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Abstract

Typical optimal design methods for inverse or parameter estimation problems are designed to
choose optimal sampling distributions through minimization of a specific cost function related to
the resulting error in parameter estimates. It is hoped that the inverse problem will produce
parameter estimates with increased accuracy using data collected according to the optimal
sampling distribution. Here we formulate the classical optimal design problem in the context of
general optimization problems over distributions of sampling times. We present a new Prohorov
metric based theoretical framework that permits one to treat succinctly and rigorously any optimal
design criteria based on the Fisher Information Matrix (FIM). A fundamental approximation
theory is also included in this framework. A new optimal design, SE-optimal design (standard

error optimal design), is then introduced in the context of this framework. We compare this new
design criteria with the more traditional D-optimal and E-optimal designs. The optimal sampling
distributions from each design are used to compute and compare standard errors; the standard
errors for parameters are computed using asymptotic theory or bootstrapping and the optimal
mesh. We use three examples to illustrate ideas: the Verhulst-Pearl logistic population model [13],
the standard harmonic oscillator model [13] and a popular glucose regulation model [16, 19, 29].
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1 Introduction

Mathematical models are used to describe dynamics arising from biological, physical and
engineering systems. If the parameters in the model are known, the model can be used for
simulation, prediction, control design, etc. However, typically one does not have accurate
values for the parameters. Instead, one must estimate the parameters using experimental
data. The simulation and predictive capabilities of the model depend on the accuracy of the
parameter estimates. A major question that experimentalists and inverse problem
investigators alike often face is how to best collect the data to enable one to efficiently and
accurately estimate model parameters. This is the well-known and widely studied optimal

design problem.
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Traditional optimal design methods (D-optimal, E-optimal, c-optimal) [1, 2, 14, 20, 21] use
information from the model to find the sampling distribution or mesh for the observation
times (and/or locations in spatially distributed problems) that minimizes a design criterion,
quite often a function of the Fisher Information Matrix (FIM). Experimental data taken on
this optimal mesh is then expected to result in accurate parameter estimates.

Here we formulate the classical optimal design problem in the context of general
optimization problems over distributions of sampling times. We present a new Prohorov
metric based theoretical framework that allows one to treat succinctly and rigorously any
optimal design criteria based on the Fisher Information Matrix (FIM). A fundamental
approximation theory is also included in this framework. A new optimal design, SE-optimal
design (standard error optimal design), is then introduced in the context of this framework.
We compare this new design criteria with the more traditional D-optimal and E-optimal
designs. We consider the performance of these three different optimal design methods for
three different dynamical systems: the Verhulst-Pearl logistic population model, a harmonic
oscillator model and a simple glucose regulation model. SE-optimal design was first
introduced in [9]. The goal of SE-optimal design is to find the observation times τ = {ti} that
minimize the sum of squared normalized standard errors of the estimated parameters as
defined by asymptotic distribution results from statistical theories [7, 11, 18, 28]. D-optimal
and E-optimal design methods minimize functions of the covariance in the parameter
estimates [2, 14, 21]. D-optimal design finds the mesh that minimizes the volume of the
confidence interval ellipsoid of the asymptotic covariance matrix. E-optimal design
minimizes the largest principle axis of the confidence interval ellipsoid of the asymptotic
covariance matrix.

The three examples we use were chosen for several reasons. First, they offer qualitatively
different solutions: a monotone increasing trajectory, an oscillatory one and a vector
observation or model output. Moreover, the first two can be studied with analytical solutions
while the third requires a computational solution for the output. While analytical solutions
are often available in drug design studies employing simple compartmental models, the
latter is more common in many applications of interest. It is well known that computational
errors of the model output can play a significant role in inverse and optimization problems.
However, this problem has been frequently studied in the mathematical literature on inverse
problems (see [12] for some early theoretical and computational studies along with
reassuring convergence concepts on such questions). By adopting high resolution
computational methods (as we have done in our third example here), one can in many
applications essentially alleviate difficulties that may arise from using computational
representations of output in both design and implementation of inverse problems. Indeed,
the error in measurement and observations is usually much more of a concern. Our analysis
of the third example below did not reveal any concerns related with use of a computational
model output as compared to analytical model outputs in carrying out optimal design
comparisons.

