in the most standard way;
thus, the special and the general formulas are the following:

un+1
i = (1− 2r)un

i + r
(
un

i−1 + un
i+1
)
+ ∆t · qi − ∆t · K · un

i − ∆t · σ · (un
i )

4,

and un+1
i = (1− ri)un

i + Ai − ∆t · Ki · un
i − ∆t · σi · (un

i )
4.

2. We make an attempt to modify the Explicit Euler method using a trick, which is
similar to the one used in the case of the UPFD or the pseudo-implicit method (see
later). It means that during discretization, the convection and the radiation terms are
taken into account fully or partly at the new time level, thus with a nonlocality in time.
It is worth noting that non-standard discretization sometimes means nonlocality in
space [38]. In our case, the time-discretized equation will be the following:

un+1
i − un

i
∆t

=
α

∆x2

(
un

i−1 − 2un
i + un

i+1
)
+ qi − K · un+1

i − σ · un+1
i (un

i )
3

With this, we obtain the new explicit formulas as follows

un+1
i =

(1− 2r)un
i + r

(
un

i−1 + un
i+1
)
+ ∆t · qi

1 + ∆t · K + ∆t · σ · (un
i )

3 , (8)

and similarly, for the general case

un+1
i =

(1− ri)un
i + Ai

1 + ∆t · Ki + ∆t · σi · (un
i )

3

Since now the convection and the radiation terms are present in the denominator,
they can hardly yield numerical instability even for very large values of the tem-
perature. In the current work, we call this scheme the Non-Standard Explicit Euler
Method (NS-Exp).

3. Heun’s method, sometimes called the explicit trapezoidal rule, is probably the most
common second-order Runge–Kutta (RK) scheme for ODEs and ODE systems [39], so
it is straightforward to use it as a component of the method of lines. It starts with a
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predictor step, which is an explicit Euler stage. In the cases of Equations (4) and (6), it
has the form:

upred
i = (1− 2r)un

i + r
(
un

i−1 + un
i+1
)
+ ∆t · q− ∆t · K · un

i − ∆t · σ · (un
i )

4,

and upred
i = (1− ri)un

i + Ai − ∆t · K · un
i − ∆t · σ · (un

i )
4.

Now the corrector-step follows, which uses the average of the obtained and the old
values of the u variable:

un+1
i = un

i − r
(

un
i + upred

i

)
+ r

un
i−1 + upred

i−1 + un
i+1 + upred

i+1
2

+
∆t
2
·
(
(q + qnew)− K ·

(
un

i + upred
i

)
− σ ·

(
un

i + upred
i

)4
)

,

and

un+1
i = un

i − ri
un

i + upred
i

2
+

∆t
2

(
Ai + Anew

i − K ·
(

un
i + upred

i

)
− σ ·

(
un

i + upred
i

)4
)

,

where Anew
i = ∆t ∑

j 6=i

upred
j

Ci Rij
+ ∆t · qi.

4. The UPFD method was constructed by Chen-Charpentier and Kojouharov [40] for the
linear diffusion–advection–reaction equation. It is actually a witty and non-standard
combination of the explicit and implicit Euler-discretizations, where only the actual
node is treated implicitly and the neighbors explicitly as follows:

un+1
i = un

i + r
(

un
i−1 − 2un+1

i + un
i+1

)
⇒un+1

i =
un

i + r
(
un

i−1 + un
i+1
)

1 + 2r
.

Recently we adapted it to the case of Equations (2) and (3); see Algorithm 2 in [32]. In
the case of Equation (1), it reads as follows:

un+1
i =

un
i + r

(
un

i−1 + un
i+1
)
+ ∆t · qi

1 + 2r + ∆t · K + ∆t · σ · (un
i )

3 , (9)

and the general form for Equation (3) is:

un+1
i =

un
i + Ai

1 + ri + ∆t · Ki + ∆t · σi · (un
i )

3 . (10)

One can see that the convection and the radiation terms are treated similarly as in
Equation (8).

5. The Dufort–Frankel (DF) algorithm is obtained from the so-called leapfrog explicit
scheme by a modification; see p. 313 in [41]. It is a known but non-traditional explicit
scheme, which is unconditionally stable for the linear heat equation. Now the formula
for the case of Equations (4) and (6) are as follows:

un+1
i =

(1−2r)un−1
i +2r(un

i−1+un
i+1)+∆t·q−2∆t·K·un

i −2∆t·σ·(un
i )

4

1+2r ,

and un+1
i =

(1−ri)u
n−1
i +2Ai−2·∆t·K·un

i −2·∆t·σ·(un
i )

4

1+ri
.

