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Reverse Vaccinology (RV) is a widely used approach to identify potential vaccine

candidates (PVCs) by screening the proteome of a pathogen through computational

analyses. Since its first application in Group B meningococcus (MenB) vaccine in early

1990’s, several software programs have been developed implementing different flavors

of the first RV protocol. However, there has been no comprehensive review to date

on these different RV tools. We have compared six of these applications designed

for bacterial vaccines (NERVE, Vaxign, VaxiJen, Jenner-predict, Bowman-Heinson, and

VacSol) against a set of 11 pathogens for which a curated list of known bacterial

protective antigens (BPAs) was available. We present results on: (1) the comparison of

criteria and programs used for the selection of PVCs (2) computational runtime and (3)

performances in terms of fraction of proteome identified as PVC, fraction and enrichment

of BPA identified in the set of PVCs. This review demonstrates that none of the programs

was able to recall 100% of the tested set of BPAs and that the output lists of proteins

are in poor agreement suggesting in the process of prioritize vaccine candidates not to

rely on a single RV tool response. Singularly the best balance in terms of fraction of a

proteome predicted as good candidate and recall of BPAs has been observed by the

machine-learning approach proposed by Bowman (1) and enhanced by Heinson (2).

Even though more performing than the other approaches it shows the disadvantage

of limited accessibility to non-experts users and strong dependence between results

and a-priori training dataset composition. In conclusion we believe that to significantly

enhance the performances of next RV methods further studies should focus on the

enhancement of accuracy of the existing protein annotation tools and should leverage on

the assets of machine-learning techniques applied to biological datasets expanded also

through the incorporation and curation of bacterial proteins characterized by negative

experimental results.

Keywords: reverse vaccinology (RV) programs, antigen, bacterial pathogens, potential vaccine candidates (PVCs),

bacterial protective antigens (BPAs)

INTRODUCTION

Reverse Vaccinology (RV) is a genome-based approach developed for the first time in early 1990’s
by Rappuoli (3) to identify meningococcal protein vaccine candidates in Group B meningococcus
(MenB). In its original conception, since antigens inducing humoral antibody response are
primarily located in extracellular or outer membrane district, all the open reading frames extracted
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from the genome sequence of MenB strain MC58 were screened
to select proteins predicted to be surface exposed, secreted
or lipoproteins.

RV approach has revolutionized vaccine development by
adopting computerized screening of protein sequences from the
pathogen as the first step of the process, to select a subset of
promising antigens, aka potential vaccine candidates (PVCs)
(Figure 1A).

RV offers two main advantages compared to traditional
vaccine development approaches: (i) identification of candidate
antigens without the need to grow the pathogen (ii) identification
of any antigen independently by its purified quantity to be
suitable for vaccine testing.

Proteins returned by RV methods are called throughout
this review PVCs (Potential Vaccine Candidates). Other names
given to the selected proteins are VCs (Vaccine Candidates),
VTs (Vaccine Targets), PVCs (Protein Vaccine Candidates).
PVCs identified by RV undergo in-vitro and in-vivo validation
through experimental assays aimed at confirming their protective
potential. Each pathogen has its specific experimental assays
and it is hard to standardize a common set of experimental
features; the most common experimental evidences are the
protection outcomes in animal models against virulent bacterial
challenge or results obtained from correlate to protection like
the human bactericidal assay (4). In the context of this review
we refer to any candidate protein that gave positive results in
confirmatory preclinical experimental assays as BPAs (bacterial
protective antigens). In the literature synonymous of BPAs are
protective antigens (PAg), known antigens (KA), or known
protective antigens (KPA). Lists of BPAs for different bacteria
or viruses might be found in databases like Violin (Protegen)
(5) or mining the literature. A comprehensive review of the
main biological features characterizing BPAs deposited in Violin
(Protegen) might be found in Ong et al. (6).

The First RV Protocol
The first RV protocol started with the prediction of all open
reading frames from the genome of MenB (strain MC58),
in total 2,158. These open reading frames were screened to
search for homology to bacterial surface-associated proteins
using FASTA (7) and PSI-BLAST program (8). Proteins with
no hits found (hypothetical proteins) were analyzed by PSORT
(9), SignalP (10), and TMPRED program (11) to search for
putative lipoproteins, secreted proteins, outer membrane, or
periplasmatic proteins.