In an effort to provide a reasonably fair comparison, for each optimal design method,
standard errors are computed by several methods using the optimal mesh. The optimal
design methods are compared based on these standard errors. Not surprisingly, we find that
SE-optimal design often results in smaller standard errors compared with the other optimal
design method; this is likely because SE-optimal design optimizes directly on the standard
errors themselves while the D-optimal and E-optimal methods minimize other functions
related to the standard errors through the FIM.
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2 Optimal Design Formulations

Following [9], we introduce a formulation of ideal inverse problems in which continuous in
time observations are available; while not practical, the associated considerations provide
valuable insight. A major question in this context is how to choose sampling distributions in
an intelligent manner. Indeed, this is the fundamental question treated in the optimal design
literature and methodology.

Underlying our considerations is a mathematical model

(1)

where  is the vector of state variables of the system,  is the vector of

observable or measurable outputs,  are the system parameters, , p = r +
n is the vector of system parameters plus initial conditions x0, while g and  are mappings

 and , respectively. To consider measures of uncertainty in estimated
parameters, one also requires a statistical model [7]. Our statistical model is given by the
stochastic process

(2)

Here  is a noisy random process representing measurement errors and, as usual in statistical
formulations [7, 9, 18, 28], θ0 is a hypothesized “true” value of the unknown parameters.

We make the following standard assumptions on the random variable :

where δ(s) = 1 for s = 0 and δ(s) = 0 for s ≠ 0. A realization of the observation process is
given by

where the measurement error ε(t) is a realization of .

The statistical model we assume is a classical first model widely found in regression
analysis [18, 28] and is often employed in development of ideas (asymptotic distribution
theory, statistical comparison tests, etc.) as well as in certain applications. Two (the second
and third) of the assumptions above are sometimes violated in repeated measurement data
problems, especially in economic data and in biological data with high frequency sampling
using model response dependent assays. The independence and zero correlation statistical
model assumptions can often be checked/supported via residual plots [7, 13, 18, 28] (after
carrying out the inverse or regression problem fits with ordinary least squares). More
sophisticated error models (e.g., nonconstant variance, nontrivial correlation) might also
require different inverse problem formulations [7] (e.g., generalized least squares or
maximum likelihood if sufficient information is known about the distributions of errors).
Our choice of this simple statistical model was motivated primarily for two reasons: (i) it is
simple, widely known/used and easy to use in comparison of designs, and (ii) our own
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efforts (e.g., see [4, 6, 8, 12, 13] and the references therein) in numerous inverse problems
with longitudinal data for HIV patients, data for insect and marine populations, and
vibrational engineering data often have dealt with data in which independence of sampling
appeared to be reasonable. Even when correlation might be present, it is often assumed fast
decaying with respect to distance/time between observations (this is a standard correlation
model-see [18, 28]) and independence is a reasonable assumption for low frequency
sampling times. However, there are numerous situations in practice where independence is
readily violated (e.g., economics and biology) and techniques in the presence of nontrival
data correlations are an active area of optimal design research-see [24, 26, 30] and the
references therein. Comparison of the design methods investigated here in the context of
nontrivial correlation models such as those discussed in [24, 30] and [28, Chap 6], are the
focus of our current research efforts and methodology results will be reported in a
forthcoming paper. We note that all of the ideas presented here are readily applicable to
problems with correlated noise in the data although the definition of the generalized Fisher
matrix given below must be modified to include a correlation matrix factor corresponding to
the assumed noise model (see [24, 30]). We remark that [30] also contains a nice survey of
the vast statistical literature on design of experiments of which computational design
methods for correlated observation problems comprise only a very small part.

We introduce a generalized weighted least squares criterion

(3)

where P is a general measure on [0, T]. We seek the parameter estimate  by minimizing
J(y, θ) for θ. Since P represents a weighting of the difference between data and model
output, we can, without loss of generality, assume that P is a bounded measure on [0, T].

If, for points τ = {ti}, t1 < ⋯ < tN in [0, T], we take

(4)

where Δa denotes the Dirac delta distribution with atom at {a}, we obtain

(5)

which is the weighted least squares cost functional for the case where we take a finite
number of measurements in [0, T]. Of course, the introduction of the measure P allows us to
change the weights in (5) or the weighting function in (3). For instance, if P is absolutely
continuous with density m(·) the error functional (3) is just the weighted L2-norm of y(·) −
f(·, θ) with weight m(·)/σ(·)2.