One can see that the formulas contain un−1
i ; thus, it is a two-step but one-stage method.

Since it is not self-starter, another method must be used to start the DF method by the
calculation of u1

i . For this purpose, we apply the UPFD Formulas (9) and (10).
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6. We make an attempt to modify this DF method using the non-standard trick as in
Equation (8) to deal with convection and the radiation terms. With this, these terms
pop up in the denominator as follows;

un+1
i =

(1− 2r)un−1
i + 2r

(
un

i−1 + un
i+1
)
+ ∆t · q

1 + 2r + 2∆t · K + 2∆t · σ · (un
i )

3

and un+1
i =

(1− ri)un−1
i + 2Ai

1 + ri + 2 · ∆t · K + 2 · ∆t · σ · (un
i )

3

7. From the family of the Rational Runge–Kutta (RRK) methods, we chose a two-stage
version [42] with the following definition. In the first stage, a full step is taken by
the explicit Euler (FTCS) scheme to obtain the predictor value. The increment for
Equation (4) is calculated as

g1
i = r

(
un

i−1 − 2un
i + un

i+1
)
+ ∆t · q− ∆t · K · un

i − ∆t · σ · (un
i )

4 ,

and for Equation (6):

g1
i = −run

i + Ai − ∆t · K · un
i − ∆t · σ · (un

i )
4

Using these g1
i values, the predictor values can be obtained for all grid types as

upred
i = un

i + g1
i .

After this, using the predictor values obtained above, the increment of a second
Euler-step is calculated:

g2
i = r

(
upred

i−1 − 2upred
i + upred

i+1

)
+ ∆t · q− ∆t · K · upred

i − ∆t · σ · (upred
i )

4
,

and g2
i = −riu

pred
i + Anew

i − ∆t · K · upred
i − ∆t · σ · (upred

i )
4
.

Now one needs to calculate the following scalar products

p1 =

(
→
g

1
,
→
g

1
)
=

N

∑
i=1

g1
i g1

i , p12 =

(
→
g

1
,
→
g

2
)
=

N

∑
i=1

g1
i g2

i , p2 =

(
→
g

2
,
→
g

2
)
=

N

∑
i=1

g2
i g2

i ,

and with them, one obtains the final expression for the new values of the variable:

un+1
i = un

i +
2p1g1

i − 2p12g1
i + p1g2

i
4p1 − 4p12 + p2

.

8. The pseudo-implicit (PI) method is Algorithm 5 from [32] with parameter λ = 1. For
Equation (4), the following two-stage algorithm is applied:

Stage 1 : upred
i =

un
i +

r
/

2
(
un

i−1 + un
i+1
)
+ ∆t · q

1 + r + ∆t · K + ∆t · σ · (un
i )

3 .

Stage 2 : un+1
i =

(1− r)un
i + r

(
upred

i−1 + upred
i+1

)
+ ∆t · q− ∆t · K · (upred

i − un
i )

1 + r + ∆t · K + ∆t · σ ·
(

upred
i

)2
· un

i

.
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For a general grid, the two stages can be written as

Stage 1 : upred
i =

un
i + Ai

1 + ri + ∆t · K + ∆t · σ · (un
i )

3 , where Anew
i = ∆t∑

j 6=i

upred
j

CiRij
+ ∆t qi

Stage 2 : un+1
i =

(1− ri)un
i + Anew

i

1 + ri + ∆t · K + ∆t · σ · (upred
i )

2
· un

i

, where Anew
i = ∆t∑

j 6=i

upred
j

CiRij
+ ∆t qi

One can see that this algorithm is fully explicit, and the convection and the radiation
term are treated in a quite sophisticated way at the second stage since both the un

i and

the upred
i values are used.

9. To use an odd–even hopscotch method, a special, so-called bipartite spatial grid is
necessary, where the cells are labeled as odd and even, and similarly to a checkerboard,
all the nearest neighbors of the odd cells are even and vice versa. The odd–even labels
are interchanged in each time step, as is shown in Figure 1A. Originally, the standard
explicit Euler and implicit Euler formula were applied in the first and second stages,
respectively [43]. The formulas for the special and the general cases are the following:
wing two-stage algorithm is ap

Explicit Euler : un+1
i = (1− 2r)un

i + r
(
un

i−1 + un
i+1
)
+ ∆t · qi − ∆t · K · un

i − ∆t · σ · (un
i )