Abbreviations: RV, reverse vaccinology; MenB, Neisseria meningitidis serogroup

B, Meningococcus B; PVC, potential vaccine candidate; VC, vaccine candidate;

VT, vaccine target; BPA, bacterial protective antigen; PAg, protective antigen;

KA, known antigen; KPA, known protective antigen; NERVE, new enhanced

reverse vaccinology environment; BLAST, basic local alignment search tool; PSI-

BLAST, position-specific iterated basic local alignment search tool; SBA, serum

bactericidal assay; DEG, database of essential genes; OMV, outer membrane

vesicle; ACC, auto cross covariance; SVM, support vector machine; MHC, major

histocompatibility complex; MHC, major histocompatibility complex class I;

MHC, major histocompatibility complex class II; VFDB, virulence factor database;

TP, true positive; TN, true negative; FP, false positive; FN, false negative; fHbp,

meningococcal factor H binding protein; NadA, Neisseria adhesin A.

From the 2,158 proteins, 570 were selected as PVCs. Out
of them 350 were successfully expressed in Escherichia coli
and injected to immunize mice. Sera from immunized animals
were screened in a serum bactericidal assay (SBA)—a correlate
of protection against invasive meningococcal diseases—and
proteins with negative results were discarded. Among the 28
proteins able to induce bactericidal activity, 5 candidates were
selected for final formulation and, combined to outer membrane
vesicles (OMVs), later approved with the commercial name of
Bexsero R© (12).

RV Programs Overview
In the following years the RV protocol was successfully applied to
other bacterial pathogens. These pathogens include Chlamydia
pneumonia (13), Streptococcus pneumoniae (14) in which open
reading frames encoding putative surface proteins and with
significant homology to virulence factors of other bacteria
were selected and Porphyromonas gingivalis (15), in which
PVCs were identified by searching for global homology to
proteins of known surface exposure or virulence. In these
cases, the selection criteria to identify PVCs were restricted
to extracellular subcellular localization and to homology to
virulence factors already known in other bacterial species. A
review about these first applications might be found inMasignani
et al. (16).

Only in 2006 the first standalone RV program, distributed
with the name of NERVE (New Enhanced reverse Vaccinology
Environment), was published (17). Since then several other
pathogen-independent RV programs have been released.

Until now there has been no comprehensive review of the
available open-source RV programs and a systematic comparison
on a benchmark dataset was missing. In this review we compared
6 open-source standalone RV programs designed for bacterial
pathogens: NERVE, VaxiJen (18), Vaxign (19), Bowman-Heinson
(1, 2), Jenner-predict (20), and VacSol (21). We tested them on 11
different bacterial proteomes.

RV Programs Categories
RV packages can be categorized in two types, according to their
algorithmic approach: decision-tree or “filtering” and machine
learning or “classifying.” Both types take as input protein
sequences and call them as PVCs or not-PVCs.

Decision-tree or filtering RV programs
They are flowchart-like programs: the pathogen’s protein
sequences are passed through a series of filters until a subset
is identified as PVCs. The filters are done on protein features
that can be directly measured, like the molecular weight, or
predicted by a computational program, like the subcellular
localization or the probability to be an adhesion protein. When
the filter is applied on a numerical feature (e.g., number
of predicted transmembrane domains) an a-priori cut-off is
used. Decision tree RV programs differ each other by the
number of filters adopted. Examples of decision tree RV
tools are NERVE (17), Vaxign (19), Jenner-predict (20), and
VacSol (21).
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FIGURE 1 | Cartoon schematically representing the main steps for protein subunit vaccines development. In the square is highlighted the Reverse Vaccinology part

(A). Timeline of the delivery of RV standalone programs and their main characteristics in terms of type of software, interface and target pathogen (B).

Machine-learning or classifying RV programs
These kinds of applications earlier aggregate the features
measured or predicted on the pathogens’ protein sequences into a
matrix and then, given a known set of training examples of PVCs
and not-PVCs, an algorithm builds a model that assigns new
input proteins to one of the two classes usually in a probabilistic
way. Machine-learning RV programs don’t discard proteins, like
decision tree RV tools do, but rank the entire set of input proteins
for their likelihood of being a PVC. This results to be very useful
when preclinical confirmatory assays must be planned since the
experimenter might begin with the most promising candidates
ranked in top positions.

Machine-learning RV tools are newer in the field and
better intercept the increasing attention data analytics is paying
to artificial intelligence methods. RV machine-learning tools
differ each other from the type of classification algorithm
they use, from the number of features they measure and
from the size and assortment of proteins that constitute the
training set.

Examples of machine-learning RV tools are VaxiJen (18),
Vacceed (22) -designed for eukaryotes pathogens- and the
method described in Bowman et al. (1) and revised by Heinson
et al. (2).

Programs Interface
The interfaces to the RV programs fall into two categories,
those that operate on the command line and those that have a
graphical interface.

Command line input allows for high throughput analysis but
has a high barrier to entry for non-technical users. Graphical
interfaces, such as web-sites, provide point and click interfaces
that non-technical users find easier to use initially, however, they
are often limited to the analysis of a few samples at a time.

A synoptic summary of the types, year of release and interfaces
of the six programs is provided in Figure 1B.