To facilitate our discussions we introduce the Generalized Fisher Information Matrix

(GFIM)

(6)
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where ▽θ is a row vector given by (∂θ1, … , ∂θp) and hence ▽θf is an m × p matrix. It
follows that the usual discrete FIM corresponding to Pτ as in (4) is given by

(7)

Subsequently we simplify notation and use τ = {ti} to represent the dependence of P = Pτ on
τ when it has form (4). When one chooses P as simple Lebesgue measure then the GFIM
reduces to the continuous FIM

(8)

The major question in optimal design of experiments is how to best choose P in some family

 of observation distributions. We observe that one optimal design formulation we
might employ is a criterion that chooses the times τ = {ti} for Pτ in (6) so that (7) best
approximates (8)–i.e., one minimizes |FC − F(τ)| over τ where |·| is the norm in –see [9].
We do not consider this design here, but rather focus on the SE-optimal design also
proposed in [9] and its comparison to more traditional designs.

The introduction of the measure P above allows for a unified framework for optimal design
criteria which incorporates all the popular design criteria mentioned in the introduction. As
already noted, the GFIM F(P, θ) introduced in (6) depends critically on the measure P. We
also remark that we can, without loss of generality, further restrict ourselves to probability

measures on [0, T]. Thus, let  denote the set of all probability measures on [0, T] and

assume that a functional  of the GFIM is given. The optimal design problem

associated with  is one of finding a probability measure  such that

(9)

A general theoretical framework for existence and approximation in the context of 
taken with the Prohorov metric [3, 17, 22, 27] is given for these problems in Section 4 of
[9]. In particular, this theory permits development of computational methods using weighted
discrete measures (i.e., weighted versions of (4)).

2.1 Theoretical Summary

To summarize and further develop the theoretical considerations that are the basis of our

efforts here, we first recall that the Prohorov metric ρ on the space  of probability
measures on the Borel subsets of [0, T] can be defined [3, 17, 22, 27] in terms of
probabilities on closed subsets of [0, T] and their neighborhoods. However for our uses here
it is far more useful to work with an equivalent characterization in terms of convergences

when viewing the probability measures  as a subset of the topological dual Cb[0, T]*
of the bounded continuous functions on [0, T] taken with the supremum norm. More

precisely, ρ-convergence is equivalent to weak*-convergence on  when considering

 as a subset of Cb[0, T]*. It is then known that  is a complete, compact

and separable metric space. (We will hereafter just denote this space by  since the ρ
will be understood.)
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Our first observation is that the GFIM as defined in (6) is ρ continuous on  for
problems in which the observation functions f(·, θ) are continuously differentiable on [0, T].

Thus, whenever  is continuous we find that  is continuous

from  to . Since  is ρ compact, we obtain immediately the existence of
solutions for the optimization problems

(10)

Our second observation is related to the separability of  and in particular to the
density of finite convex combinations over rational coefficients of Dirac measures Δa with
atoms at a. Specifically, one can prove [3] that the set

is dense in  in the Prohorov metric ρ. Here  is a countable, dense subset of

[0, T]. In short, the set of  with finite support in  and rational masses is dense

in . This leads, for a given choice , to approximation schemes for  as defined in
(10). To implement these for a given choice of  (examples are discussed below) would

require approximation by  in the GFIM (6) and then optimization over

appropriate sets of {pj, tj} in (10) with P replaced by . For a fixed N, existence of
minima in these problems follow from the theory outlined above. In standard optimal
designs these problems are approximated even further by fixing the weights or masses pj as

 (which then becomes simply a scale factor in the sum) and searching over the {tj}.

This, of course, is equivalent to replacing the  by Pτ of (4) in (6) and searching over
the τ = {tj} for a fixed number N of grid points. This embodies assumption of equal value of
the observations the at each of the times {tj}. We observe that weighting of information at
each of the observation times is carried out in the inverse problems via the weights σ(tj) for

observation variances in (5). We further observe that the weights {pj} in  are related to
the value of the observations as a function of the model sensitivities ▽θf(tj, θ0) in the FIM

while the weights  are related to the reliability in the data measurement processes. We
note that all of our remarks on theory related to existence above in the general probability
measure case also hold for this discrete minimization case.