4

and un+1
i = (1− ri)un

i + Ai − ∆t · Ki · un
i − ∆t · σi · (un

i )
4

(11)

Implicit Euler : un+1
i =

un
i + r

(
un+1

i−1 + un+1
i+1

)
+ ∆t · qi

1 + 2r + ∆t · K + ∆t · σ · (un
i )

3 and un+1
i =

un
i + Anew

i

1 + ri + ∆t · Ki + ∆t · σi · (un
i )

3 ,

where Anew
i = ∆t ∑

j 6=i

un+1
j

Ci Rij
+ ∆t · qi. Note that the implicit formula is effectively explicit

since the un+1
j values have been just obtained at Stage 1. We call this version the

original odd–even hopscotch (OOEH) method. However, since there is a 1− 2r factor
in (12), the new temperatures can be negative for large r, which can cause unstable
behavior for large time step sizes due to the possibly large negative value of the
term (un

i )
3 in the denominator. To avoid this, we apply a simple trick of forbidding

negative values by the following simple conditional statement:

if un+1
i < 0 then un+1

i = 0. (12)

This trick will be applied in all cases in this method and the remaining methods when
there is a possibility of negative temperatures.

10. We also make an attempt to modify the first stage of OOEH (Explicit Euler) as in Equa-
tion (8). With this, the convection and the radiation terms pop up in the denominator;
thus, the first stage with the explicit Euler formula with condition (12) is as follows:

un+1
i =

(1− 2r)un
i + r

(
un

i−1 + un
i+1

)
+ ∆t · qi

1 + ∆t · K + ∆t · σ · (un
i )

3 and un+1
i =

(1− ri)un
i + Ai

1 + ∆t · K + ∆t · σ · (un
i )

3 (13)

The second stage with the “implicit” Euler scheme:

un+1
i =

un
i + r

(
un+1

i−1 + un+1
i+1

)
+ ∆t · qi

1 + 2r + ∆t · K + ∆t · σ · (un
i )

3 and un+1
i =

un
i + Anew

i

1 + ri + ∆t · Ki + ∆t · σi · (un
i )

3 .

11. The reversed odd–even hopscotch method (ROEH) is different from the OOEH
method because it applies the formulas in the opposite order: first the implicit Euler,
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then the non-standard explicit Euler formulas (13), with condition (12). However,
when first-stage calculations begin with the implicit formula, the new values of the
neighbors are not known. In the ROEH method, they are taken into account at the old-
time level, which is the same trick as the UPFD method uses; see Formulas (9) and (10).
If one changes the order of the two formulas in the code of the original NS-OEH, one
immediately obtains the code of this method. It is shown that although this method is
not very accurate for an equidistant mesh, it yields much smaller errors in the case of
extremely stiff systems than the OOEH method [44].

12. The leapfrog-hopscotch (LH) method [31] has a structure consisting of two half and
several full time steps, as one can see in Figure 1B. In the first stage (yellow box in the
figure), the following special and general formulas are used:

u
1
/

2
i =

2u0
i + Ai

2 + ri + ∆t · K + ∆t · σ ·
(
u0

i
)3 and u

1
/

2
i =

2u0
i + Ai

2 + ri + ∆t · K + ∆t · σ ·
(
u0

i
)3 (14)

Then, for the even and odd nodes, full-time steps (denoted by green boxes in the
figure) are taken strictly alternately with the formulas

uµ+1
i =

(1− r)uµ
i + r

(
u

µ+
1/2

i−1 + u
µ+

1/2
i+1

)
+ ∆t · q

1 + r + ∆t · K + ∆t · σ ·
(

uµ
i

)3 and uµ+1
i =

(1− ri/2)uµ
i + A

µ+
1/2

i

1 + ri/2 + ∆t · K + ∆t · σ ·
(

uµ
i

)3 (15)

with condition (12). The upper index µ is n for the even nodes and n + 1 for the odd
nodes. It is important that always the latest available values of the neighbors are used

(for example, in Aµ+1/2
i ) when the new values of u are calculated, regardless of the

size of the time step. This alternation goes on until the end of the last timestep (purple
box in Figure 1B), where (15) is used again, but with a halved time step size, in order
to reach the same final time point as the even nodes.