Software Description
In this section we describe one by one each of the six RV
programs object of study of this review. We refer the reader
to each specific publication for any further details. Table 1

summarizes the criteria used by each of the six programs to
identify PVCs and reports main advantages or disadvantages
come upon their usage.

NERVE (17)
NERVE (New Enhanced Reverse Vaccinology Environment) has
the primacy to be the first RV standalone software. It is a decision
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TABLE 1 | Synoptic summary of the main characteristics of the six programs tested.

Tool Category PVC selection criterion Advantage Disadvantage Number of studies that

used the tool

NERVE Decision-tree No cytoplasmatic protein

<2 transmembrane helices

High adhesin probability

No homology with human proteins

Input and output data are

automatically structured in a

database

Not updated 4

VaxiJen Machine-learning Output probability greater than a

cut-off (0.5)

Very fast

Graphical interface

Fixed training datasets (100

known bacterial antigens,

100 putative non-antigens)

20

Vaxign Decision-tree No cytoplasmatic protein

<2 transmembrane helices

High adhesin probability

No homology with human and

mouse proteins

Regularly maintained

Easy to use and intuitive

Download of the results is

limited to 500 proteins

18

Jenner-predict Decision-tree No cytoplasmatic protein

<2 transmembrane helices

Presence of Pfam domains involved

in host-pathogen interaction and

pathogenesis

Upload and download of large

datasets

Temporarily unavailable 1

Bowman-Heinson Machine-learning Output probability greater than a

cut-off (0.5)

Larger training set (200 known

bacterial antigens, 200 putative

non-antigens)

Annotation tools for

eukaryotes used for

bacterial proteins

Pipeline not delivered

0

VacSol Decision-tree No cytoplasmatic protein

<2 transmembrane helices

No homology with human proteins

Essential gene

Virulence factor

User-friendly interface Too restrictive 0

tree and command line tool. Once installed in a Unix-like
operating system (NERVE is implemented in Perl programming
language), the tool imports the sequences of the pathogen
proteins and launches computational programs to predict five
biological features:

1) subcellular localization (pSORT) (23)
2) adhesion probability (SPAAN) (24)
3) topology (HMMTOP) (25)
4) sequence similarity with human proteins (BLASTp) (8)
5) conservation in other strain of the same species (BLASTp).

NERVE parses the results of the five programs and stores the
results in a MySQL database.

NERVE uses a priori cut-offs to select the PVCs. Based on
tests done on 10 proteomes (Bacillus anthracis, Pseudomonas
aeruginosa, Yersinia pestis, Streptococcus agalactiae V, III,
Ia, Neisseria meningitidis B, Porphyromonas gingivalis,
Borrelia burgdorferi, Chlamydia trachomatis D) the authors
of NERVE suggest the following criterion to identify PVCs:
any non-cytoplasmatic protein, with no more than 2 predicted
transmembrane helices, with a predicted probability of being
and adhesin >0.46 or 0.38 and without sequence similarity to
human proteins.

NERVE shows the advantage to be very simple and intuitive;
it also allows the user to change the filtering cut-offs according to
his/her preferences for long or short lists of PVCs.

NERVE has not been updated since its first release: some Perl
libraries became obsolete and to be used not negligible changes

must be done to the source code. Homology with human proteins
is done comparing by BLAST algorithm each pathogen protein
sequence against a dataset of potentialMCH ligands derived from
the databaseMHCPEP (26) that has not been updated since 1998.

VaxiJen (18)
Published soon after NERVE, is the first RV software adopting
machine learning strategy. VaxiJen proposes an alignment-
independent method for antigen prediction based on auto cross
covariance (ACC) transformation of protein sequences into
uniform equal-length vectors. Differently by other RV programs,
VaxiJen might predict not only bacterial but also viral and
tumor antigens. For bacterial antigens prediction VaxiJen applies
ACC transformation to a set of 100 known bacterial antigens
that the authors derived mining the literature; a protein was
included in the set of known bacterial antigens if it (or part of
it) was shown to induce a protective response in an appropriate
animal model after immunization. Conversely a twin-set of
100 non-antigens was constructed to mirror the antigen set,
randomly selecting proteins from the same set of species
without similarity to the set of the 100 known antigens (BLAST
expectation value of 3.0 was used). Two-class discriminant
analysis by partial least squares was applied to the merged set
(200 proteins) to derive a model of prediction that the user might
apply on his own dataset of proteins uploading a file through
a web-interface.

VaxiJen is a web-interface program. The results page reports
antigen probability (as a fraction of unity) for each protein.
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Criterion to call PVCs is any protein with an antigen probability
above a threshold (defaults 0.5).

VaxiJen is the only tool currently allowing classification based
solely on the physiochemical properties of protein sequences
without any related biological or functional information.