The formulation (10) incorporates all strategies for optimal design which entail optimization
of a functional depending continuously on the elements of the Fisher information matrix. In
case of the traditional design criteria mentioned in the introduction,  is the determinant (D-
optimal), the smallest eigenvalue (E-optimal), or a quadratic form (c-optimal), respectively,
of the inverse of the Fisher Information Matrix. Specifically, this includes the optimal design
methods we consider here: SE-optimal design, D-optimal design, and E-optimal design. The
design cost functional for the SE-optimal design method is given by (see [9])
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(11)

where F = F(τ) is the FIM, defined above in (7), θ0 is the true parameter vector, and p is the
number of parameters to be estimated. Note that both inversion and taking the trace of a

matrix are continuous operations. We observe that . Therefore, SE-optimal
design minimizes the sum of squared normalized standard errors.

D-optimal design minimizes the volume of the confidence interval ellipsoid for the

covariance matrix ( ). The design cost functional for D-optimal design is given by
(see [14, 21])

(12)

Again we note that taking the determinant is a continuous operation on matrices so that 
is continuous in F as required by the theory.

E-optimal design minimizes the principle axis of the confidence interval ellipsoid of the
covariance matrix (defined in the asymptotic theory summarized in the next section). The
design cost functional for E-optimal design is given by (see [2, 14])

(13)

where λi, i = 1 … p, are the eigenvalues of F (which are continuous functions of F).

Therefore , i = 1 … p, corresponds to the eigenvalues of the asymptotic covariance matrix

.

2.2 Constrained Optimization and Implementations

Each optimal design computational method we employ is based on constrained optimization

to find the mesh of time points , i = 1, … , N, that satisfy

where  is the set of all time meshes such that 0 ≤ t1 ≤ ⋯ ≤ ti ≤ ti+1 ≤ ⋯ ≤ tN ≤ T.

These optimal design methods were implemented using constrained optimization
algorithms, either MATLAB’s fmincon or SolvOpt, developed by A. Kuntsevich and F.
Kappel [23], with four variations on the constraint implementation. We denote these
different constraint implementations (which most often do result in different parameter and
standard error outcomes even in cases where the {ti} are initially required to satisfy similar
constraints) by (C1) – (C4). Complete details of the precise implementation differences in
the algorithms are given in an appendix of [10].

Banks et al. Page 7

Inverse Probl. Author manuscript; available in PMC 2012 July 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



(C1) The first constraint implementation on the time points is given by t1 ≥ 0, tN ≤ T
and ti ≤ ti+1, such that the optimal mesh may or may not contain 0 and T. In this
case we optimize over variables.

(C2) The second constraint implementation is carried out in the same manner as the
first, except that the optimal mesh contains 0 and T. Hence we effectively
optimize over N − 2 variables.

(C3) The third constraint implementation on the time points is given by ti = ti−1+νi, i
= 2, … , N − 1, t1 = 0 and tN = T, with νi ≥ 0, i = 2, … , N − 1, and ν2 + … +
νN−1 ≤ T. Note that the optimal mesh always contains 0 and T as we optimize
over N − 2 variables using slightly different inequality constraints.

(C4) The last constraint implementation on the time points is given by ti = ti−1 + νi, i
= 2, … , N, and t1 = 0 with νi ≥ 0, i = 2, … , N, and ν2 + … + νN = T. This

constraint is implemented by defining . The optimal mesh again
contains 0 and T, and we also optimize over N − 2 variables but an equality
constraint is added to the constraint system.

3 Standard Error Methodology

We begin by finding the optimal discrete sampling distribution of time points , for a
fixed number N of points in a fixed interval [0, T], using one of three optimal design
methods described above. These three optimal design methods are then compared based on
the standard errors computed for parameters using these sampling times. Since there are
different ways to compute standard errors, we will compare the optimal design method using
different techniques for computing the standard errors. In the following sections we will
describe the methods for computing standard errors. First we consider the scalar observation
case (m = 1).

3.1 Asymptotic Theory for Computing Standard Errors

Once we have an optimal distribution of time points we will obtain data or simulated data,

, a realization of the random process , corresponding to the optimal time points,

. Parameters are then estimated using inverse problem formulations as described in

[7]. The variance  is assumed to be constant, the inverse problem is
formulated using ordinary least squares (OLS). The OLS estimator is defined by

The estimate  is defined as

To compute the standard errors of the estimated parameters, we first must compute the
sensitivity matrix
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Note that χ = χN is an N × p matrix. The true constant variance

can be estimated by

The true covariance matrix is approximately (asymptotically as N → ∞) given by,

Note that the approximate Fisher Information Matrix (FIM) is defined by

(14)

and is explicitly dependent on the sampling times τ.