13. In the shifted-hopscotch (SH) method [30], the repeating block consists of five stages,
two of them are half, and three of them are full-time steps. These altogether span two
integer time steps for the odd and the even cells as well, as one can see in Figure 1C.
The first half-sized time step is taken for the odd cells with Formula (14), which is
symbolized by a yellow box with the number 1 in the figure. Then, a full-time step
with Formula (15), with condition (12) for the even, the odd, and the even cells follows
again, which are symbolized by green boxes with the numbers 2, 3, and 4 in the figure.
Finally, a half-length time step (pink box with number 5 inside) for the odd cells closes
the calculation with the formula

un+2
i =

(2− 2r)un+1
i + r

u
n+3
/

2
i−1 + u

n+3
/

2
i+1

+ ∆t · q

2 + ∆t · K + ∆t · σ ·
(

un+1
i

)3 and un+2
i =

(1− ri)un+1
i + A

n+3
/

2
i /2

1 + ∆t · K/2 + ∆t · σ ·
(

un+1
i

)3
/2

(16)

with condition (12) again.
14. The ASH or Asymmetric Hopscotch Method is very similar to the SH method but

contains fewer integer stages, thus using three stages instead of five (see Figure 1D).
The calculation starts with a half-time step size for the odd cell with (14). Then a
full-time step is coming for the even cell with formula (15) and condition (12), and
finally, a half-time step size with (16), again with condition (12) for the last odd cell
closes the calculation of the values.
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Figure 1. Space–time structure of (A) the original hopscotch and the reversed hopscotch meth-
ods, (B) the shifted-hopscotch method, (C) the leapfrog-hopscotch method, (D) the asymmetric
hopscotch method.

Remark 1. In our original publications, most of these methods are tested to the heat
conduction Equation (1) with or without the source term. Only the UPFD and the PI
method were defined by Equation (3). With the exception of the ASH scheme, the stability
and convergence properties are analytically proven for Equation (1), which are in complete
agreement with the numerical results. The explicit Euler and UPFD methods are first-order
in time step size, while all other methods are second-order. All of these methods are
unconditionally stable for the linear heat conduction equation, except of course Euler’s and
Heun’s methods. It means that the temperature remains finite (i.e., errors are not amplified
without bounds) for an arbitrary large time step size, i.e., the previously mentioned CFL
limit is not valid for them. However, this is not equivalent to them always being accurate.
In fact, the price one has to pay for unconditional stability is that consistency is only
conditional. This means that decreasing space step size with a constant time step size
actually yields (slowly) decreasing accuracy (but not worsening stability properties as in
the case of the traditional explicit methods). These are examined analytically as well as
numerically in our previous papers, especially in [45], e.g., for very small time step sizes,
the explicit Euler scheme is more accurate than the UPDF method, while Heun’s method
is often more accurate than, e.g., the PI method. For some examples, see Section 4 in this
paper. It must be underlined again that only very few explicit methods have unconditional
stability even for the simple heat equation, e.g., explicit Runge–Kutta methods are never
A-stable [46] (p. 60). Furthermore, in our original papers, more recently in [33], several
tests have been performed where the running times were measured. We always obtained
that the running time of these algorithms is approximately proportional to the number of
stages. We think that the new terms, e.g., the radiation term, do not significantly affect this
proportionality, but the comprehensive running-time measurements are planned in our
next paper.

In Table 1, we enlist the methods and their abbreviations. The last two columns
summarize the information on whether the method is old or recently elaborated by our
research group for the heat/diffusion equation, and whether it is unconditionally stable for
Equation (1) or not.
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Table 1. List of the methods and their abbreviations.

Abbrev. Name of the Method Recent for Heat
Conduction

Stable for Heat
Conduction

ExpE Explicit Euler no no

NS-ExpE Explicit Euler with non-standard treatment of convection
and radiation no no

Heun Heun, i.e., explicit trapezoidal no no
UPFD Unconditionally positive finite difference no yes

DF Dufort–Frankel no yes

NS-DF Dufort–Frankel with non-standard treatment of
convection and radiation no yes

RRK Rational Runge–Kutta no yes
PI Pseudo-implicit yes yes

OOEH Original odd–even hopscotch no yes

NS-OEH Original odd–even hopscotch with non-standard
treatment of convection and radiation no yes

RH Reversed hopscotch yes yes
LH Leapfrog-hopscotch yes yes
SH Shifted hopscotch yes yes

ASH Asymmetric hopscotch yes yes

Remark 2. Most of the methods have never been applied to Equation (2). Here, we
try to extensively test them, but the analytical investigation of them is out of the scope of
this paper.