While very easy to use and very fast a major limitation is
though represented by the fact that, at least in its current release,
it is not possible for the user to change the training dataset
upon which the prediction model is derived. A review of VaxiJen
applications during the last years might be found in Zaharieva
et al. (27).

Vaxign (19)
Vaxign is decision-tree software that works via web-interface.
Vaxign is available in two forms: Vaxign Query that provides
precomputed results for users to explore, and Dynamic Vaxign
Analysis that allows dynamic execution and result visualization.

InDynamic Vaxign Analysis, likewise NERVE, it runs different
external computational programs on input protein sequences to
predict five biological properties:

1) Subcellular localization (pSORT) (23).
2) Number of transmembrane helices (HMMTOP) (25).
3) Adhesin probability (SPAAN) (24).
4) Similarity to host (human, mouse, pig) proteins (OrthoMCL)

(28).
5) MHCI and MHCII epitopes binding (Vaxitope) (19).

The authors, analyzing 11 known protective antigens from
four bacterial pathogens strains (N. meningitidis, H. pylori, B.
anthracis, M. tuberculosis), suggest the following criterion to
identify PVCs: any protein surface exposed, with no more than
one transmembrane helix, with probability to be an adhesin
>0.51 and no sequence similarity to any host protein (human
and mouse).

Vaxign mostly resembles NERVE in terms of the protein
features predicted, computational programs used and thresholds
set to call PVCs, though there are differences:

• They both use pSORT to predict subcellular localization, but
NERVE parses the original output and in case the probability
to be “Cytoplasmatic” is null it reports “Non-cytoplasmatic.”
On the contrary Vaxign keeps the original output of Psort.

• NERVE to call a PVC sets two different thresholds at the
probability predicted by SPAAN of being an adhesion: 0.46
if the candidate is predicted “not cytoplasmatic” and 0.38 if
predicted “extracellular.”

• Vaxign uses OrthoMCL (28) to calculate the homology to
host proteins and the conservation on different strains of
the pathogen, whereas NERVE implements a BLASTp query
against a not updated dataset of MCHI binding epitopes
derived fromMHCPEP (26). NERVE filters PVCs for sequence
similarity only against human proteins while Vaxign allows
also against mouse and pig proteins.

Jenner-Predict (20)
It is decision-tree software published in 2013. Jenner-predict
identifies PVCs by filtering upon:

1) Subcellular localization (pSORT, version 3.0) (29).
2) Number of transmembrane helices (HMMTOP, version

2.0) (25).
3) Presence of Pfam domains involved in host-pathogen

interactions and pathogenesis (30).

Pfam domains include classes of adhesion, invasion, toxin,
porins, colonization, virulence, flagellin, penicillin-binding,
choline-binding, transferring-binding, fibronectin-binding,
and solute-binding.

The criterion to identify PVCs for Jenner-predict is: any non-
cytosolic protein with <3 trans-membrane helices and with at
least one hit in the list of Pfam domains involved in host-
pathogen interactions and pathogenesis. This final list of PVCs
is then ranked according to the degree of conservation in
different pathogenic and non-pathogenic strains, presence of
known epitope sequences (both B and T epitopes) and degree of
conservation with human proteins.

The novelty of Jenner-predict is to relax the criterion applied
by NERVE andVaxign on adhesin-likeliness to call PVCs. Jenner-
predict doesn’t use SPAAN to predict the probability for a
candidate to be an adhesion but uses Pfam domains.

Differently by Vaxign, Jenner-predict uses the sequence
similarity to human proteins only as a score to rank PVC. Jenner-
predict at the time of writing is unavailable for users through its
web-interface. We contacted directly the authors to ask for a local
evaluation of the software on our benchmark dataset.

Heinson-Bowman (1, 2)
We called this method with the names of the first authors who
published amachine learning RVmethod initially in 2011 (1) and
then enhanced the classifier publishing the results in 2017 (2).
Bowman et al. (1) merged the existing tools NERVE and VaxiJen,
adopting from NERVE the idea of use a set of protein annotation
tools and from VaxiJen the use of a machine-learning classifier.

The method uses a Support Vector Machine (SVM) classifier
using a training dataset constituted by 200 bacterial protective
antigens (BPA) extracted from literature. Bacterial protective
antigens mean that the proteins have evidences about their
protective potential in an appropriate animal model after
immunization. Other 200 non-BPA were randomly selected from
the same proteomes without sharing sequence similarity to BPAs.
This dataset was initially annotated with 525 features coming
from 31 different annotation tools. After a feature selection step,
the number of features has been reduced to 10. This short-list of
10 includes:

1) Average length of lipoprotein and other signal peptides
(LipoP) (31).

2) Average length of signal peptide recognized by peptidase
I (LipoP).