When the true values, θ0 and , are unknown, the covariance matrix is estimated by

(15)

The corresponding FIM can be estimated by

(16)

The asymptotic standard errors are given by

(17)

These standard errors are estimated in practice (when θ0 and σ0 are not known) by

(18)
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It can be shown, under certain conditions, for N → ∞, that the estimator  is
asymptotically normal [28]; i.e., for N large

(19)

3.2 Monte Carlo Method for Asymptotic Standard Errors

To account for the variability in the asymptotic standard errors due to the variability in the
residual errors in the simulated data, we use Monte Carlo trials to examine the average
behavior. For a single Monte Carlo trial, we generate simulated data on the optimal mesh

,

where θ0 = 1.4θ0, where θ0 are the true parameter values and the ∊j are realizations of

 for j = 1, … , N. Parameters are estimated using OLS and standard errors are
estimated using asymptotic theory (18). The parameter estimates and their estimated
standard errors are stored, and the process is repeated with new simulated data
corresponding to the optimal mesh for M = 1000 Monte Carlo trials. The average (and
median) of the M = 1000 parameter estimates and standard errors are used to compare the
optimal design methods in one of our examples.

3.3 The Bootstrapping Method

An alternative way of computing parameter estimates and standard errors uses the
bootstrapping method [11]. Again we outline this for the case of scalar (m = 1) observations.

As in the previous section, assume we are given experimental data (y1, t1), … , (yN, tN) from
the following underlying observation process

(20)

where j = 1, … , N and the  are independent identically distributed (iid) from a distribution

 with mean zero  and constant variance , and θ0 is the “true” parameter value.
Associated corresponding realizations of Yj are given by

The bootstrapping algorithm is presented for sample points corresponding to the tj, j = 1 …
N. To compare the optimal design methods based on their bootstrapping standard errors, we

will take our sample points corresponding to the optimal time distribution ( ). The
different optimal design methods are described above.

The following algorithm [11] can be used to compute the bootstrapping estimate  of θ0

and its empirical distribution.

1. First estimate  from the entire sample, using OLS.
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2. Using this estimate define the standardized residuals:

for j = 1, … , N. Then  are realizations of iid random variables  from

the empirical distribution , and p for the number of parameters. Observe that

Set m = 0.

3. Create a bootstrap sample of size N using random sampling with replacement from

the data (realizations)  to form a bootstrap sample .

4. Create bootstrap sample points

where j = 1, … , N.

5.
Obtain a new estimate  from the bootstrap sample  using OLS. Add 
into the vector Θ, where Θ is a vector of length Mp (M is the number of bootstrap
samples) which stores the bootstrap estimates.

6. Set m = m + 1 and repeat steps 3–5.

7. Carry out the above iterative process M times where M is large (e.g., M=1000),
resulting in a vector Θ of length Mp.

8. We then calculate the mean, standard error, and confidence intervals from the
vector Θ using the formulae

(21)

We will compare the optimal design methods using the standard errors resulting from the
optimal time points each method proposes. Since there are different ways to compute the
standard errors we will present results for several of these computational methods.

4 The Logistic Growth Example

We first compare the optimal design methods for the logistic example using the Monte Carlo
method for asymptotic estimates and standard errors.
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4.1 Logistic Model

The Verhulst-Pearl logistic population model describes a population that grows at an
intrinsic growth rate until it reaches its carrying capacity. It is given by the differential
equation:

where K is the carrying capacity of the population, r is the intrinsic growth rate, and x0 is the
initial population size. The analytical solution to the differential equation above is given by,

where θ0 = (K, r, x0) is the true parameter vector. Our statistical model is given by

where we choose  to generate simulated data (for use in the Monte Carlo
calculations). A realization of the observation process is given by

4.2 Logistic Results

For the logistic model, we use SolvOpt to solve for the optimal mesh for each of the optimal
design methods (D-optimal, E-optimal and SE-optimal), using the second constraint (C2) on
the time points: t0 ≥ 0, tn ≤ T and ti ≤ ti+1, such that the optimal mesh contains 0 and T. For
this example, we took T = 25 and N = n + 1 = 10. Figure 1 contains the plot of the resulting
optimal distribution of time points for the different optimal design methods, along with the
uniform mesh, plotted on the logistic curve.