3. Verification Using a 1D Analytical Solution

In this section, our goal is to verify the methods from the mathematical point of view,
thus units for the quantities are not used. The used analytical solution [32] of Equation (2)
is the following:

uexact(x, t) = te x− t, (17)

which is valid if α = 1 , K = 2 and heat source function is q(x, t) = σt4e4x−4t + ex−t. The
initial condition and the Dirichlet boundary conditions are obtained simply by substituting
the initial t and boundary x values to the analytical solution, respectively, and we fix
σ = 10−7. The (global) numerical error is the absolute difference of the numerical solutions
unum

j of the examined method and the reference solution uref
j (which is the analytical

solution here) at final time tfin. We use these node- or cell-errors of the nodes or cells to
calculate the maximum (also called L∞) error:

Error(L∞) = max
1≤j≤N

∣∣∣uref
j (tfin)− unum

j (tfin)
∣∣∣. (18)

3.1. Weak Nonlinearity

Here, the analytical solution is reproduced numerically in the (t, x) ∈ [1, 2]× [0, 4]
computational domain. The L∞ errors as a function of the time step size ∆t can be seen
in Figure 2 in a log–log diagram for ∆x = 0.01. The last curve, a straight dashed line is
proportional to ∆t2, in order to help to determine the slope of the error curves, which
gives the order of temporal convergence of the schemes. One can see most methods are
second-order, as we already mentioned. The algorithms are verified since the errors tend
to a small number much below 10−4 for decreasing time step sizes (see the left side of the
figure). This residual error cannot be avoided since it is due to the discretization of the
space, which is kept constant here. On the right-hand side of the figure, very large time step
sizes are depicted. With this, our goal is to demonstrate that these methods have very good
stability properties, i.e., their error is limited even for these large step sizes. In Figure 3,
the initial function u0, and the final analytical solution uexact is plotted with two numerical
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results at the final time as well. One can see that the numerical solutions are as smooth as
the analytical one, no unphysical oscillations appear.

Figure 2. The L∞ errors as a function of the time step size ∆t for the 14 numerical schemes of
Equation (2). The thin black dashed line is proportional to ∆t2.

Figure 3. The temperature values as a function of the x variable in the case of the initial function u0,
the analytical solution at tfin = 2, the NS-OEH method and the LH method for ∆t = 7.8 · 10−3.
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3.2. Strong Nonlinearity

Here the (t, x) ∈ [5, 6]× [6, 10] computational domain is considered with the same
parameters as in the previous subsection. The initial function has a very similar exponential
curve as in Figure 3. However, now the largest initial temperature is 742 (instead of 20),
thus the nonlinear term σu4 can have values above 3 · 104, which can be considered as a
very strong nonlinearity. The L∞ errors as a function of the time step size ∆t can be seen in
Figure 4 for ∆x = 0.01. The OOEH algorithm now yields a very large error for large time
step size, namely 1.8 · 105 in spite of condition (12). The (original) DF method (but not the
NS-DF method) also has some accuracy problems but at medium time step sizes. For larger
values of the temperature (i.e., for stronger nonlinearity), they would become unstable.

Figure 4. The L∞ errors as a function of the time step size ∆t for the numerical solutions of Equation (2).

4. Preliminaries for the Simulation of the Wall
4.1. Materials and Structures

In the present work, real material properties are taken into account. For the conduction
term, they are listed in Table 2. Note that inside a material, these coefficients are constants,
i.e., they do not depend on time, space or temperature, but at the boundary of the materials,
they have a discontinuity.

Table 2. The properties of the used materials [36].

ρ
(
kg·m−3) k

(
W·m−1·K−1) c

(
J·kg−1·K−1)

Brick 1600 0.73 800
Glass wool 200 0.03 800

Steel structure 7800 16.2 840

As one can see in Figure 5, the following cases are considered:

(A) Surface of the wall made of brick only.
(B) Two-layer cross-section of a wall consisting of brick and glass wool insulator.
(C) The same two-layer cross-section with a steel structure thermal bridge.
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Figure 5. (A) One-layer wall, (B) wall with insulator, and (C) wall with insulator and thermal bridge.