3) Count and length of O-beta-Glc-NAc attachment sites
(YinOYang) (32).

4) Count of serine kinase specific eukaryotic phosphorylation
sites (NetPhosK-S-Count) (33).

5) Average rank of human MHC alleles HLA-B matching the
protein candidate (NetMhc) (34).
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6) Presence of signal peptide for secretory pathway (TargetP)
(35).

7) Count of I-Ag7 (MHC class II mice molecule) epitopes (GPS-
MBA) (36).

8) Average score ofMHCpeptide binding sites (PickPocket) (37).
9) Count of scores of Furin-specific cleavage sites (ProP) (38).

The criterion to call PVC is any candidate protein with an antigen
probability value greater than an a-priori threshold (0.5).

Even if the software is designed for bacterial PVCs, 8 out
of 10 features are predicted by tools designed and tested
for eukaryotic organisms, such as NetAcet (39) that predicts
substrates of N-acetyl transferase A trained on yeast data with
similar performances on mammalian substrates.

VacSol (21)
It is the last RV software appeared in the field of Reverse
Vaccinology. It is decision-tree software that filters input protein
candidates by:

1) Subcellular localization (PSORTb and CELLO2GO) (23, 40).
2) Similarity to host (human) proteins (BLASTp) (8).
3) Match to essential genes database (DEG) (41).
4) Match to virulence factors database (VFDB) (42).
5) Number of transmembrane helices (HMMTOP 2.0) (25).

The selection criterion for PVCs is: any non-host homologous,
essential, virulent protein residing in the extracellular membrane
with <2 transmembrane helices.

The final list of PVCs is then ranked accordingly to the
prediction of MHC Class I and II binding regions and to the
B-Cell epitope prediction.

BENCHMARK DATASETS

To compare the six RV tools, we selected a list of 11 bacterial
species for which we could retrieve a list of BPAs combining
information from literature (reviews) and publicly available in
Protegen database (5).

The list of the 11 species -both Gram positive and Gram
negative- includes bacteria that were already reported in
the publications of the RV programs: eight species reported
in NERVE publication or VacSol (Neisseria gonorrhoeae,
Neisseria meningitides, Staphylococcus aureus, Streptococcus
pyogenes, Helicobacter pylori, Chlamydia pneumoniae,
Campylobacter jejuni, Borrelia burgdorferi), two reported
in Jenner-predict publication or Vaxign (Escherichia coli,
Streptococcus pneumoniae) and Treponema pallidum. For each
species the list of BPAs and their relative references is reported in
Table S1.

EVALUATION

Regarding Bowman-Heinson the original material has not been
made available by the authors within the timelines needed to
submit this manuscript. Being the pipeline of the program
unavailable we decided to reproduce the analysis as far as possible
in line with the description present in the articles (2).

TABLE 2 | Prototype of the golden-standard 2 x 2 table to measure the RV

performances.

Immunological assays readout

Positive (BPA) Negative (no

BPA)

RV method

prediction

PVC True positive (TP) False positive (FP)

Not-PVC False negative (FN) True negative (TN)

For each bacterial species the proteome was downloaded from
Uniprot database (43) version 2018_05 and was given in input to
each RV program that returned in output the list of PVCs. In not
specified, default settings were used for each RV program.

Performances’ Measures of RV Programs
The golden standard to measure how well a RV program
performs would be in theory to purify all the pathogen’s proteins,
test experimentally each of them in the appropriate animal model
through pathogen-specific laboratory assays and finally compare
predictions and experimental results like in Table 2.

From results arranged like in Table 2 one could calculate
both sensitivity or recall (TP/TP + FN), specificity (TN/TN
+ FP) and other performance metrics. Though in real-world
scenario Table 2 is almost unfeasible because of time and
cost constraints for entire bacterial proteomes that consists of
thousands of proteins. In this review we decided to focus on
BPAs only and accordingly to measure the performances of RV
methods by:

i) Fraction of proteome called PVCs (PVCs/proteome).
ii) Fraction of BPA identified within the set of PVCs

(sensitivity or recall).
iii) Fold-enrichment expressed as ratio between number of

BPAs observed in the set of PVCs and the number expected
drawing from the proteome a random sample of the same
size of the set of PVCs (statistical significance of the fold-
enrichment assessed through an hypergeometric test).

RESULTS

Comparison of the PVC Selection Criteria
and Computational Tools
VaxiJen classifies PVCs extracting information from the
chemical-physical properties of the aminoacids composing
bacterial proteins. Conversely the remaining five tools in order
to define PVCs work on features predicted by external programs
(for a list see Table 3).