These optimal design methods are compared based on their average Monte Carlo asymptotic
estimates and standard errors. The simulated data was generated assuming the true

parameter values θ0 = (K, r, x0) = (17.5, 0.7, 0.1), and variance . The average
estimates and standard errors are based on M = 1000 Monte Carlo trials. Since we obtain
histograms of estimates and standard errors from this Monte Carlo analysis, we can also gain
information for comparison from the median of these histograms or sampling distributions.
Monte Carlo asymptotic estimates and standard errors were also computed on the uniform
mesh. We report the average and median estimates and standard errors in Table 1 (sample
standard error histograms are depicted graphically in [10]).

4.3 Discussion of Logistic Results

The average asymptotic estimates from the uniform distribution and each of the optimal
design methods are very close to the true values, θ0. For N = 10 (Table 1), SE-optimal has
the closest average and median estimates, followed by D-optimal (for r and x0) and E-
optimal (for K). Comparing the average and median estimates, we see that for all cases the
averages and medians are very close, indicating that the parameter distributions are
symmetric. However, the averages were slightly larger than the medians for r and x0 for all
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methods, implying that those parameter distributions are slightly skewed to the right (see
Table 1).

Comparing the standard errors (Table 1): For K, we find that E-optimal has the
smallestaverage standard errors, then the uniform grid, then SE-optimal. For r and x0, SE-
optimal has the smallest average standard errors, followed by D-optimal, then the uniform
grid. The average and median standard errors are very close. However the distribution of
standard errors for r and E-optimal seem to be slightly right-skewed.

In conclusion, all of the optimal design methods produce parameter estimates that are close
to the true value. In addition, the standard error estimates are similar comparing the different
optimal design methods. Based on the standard errors, E-optimal is more favorable for the
accuracy of K, and SE-optimal is more favorable for the accuracy of r and x0 (followed
closely by D-optimal).

5 The Harmonic Oscillator Model

In our next example, we consider the harmonic oscillator, also known as the spring-mass-
dashpot model. The model for the harmonic oscillator can be derived using Hooke’s Law
and Newton’s Second Law of Motion (see [13]) and is given by

Here, m is mass, c is damping, and k is the spring constant. Dividing through by m, and
defining C = c/m and K = k/m, we can reduce the number of parameters.

The analytical solution for the position at time t can be obtained and is given by

where C1 = x2, C2 = (x1 + ax2)/b, , and . Substituting in C1 and C2, we
obtain,

where for our considerations the true parameter vector is given by θ0 = (C, K, x1, x2) = (0.1,
0.2, −1, 0.5) in our examples here.

5.1 Results for the Oscillator Model

The first way we will compare these optimal design methods, given that we know θ0 = (C,

K, x1, x2) = (0.1, 0.2, −1, 0.5) and , is to simply use their corresponding standard
errors from the asymptotic theory, i.e., the values of SE(θ0) given in (17). Recall that
uncertainty is quantified by constructing confidence intervals using parameter estimates with
the asymptotic standard error. Since our main focus here is the width of the confidence
intervals, we first forgo the obtaining of the parameter estimates themselves which, for now,
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we tacitly assume may be similar for the three data sampling distributions we investigate
here.

The optimal time points for each of the three optimal design methods are plotted with the
model for different T and N under the first constraint implementation (C1) in Fig. 2, the
second constraint implementation (C2) in Fig. 3, the third constraint implementation (C3) in
Fig. 4, and the last constraint implementation (C4) in Fig. 5. The standard errors (17) from
the asymptotic theory corresponding to the (C2) optimal meshes are given in Table 2.
Results for the other constraints can be found in the report [10].

5.2 Discussion for the Oscillator Model

The constrained optimization algorithm, SolvOpt, was chosen over MATLAB’s fmincon for
comparisons using the harmonic oscillator example because it overall resulted in more well-
behaved standard errors (real and finite values), and fmincon often did not.

In most cases, optimal meshes with a larger number of points were nested in the optimal
meshes with a reduced number of points. In some cases for T = 28.28 (Figs 2 and 3)
doubling the number of points result in extra points being dispersed to otherwise empty
regions, while other points were nested in the optimal mesh with fewer points. Often the
larger number of points in the optimal mesh resulted in smaller standard errors.