4.2. Mesh Construction

In this subsection, a wall segment with a volume 1 × 1 × 1 m is considered. The y
direction is perpendicular to the surface of Figures 5 and 6. In the current approximation,
physical quantities are not changing in the y-direction, thus that dimension is irrelevant.
From the mathematical point of view, they are two-dimensional problems, and thus, we
use ∆yi = 1 m for simplicity. For the other two coordinates, (x, z) ∈ [0, 1]× [0, 1]; thus,
the total area of the meshes is 1 m2. Two types of meshes have been constructed, namely an
equidistant mesh with square-shaped cells and a non-equidistant mesh with rectangular
cells. The number of the cells along axis x and z axis are set to Nx = 100 and Nz = 100, thus,
we have a grid with a total cell number N = Nx Nz = 10, 000. In the non-equidistant case,
there are wide cells on the left side and narrow ones on the right side of the wall. The width
decreases gradually following a geometric series. As it is well known, for r 6= 1 the sum of
the first n + 1 terms (n = Nx − 1) of a geometric series, up to the term rn, is

a + ar + ar2 + ar3 + . . . . . .+arn =
n

∑
k=0

ark = a
(

1− rn+1

1− r

)
.

We used r = 0.98, and a = 0.0234, which gives ∆x1 = 0.0234 on the left side and
∆xNx = 0.9899 · ∆x1 = 0.00317 on the right side. In the z-direction, we used the constant
grid element height (∆z = 0.01). The obtained meshes are presented in Figure 6.

We apply an equidistant grid in the case of the surface of the wall and equidistant
and non-equidistant grids to the cross-section of the wall with an insulator. In the cross-
section case, the left 50% of the cells are always brick, and the right 50% are insulators for
programming simplicity. It means that the volume of the brick and the insulator is the same
in the equidistant case, but, if there is a gradual change in the x-direction, the thickness
of the insulator is smaller (0.269 m). The thermal bridge has the same thickness as the
insulator in the x direction; thus, the horizontal position of the bridge is from x = 0.5 m to
x = 1 m for equidistant and from x = 0.731m to x = 1 m for the non-equidistant mesh. The
height of the bridge is one cell (1 cm) in the z direction, i.e., 0.01 m, while it is positioned in
row number 50 from z = 0.49 m to z = 0.50 m.

We repeat that the temperature in the middle of the cell is considered the cell tempera-
ture. The heat capacity of the cells is calculated as Ci = ciρi∆xi∆z, while for the thermal
resistance in the x-direction, the approximate formula Ri,i+1 ≈ ∆xi

ki,i+1 Ax is used. Here, Ax is
the area of the cell-surface perpendicular to x, which now can be given as Ax = ∆y∆z = ∆z.
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Therefore, in the case of the surface simulation (homogeneous material and uniform mesh),
the horizontal and vertical resistances can be written as

Ri,i+1 ≈
∆xi
ki∆z

and Ri,i+Nx ≈
∆z

ki∆xi
,

respectively, where the cell i + Nx is below cell i. In the case of the insulated wall, the
material properties or the sizes of the two neighboring cells are different; thus, the resistance
between cells i and i + 1 is

Ri,i+1 ≈
∆xi

2ki∆z
+

∆xi+1

2ki+1∆z
.

The vertical resistances can be approximated as

Ri,i+Nx ≈
∆xi

2ki∆z
+

∆xi,i+Nx

2ki,i+Nx ∆z
.

Figure 6. (A) Equidistant mesh. (B) Gradual change in the x direction.

4.3. The Initial and the Boundary Conditions

Zero Neumann boundary conditions are used in all cases for all boundaries, which
forbids conductive heat transfer at the boundaries:

∂u
∂x

(x, z = 0, t) =
∂u
∂x

(x, z = 1, t) =
∂u
∂z

(x, z = 0, t) =
∂u
∂z

(x, z = 1, t) = 0

This is implemented by setting zero for the matrix elements describing heat conduction
through the boundary via the setting of the appropriate resistances to infinity.

I Surface area. In this case, the radiation and convection transfer heat to the y
direction, i.e., perpendicular to the plane of Figure 6.

The initial condition is a linear function of the z variable:

u(x, z, t = 0) = 303− 293z. (19)

We know that this vertical change of initial temperatures may be rare in reality, but
with this, we can avoid the case when nothing is changing along the z direction, which
would be a 1D problem mathematically.

For the heat convection, we have used values from the literature [36] for the convection
heat transfer coefficient h, as shown in Table 3. The universal Stefan–Boltzmann constant
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5.67 · 10−8 W
m2·K4 is multiplied by the appropriate emissivity constant since the surface is not

a black body. With this, we obtain realistic values for σ∗. The heat generation contains a
fraction of the solar radiation, with which we obtain the value of q∗, as shown below. The
ambient temperature of the air is taken to be 30 ◦C ≈ 303 K.