From the comparison of the PVCs selecting criteria of
these five RV programs we observed that they share two
common features:

1. Extracellular subcellular localization
2. Probability of being a virulence factor

About the prediction of the extracellular localization the
RV programs use mostly Psort while Bowman-Heinson
implements TargetP.
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TABLE 3 | Summary of the external computational programs used by the six programs to predict the protein features instrumental to filter or classify PVCs.

Protein

feature

Prediction program NERVE Vaxign Jenner-predict VacSol Bowman-Heinson

Subcellular localization Psortb X X X X

TargetP X

Transmembrane domains HMMTOP X X X X

Pathogenic domains or virulent

factors

SPAAN X X

Pfam X

VFDB X

LipoP X

Similarity to host proteins BLASTp against MHCPEP db X

BLASTp against RefSeq and

Swiss Prot db

X

OrthoMCL X

B-T cell response NetMhc X

Vaxitope X

ABCPred X

ProPred-I X

ProPred X

GPS-MBA X

PickPocket X

Post-translational modification YinOYang (glycosylation) X

NetPhosK (phosphorylation) X

ProP (proprotein convertase

cleavage)

X

The major virulence characteristic that is searched for is
adhesion. SPAAN is the software of election to predict the
probability of a protein being an adhesin and is used by NERVE
and Vaxign. VacSol searches PVCs in the database of virulence
factors VFDB that contains discrete proportion of adhesins.
Among the Pfam domains used by Jenner-predict 96 domains
are reported as related to adhesion. Also lipoproteins have been
shown to play key roles in adhesion to host cells and translocation
of virulence factors into host cells (44). Heinson uses LipoP
software that produces predictions of lipoproteins.

Differently from what one might expect not all the RV
programs use the sequence similarity to host proteins (either
mouse or human) as a selecting criterion. Jenner-predict for
instance uses the homology to human proteins only to rank the
PVCs accordingly to what they call their “vaccine potential.”
Machine-learning approach of Heinson doesn’t include in the
list of the 525 initial potential discriminative features anything
related to homology or similarity to host proteins.

Finally, HMMTOP is common to all the four decision-
tree programs NERVE, Vaxign, Jenner-predict and VacSol. It
is used to predict the number of transmembrane domains that
is directly linked to the likelihood each protein has to be
successfully purified.

Running Time
The performances in terms of time needed to predict PVCs
are reported in Table 4. Time has been calculated using a
set of 100 protein sequences with an average length of 360

TABLE 4 | Summary of run times on a benchmark dataset of 100 proteins

(average length 360 a.a.).

Program Running time

VaxiJen 5 s

Vaxign 5min 40 s

NERVE 17min 37 s

Bowman-Heinson 27min 8 s

VacSol 49min 40 s

aminoacids. Tools like Vaxign and VaxiJen are very fast and
are able to predict 100 proteins in a few seconds or minutes,
instead other tools like NERVE, Bowman-Heinson and VacSol
are slower and need between 15 and 60min to analyze the same
protein dataset on a MacBook Pro (2.6 GHz Intel Core i7, 16
Gb RAM).

This difference is due to the fact that tools used via browser
like Vaxign and VaxiJen have been developed in a specific way
integrating the software needs with the hardware. In the case
of tools such as NERVE, VacSol and Bowman-Heinson, the
analysis depends on the characteristics of the hardware used
and the running time may vary depending on the capabilities of
the system.

In addition, must be noticed that tools like NERVE, VacSol
and Bowman-Heinson are not available as preconfigured virtual
machine so time must be dedicated to install the software
itself and all its dependencies. Vaxign and VaxiJen, available via
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TABLE 5 | Fraction of PVCs predicted by each of the six programs (NERVE, VaxiJen, Vaxign, VacSol, Bowman-Heinson, and Jenner-predict) where pathogens are listed

following the order of their proteome size.

Species RV programs

NERVE VaxiJen Vaxign VacSol Bowman-

Heinson

Jenner-

predict

Escherichia coli 627 (11.7%) 1,979 (37%) 452 (8.5%) 174 (3.3%) 661 (12.4%) 250 (4.7%)

Streptococcus pyogenes 690 (19.2%) 972 (27%) 504 (14%) 190 (5.3%) 414 (11.5%) 121 (3.4%)

Chlamydia pneumoniae 398 (11.8%) 984 (29.2%) 330 (9.8%) 25 (0.7%) 380 (11.3%) 260 (7.7%)

Staphylococcus aureus 254 (9.5%) 992 (37.3%) 125 (4.7%) 118 (4.4%) 300 (11.3%) 126 (4.7%)

Streptococcus pneumoniae 194 (9.2%) 625 (29.6%) 122 (5.8%) 111 (5.3%) 216 (10.2%) 75 (3.6%)

Neisseria gonorrhoeae 272 (12.9%) 917 (43.5%) 197 (9.3%) 45 (2.1%) 304 (14.4%) 81 (3.8%)