From the table of standard errors (Table 2), we find that different optimal sampling
distributions produced the smallest standard errors for different parameters, with no optimal
design method having consistently smaller standard errors. For C, SE-optimal had the
smallest standard error, then D-optimal. For K, D-optimal had the smallest standard error,
followed by SE-optimal. For x1, no optimal sampling distribution had consistently smaller
standard errors. For x2, most of the time E-optimal had the smallest standard errors, then SE-
optimal.

Results are similar for the other constraints, as can be seen in [10]. The standard errors from
the different optimal design methods were usually on the same order of magnitude. No
method was always the best while comparing asymptotic standard errors, though for specific
parameters some optimal sampling distributions were favorable.

Since the asymptotic standard errors appear explicitly in the cost function we are minimizing
for SE-optimal design, it may not be fair to compare these methods based on their
asymptotic standard errors. To account for any possible bias in our comparison, we will
compare these optimal design methods in the next section using simulated data and the
inverse problem to estimate parameters using asymptotic theory and bootstrapping. In these
computations, we will compare the optimal design methods based on how close their
parameter estimates are to the true parameters, and the values of their estimated standard
errors and covariances.

5.3 Results for the Oscillator Model - with the Inverse Problem

We solve the inverse problem with the OLS formulation to obtain parameter estimates and
standard errors from both asymptotic theory (18) and the bootstrapping method (21). We
create simulated noisy data (in agreement with our statistical model (2)) corresponding to
the optimal time meshes using true values θ0 = (C, K, x1, x2) = (0.1, 0.2, −1, 0.5) and iid

noise with . In this section we only estimate a subset of the parameters θ = (C,

K). In addition to the estimates and standard errors, we also report the estimated Cov(C, K)
according to asymptotic theory (15) and bootstrapping (21). For comparison purposes we
also present these results for a uniform grid using the same T and N.
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The optimal time points for each of the three optimal design methods are plotted with the
model for T = 14.14 and T = 28.28 and for N = 15 under the second constraint
implementation (C2) in Fig. 6. The estimates, standard errors, and covariance between
parameters as estimated from the asymptotic theory (18) corresponding to the (C2) optimal
meshes are given in Table 3. The estimates, standard errors, and covariance between
parameters when estimated from the bootstrapping method (21) corresponding to the (C2)
optimal meshes are given in Table 4. In each of the tables are also results on the uniform
grid of time points for the same T and N. Results for the three other constraints can be found
in [10].

5.4 Discussion of Oscillator Results with the Inverse Problem

The simulated data was created using the “true” parameter values θ0 = (C, K) = (0.1, 0.2). So
we can compare the optimal design methods based on how close the parameter estimates are
as well as how large the estimates of the standard errors and covariances are.

For asymptotic estimates—Comparing optimal design methods based on which has
parameter estimates closest to the true values, there is no method that is always the best.
From constraint implementation (C2) (Table 3), either D-optimal or E-optimal had the
closest parameter estimates to the true values. Comparing the optimal design methods based
on the estimated standard errors and covariance between parameters, we again find that no
method is always the best. For constraint implementation (C2) (Table 3), the smallest
standard errors and covariances came from E-optimal when T = 14.14 and SE-optimal when
T = 28.28, followed by D-optimal in both cases.

For bootstrap estimates—Comparing optimal design methods based on which has
bootstrapping parameter estimates closest to the true values, again no method is always the
best. For constraint implementation (C2) (Table 4), either D-optimal or E-optimal had
parameter estimates closest to the true values. For T = 14.14, the parameter estimate for K
was in fact closest from the uniform mesh, followed by D-optimal. Comparing optimal
design methods based on which method produces the smallest bootstrapping estimated
standard errors and parameter estimates, no method is consistently favorable. For constraint
implementation (C2) (Table 4), when T = 14.14 the smallest standard errors and covariances
come from E-optimal, when T = 28.28 either SE-optimal or the uniform grim had the
smallest standard errors and covariances, followed by D-optimal.

In conclusion, all of the optimal design methods are favorable under specific conditions. In
many of the cases the parameter estimates, standard errors, and covariances are on the same
order of magnitude resulting from different optimal design criteria.