Table 3. The heat source, convection and radiation parameters of the wall in the case of sur-
face area [36].

h
(

W
m2·K

)
σ∗
(

W
m2·K4×10−8

)
q∗sunny

(
W
m2

)
q∗shadow

(
W
m2

)
All elements 4 4 800 300

The term q also contains the convective heat gain due to the nonzero temperature
ua of the air (in Kelvin), with which we obtain the value of q as follows. The convective
and radiative energy transfer is perpendicular to the surface, and it is happening in the y
direction. Therefore, these are proportional to the free surface area of the element, which
is ∆x∆z here. Using this, the values of the coefficients in our Equations (2) and (3), and
we obtain:

K =
h

cρ ∆y
, σ =

σ∗

cρ ∆y
, q =

q∗

cρ ∆y
+

h
cρ ∆y

· ua,

where, as it was mentioned, ∆y = 1 m.
We supposed that the right half of the surface is in the shadow; thus, the incoming

heat is much less there. More precisely, we have

- for the first half of N (sunny part): q = 1
cρ × 800 W

m2 +
h
cρ × 303K;

- for the second half of N (shadow part): q = 1
cρ × 300 W

m2 +
h
cρ × 303K.

II Cross Sectional Area: In this case, the interior elements cannot gain or lose heat
by the heat source, heat convection, or radiation. Elements on the right and left sides
can transfer heat by radiation and convection to the x direction with the values shown
in Table 4.

Table 4. The heat source, convection, and radiation parameters on both sides of wall elements in the
case of cross-sectional area.

h
(

W
m2·K

)
σ∗
(

W
m2·K4×10−8

)
q∗(W)

Right Elements 2 5 500
Left Elements 4 4 500

We obtain the values of the coefficients in our equations, as follows

K =
h

cρ ∆x
, σ =

σ∗

cρ ∆x
, q =

q∗

cρ ∆x
+

h
cρ · ∆x

· ua

We supposed that the right elements and left elements have the following heat source
convection and radiation, as follows:

For the left elements (interior side): q = 1
cρ × 500 W

m2 +
h

cρ·∆x × 293K

For the right elements (external side): q = 1
cρ × 500 W

m2 +
h

cρ·∆x × 303K
The initial condition is again a linear function of the z variable:

u(x, z, t = 0) = 303− 288z.

The time is measured in seconds, so the time step size will also be given in seconds
in Section 5.
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5. Simulation Results

In this section, the final time (the end of the examined time interval) is tfin = 10, 000 s.
The reference solution is obtained by the ode15 s solver of MATLAB, which is a variable-
step, variable-order solver based on the (implicit) numerical differentiation formulas of
orders 1 to 5, where the letter s means that the solver has been developed for stiff problems.
It is applied here with a very small tolerance (10−10) to obtain a very accurate reference
solution, which is used in Equation (18) to calculate the maximum error. We note that since
this ODE routine solves the same spatially discretized system as our numerical methods,
the residual error is missing; thus, as we will see, the errors do not tend to a constant as ∆t
is decreased, unlike in Figures 2 and 4.

In the case of a non-uniform grid, it makes sense to calculate the energy error:

Error(Energy) = ∑
1≤j≤N

Cj

∣∣∣uref
j (tfin)− unum

j (tfin)
∣∣∣, (20)

where C is the heat capacity of the cells; see Section 2.1. This quantity conveys information
on how much energy in the system is not placed in the proper cell. Since energy is
measured in Joules and the heat capacities are large numbers in SI units, the energy errors
are much larger numbers than the maximum (temperature) errors due to the summation in
definition (20) as well.

5.1. Surface of the Wall

Here, a one-layer brick wall (see Figure 5A) is simulated. As it is written in point
I above, we applied linear initial and zero Neumann boundary conditions. We have
performed the simulations with the equidistant mesh. In Figure 7, the maximum errors as a
function of the time step sizes are presented for all methods. Note that the hopscotch-type
algorithms, especially the original OOEH and the NS-OEH, are more accurate than the
other algorithms. Heun’s method is very accurate only below the CFL limit, but above this
limit, it cannot give any meaningful results. In Figure 8, we present the initial and the final
temperature distribution, where both the effect of the initial condition and the shadow on
the right side of the wall can be observed.

Figure 7. The maximum errors as a function of the time step size ∆t for the 14 examined methods in
the case of a surface area.
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Figure 8. The temperature distribution contour in Kelvin for the equidistant mesh at initial (left)
and final time (right), in the case of multilayer cross-sectional area. The numbers on the vertical and
horizontal axes of the contours are the indices of the cells, which are the same as the coordinates in
cm units.