Neisseria meningitidis 256 (12.8%) 815 (40.7%) 180 (9%) 37 (1.8%) 308 (15.4%) 88 (4.4%)

Treponema pallidum 92 (5.6%) 682 (41.3%) 85 (5.2%) 20 (1.2%) 234 (14.2%) 58 (3.5%)

Campylobacter jejuni 199 (12.2%) 530 (32.6%) 111 (6.8%) 39 (2.4%) 211 (13%) 60 (3.7%)

Helicobacter pylori 201 (13.5%) 429 (28.7%) 131 (8.8%) 40 (2.7%) 231 (15.5%) 81 (5.4%)

Borrelia burgdorferi 213 (16.5%) 432 (33.5%) 96 (7.4%) 10 (0.8%) 186 (14.4%) 25 (1.9%)

Average on 27,247 total proteins 3,396 (12.5%) 9,357 (34.3%) 2,602 (9.5%) 809 (3%) 3,445 (12.6%) 1,225 (4.5%)

FIGURE 2 | Hierarchical clustering of RV programs based on the fraction (%) of proteome predicted as PVCs. Columns correspond to the six programs and rows to

the 11 pathogens’ proteomes. Legend shows the color code of fraction of proteome predicted as PVCs.

browser, are easier to use, only necessitating to copy and paste
fasta sequences of the proteins.

Fraction of PVCs
The results are presented in Table 5 where pathogens
are listed following the order of their proteome size
(decreasing order).

Among the six programs VacSol resulted to be the most
conservative predicting as PVCs on average only 3% of a

bacterial proteome (min 0.7% Chlamydia pneumoniae—max
5.3% Streptococcus pyogenes). On the opposite side VaxiJen
is the most permissive with on average 34.4% (min 27%
Staphylococcus aureus—max 43.5% Neisseria gonorrhoeae) of a
bacterial proteome predicted as PVC. A graphical summary
is provided in Figure 2. As shown in the figure based on
proteome fraction predicted as PVC we could hierarchically
cluster the six programs into three groups corresponding
to high, medium and low fraction of predicted PVCs.
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FIGURE 3 | Hierarchical clustering of the six RV programs (columns) based on

PVC calls for 27,247 total proteins (rows). Each cell corresponds to the output

of each program for each protein: white colored means not-PVC, black

colored means PVC.

VaxiJen is the software that predicts the greatest fractions of
PVCs (always more than 25% of a proteome) and stands
separately from the other tools. VacSol and Jenner-predict
constitute the second group with low fractions of PVCs
(always <10% of a proteome). In the middle are NERVE,
Vaxign and Bowman-Heinson with similar medium fractions of
PVCs predicted.

Analyzing the output of the six RV programs for each
single protein we observed heterogeneous agreement among
the programs (Figure 3). To quantify the strength of each
pair-wise agreement among the six programs we used
the Choen’s kappa (45). If two programs are in complete
agreement, then kappa is equal to 1. If there is no agreement
between two programs other than what would be expected
by chance kappa is equal or even <0. The values of kappa
for the pairwise comparisons between programs are given
in Table 6.

The programs are scarcely in agreement with the only
exception of NERVE and Vaxign that show a high kappa value

TABLE 6 | Choen’s kappa values for the pair-wise agreement between programs.

VacSol VaxiJen Vaxign NERVE Bowman-

Heinson

VaxiJen −0.012

Vaxign −0.016 0.129

NERVE −0.014 0.135 0.769

Bowman-Heinson 0.009 0.126 0.278 0.276

Jenner-predict 0.032 0.073 0.321 0.269 0.275

In bold the maximum value of each column.

(0.769). VacSol seems to be the software that returns a list of
PVCs mostly not in common with others (kappa ranges between
−0.012 and 0.032).

Fraction of BPAs Identified and
Fold-Enrichment
For each software we measured the fraction of BPAs identified in
the subset of PVCs, the recall and the fold-enrichment associated
with p-value based on hypergeometric distribution as described
in section Performances’ Measures of RV Programs.

As reported in Table 7 the software with the highest
fold enrichment is Jenner-predict that however has a recall
of 44%. VaxiJen recalls the maximum absolute number
of BPAs (76 BPAs in 9,357 PVCs) but has a low fold-
enrichment (2.2). In comparison to VaxiJen, Bowman- Heinson
with 3,445 PVCs recalls 75 BPAs showing therefore the
best performance in terms of combined recall and fold-
enrichment (5.9). Data for each single pathogen are provided
in Table S2.

DISCUSSION

Reverse vaccinology represents a critical step toward the
discovery and development of protein subunit vaccines.

From its conception in early 2000 to date several programs
have been developed to do Reverse Vaccinology. We reviewed six
of them, open-source, designed for bacterial pathogens.

We found two types of RV programs: those based on
decision-tree or filtering and those based on machine-learning
or classifying.

The first type—including NERVE, Jenner-predict, Vaxign,
and VacSol—has the advantage of using a predefined set of
core features to predict PVCs, without requiring training on
a preexisting list of good and bad candidates. Core features
include extracellular localization, probability to be an adhesion,
lack of similarity to host proteins and limited number of
transmembrane domains.

We observed that on average 10–15% of a bacterial proteome
matches these criteria, resulting in a list of hundreds of proteins
to be potentially tested in preclinical laboratories.

Conversely, methods based on machine-learning use training
sets. VaxiJen uses as predictive features values calculated from
the aminoacidic composition of the proteins and returns
long lists of PVCs: on average one third of a bacterial
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TABLE 7 | Summary of the performance on the RV programs in terms of recall of BPAs and fold-enrichment.

Software PVCs Observed BPAs Recall (%) Expected BPAs Fold-enrichment p-Value

NERVE 3,396 64 64 12 5.1 1.51E-33

VaxiJen 9,357 76 76 34 2.2 1.80E-17

Vaxign 2,602 58 58 10 6.1 1.90E-33

VacSol 809 4 4 3 1.3 3.46E-01

Bowman-Heinson 3,445 75 75 13 5.9 1.99E-46

Jenner-predict 1,225 44 44 4 9.8 1.09E-32

In bold the maximum value of each column. Numbers are referred to the total number of proteins (27,247) of the 11 pathogens. BPAs are 100 in total.

proteome is called PVC. It is likely that changing the training
set—at the time of writing the review composed by 200
proteins—the output lists of PVCs might change as well.
The other machine-learning approach (based on a Support
Vector Machine) developed by Bowman and enhanced by
Heinson uses features extracted from programs predictive of
subcellular localization, B and T cell responses and post-
translational modifications. Differently by VaxiJen the output list
of PVCs is contained (12% of a proteome on average) and the
method shows in our benchmark dataset a valuable enrichment
in BPAs.

One advantage of the filtering RV programs is represented by
user’s full control of the step-wise process toward the selection
of PVCs. PVCs are then easy to interpret and communicate.
NERVE has not been updated since its release though Vaxign
constitutes a valid alternative as it implements a very similar
pipeline. The accordance between the two is indeed very good.
VacSol represents also a valid RV filtering program but the
number of resulting PVCs is so restricted that the likelihood to
miss good candidates is not negligible.

Machine-learning methods are able to rank all the proteins
of a pathogen based on their likelihood to be a PVCs. They
can handle simultaneously much more features than filtering
RV methods. However, these methods need an a-priori training
dataset of good and bad antigens. This represents their main
Achille’s heel because if it true that on literature one might
found experimental evidences for good antigens, the same is
not always valid for negative cases i.e., candidate proteins that
didn’t succeed in preclinical testing. The shortcut commonly
used to artificially populate a set of bad antigens randomly
selecting proteins not tested in laboratory but with scarce
similarity to good antigens is questionable. Evidence of this
are for instance the two antigens fHbp and NadA present in
Bexsero R© vaccine. Considering fHbp a good antigen, based
on the almost null sequence similarity to NadA one would
consider NadA as bad candidate. It would be beneficial to
increase the performances of RV methods if manually curated
set of candidate proteins with negative experimental outcomes
would be publicly available. A limitation of machine-learning RV
methods might be represented by the interpretation of the results
since it is not straightforward to map backwardly PVCs to the
features space.

CONCLUSIONS

We have extensively reviewed, for the first time, the state-of-the-
art of Reverse Vaccinology bioinformatic tools used in bacterial
antigen prioritization, visualized their diversity, and examined
their performances.

We found that independently by the number of predicted
PVCs, none of the six programs was able to recall more
than 76 BPAs out of the benchmark list of 100 composed
from eleven different bacterial species. The machine learning
based method of Bowman-Heinson demonstrated the best
ratio between BPA identified and number of PVCs predicted,
recalling 75% of BPAs in a total of 3,445 PVCs. This is
relevant in the filed because while reducing the number of
laboratory tests this method should simultaneously guarantee
the identification of the vast majority of proteins with potential
protective efficacy.

Whenwe looked at the overall agreement in terms of PVC calls
among the six programswe found a low score indicating that each
program capture a specific profile for PVCs. Being the time of
processing reasonable we suggest to explore the results of at least
one filtering and one classifying method. We finally observed
that a distinguishing feature in the most cited and applied RV
packages VaxiJen and Vaxign, is their accessibility to final users
through graphical user interfaces. We encourage researches in
this field to invest in the development of user-friendly interfaces,
as much as to the improvement of the predictive power of
the algorithms.
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