5.2. Cross-Section of a Brick Wall with Insulation

Here, the linear initial and Neumann boundary conditions of point II are applied to
the multilayer wall. The maximum errors are plotted for equidistant and non-equidistant
meshes in Figures 9 and 10, while the energy errors for the non-equidistant mesh can
be seen in Figure 11. The temperature distribution contours for the initial and final time
moments are shown in Figure 12. One can see that the temperature of the right-hand side
of the wall is increasing due to the larger temperature outside, but the insulator lets this
heat penetrate the wall only very slowly.

Figure 9. The maximum errors as a function of the time step size ∆t for the equidistant mesh.
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Figure 10. The maximum errors as a function of the time step size for the non-equidistant mesh.

Figure 11. The energy errors as a function of the time step size ∆t for the non-equidistant mesh.
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Figure 12. The temperature distribution contour in Kelvin for the equidistant mesh at initial (left)
and final time (right) in the case of the multilayer cross-sectional area. The numbers on the vertical
and horizontal axes of the contours are the indices of the cells.

5.3. Brick Wall with Insulation and Thermal Bridging

The conditions enlisted in point II are applied again for the multilayer wall with
thermal bridging. The maximum errors are plotted for equidistant and non-equidistant
meshes in Figures 13 and 14, respectively, while the energy errors for the non-equidistant
mesh can be seen in Figure 15. The maximum and the energy error curves are very
similar, and the most noticeable difference is that the SH and the ASH methods have larger
maximum errors but smaller energy errors than the DF and the NS-DF methods.

Figure 13. The maximum errors as a function of the time step size ∆t for the equidistant mesh and
thermal bridging.
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Figure 14. The maximum errors as a function of the time step size for the non-equidistant mesh.

Figure 15. The energy errors as a function of the time step size for the non-equidistant mesh.
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In Figure 16, the temperature contour is presented for the initial and the final time
moment, respectively, for the equidistant mesh. To let the readers see the effect of the
thermal bridge more accurately, we constructed Figure 17, where the final temperature for
z = 0.495 as a function of the x variable is shown with and without the thermal bridge.

Figure 16. The temperature distribution contour for the equidistant mesh at initial (left) and final
time (right) in the case of a multilayer cross-sectional area with thermal bridging.

Figure 17. The temperature as a function of the space variable x at the middle row (z ≈ 0.5) in the
case of the multilayer insulated wall with and without thermal bridging using an equidistant grid.

6. Discussion and Summary

We adopted 14 fully explicit numerical algorithms to solve transient heat transfer
problems, including heat conduction, convection, and radiation. First, the algorithms were
verified using a simple analytical solution in one space dimension. Then we applied the
algorithms to two-dimensional systems of a surface area and a cross-sectional area of a wall.
This latter one consisted of a brick wall with a glass wool insulator layer, and it contained a
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thermal bridging steel structure. We used equidistant and non-equidistant grids for the
cross-section area. Zero Neumann boundary conditions were applied, and the ode15 s
MATLAB routine was used as a reference solution. We showed that all of the methods
can be used for these simulations, but those which were proven to be unconditionally
stable for the heat conduction equation have much better stability properties in this more
general case as well. These methods can be used by quite large time step sizes without
stability problems; thus, the traditional explicit time integrators are severely outperformed
by them. For less stiff systems, the non-standard version of the odd-even hopscotch and
the leapfrog-hopscotch methods are the most accurate. However, as stiffness increases due
to material inhomogeneities or the non-equidistant grid, the odd–even hopscotch method
becomes less accurate, and the leapfrog-hopscotch takes the lead, while the Dufort–Frankel
scheme and the shifted- and asymmetric hopscotch methods also perform well. The UPFD
method is the least accurate, but it has the advantage that it preserves the positivity of the
temperatures for arbitrary time step size, even for the highly nonlinear case. We note that
for very small time step sizes, Heun’s method can be extremely accurate, but this level of
accuracy is redundant in most fields of engineering, including building energetics.

In the near future, we are going to perform extensive tests of the most successful
methods (especially the LH, the NS-DF, and the NS-OEH) by comparing their results and
performance (including the running times) with other solvers, e.g., ANSYS. We also plan to
validate the whole computation procedure via real physical experiments. After this, we
will be ready to apply the methods to real-life engineering problems, the most important of
those being smart wall envelopes and buildings containing phase change materials (PCM)
to increase energy efficiency. We also started to work on the parallelization of the new
algorithms on GPUs, which, due to the explicit nature of the algorithms, can be achieved
without major difficulties.
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