6 A Simple Glucose Regulation Model

Next we will consider a well-known model for the intravenous glucose tolerance test
(IVGTT). This model is referred to as the minimal model in the literature [16, 19, 29]. Prior
to the IVGTT the patient is asked to fast. When the patient comes in for the IVGTT,
measurements of their baseline glucose and insulin concentrations, Gb and Ib, respectively,
are first taken. The IVGTT procedure consists of injecting a bolus resulting in an initial
concentration p0 of glucose into the blood, and measuring the glucose and insulin
concentrations in the blood at various time points after the injection.

The body carefully regulates the glucose concentration in the blood within a narrow range.
Extremely high blood glucose concentration is referred to as hyperglycemia, whereas
hypoglycemia results when the blood glucose concentration is too low. The IVGTT initially
brings the blood glucose concentration to hyperglycemic levels. In normal healthy patients,
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the high level of glucose in the blood signals the beta cells of the pancreas to secrete insulin.
Insulin helps the fat and muscle cells to uptake glucose from the blood, either for fuel or for
storage as glycogen. When the blood glucose concentration is too low, the pancreas secretes
glucagon which releases glucose stored in the liver into the blood. Glucagon is another
dynamic variable [5] during the IVGTT. Though glucagon is not included in this model, it is
acknowledged that the liver can regulate glucose independently from insulin through
glucagon.

6.1 Model

The minimal model is given by the following system of ordinary differential equations (see
[16, 19, 29] for details):

(22)

(23)

(24)

where G(t) is the glucose concentration (in mg/dl) in plasma at time t, I(t) is the insulin
concentration (in μU/ml) in plasma at time t and X(t) represents insulin-dependent glucose
uptake activity (proportional to a remote insulin compartment) in units 1/min.

We use the following approximate max function in equation (24) since it is continuously
differentiable:

where ∊0 > 0 is chosen sufficiently small (for example, ∊0 = 10−5).

An interpretation of the parameters is given in Table 5.

In the following we will describe the model and its underlying assumptions.

Equation (22) (Glucose concentration in plasma)—At t = 0 a bolus of glucose is
injected such that the initial glucose concentration in the blood is p0. The first term
represents hepatic glucose balance, which occurs independent of insulin level. The second
term is the loss of glucose due to insulin-dependent uptake by peripheral tissues.

Equation (23) (Insulin-dependent glucose uptake activity)—At t = 0 there is no
glucose uptake activity. Spontaneously tissue loses the ability to uptake glucose, even in the
presence of insulin. Glucose uptake activity increases proportionally to the amount by which
insulin concentration is greater than baseline insulin concentration.

Equation (24) (Insulin concentration in the plasma)—At t = 0 the initial insulin
concentration is at some level over baseline, given by p7 + Ib. The increase in insulin
concentration is proportional to the amount by which glucose concentration exceeds some
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threshold, p5, and the amount of time that has elapsed since the glucose injection. There is a
loss of insulin to degradation in the plasma. The pancreas secretes low levels of insulin, even
in hypoglycemic conditions, to maintain insulin concentration at or above baseline Ib.

The analysis of this model found in [16, 29] gives a metabolic portrait for the first phase
sensitivity to glucose (Φ1) (corresponding to initial secretion of insulin), the second phase
glucose sensitivity (SG) (corresponding to a secondary phase of insulin secretion), and the
insulin sensitivity index (SI). The metabolic portrait is given by

(25)

where Imax is the maximal value of insulin concentration in plasma.

Bergman et al. [15] suggest the use of this model in the clinical IVGTT setting. Parameters
from the model are estimated using patient-specific data. The parameter estimates are then
used in the metabolic portrait for diabetes diagnosis purpose for that patient. This process
was made readily available to clinicians in the computer software MINMOD [25]. Since the
estimation of these parameters plays such a crucial role in the diagnosis, it appears that
optimal design methods would be of great assistance. Data sampled at the optimal time
points would result in the most accurate metabolic portrait produced by this mathematical
model.

Next we will describe the corresponding statistical model for this system involving vector
observations. We obtain numerical solutions using MATLAB’s ode45 since there does not
exist an analytical solution to this system of differential equations. Let

, represent our model solution. Since we can observe
realizations of G(t, θ0) and I(t, θ0), but not X(t, θ0), our observation process is given by

Our statistical model is given by the stochastic process

where  is a noisy vector random process. We assume the following about the vector

random variable :

We assume constant variance,  and  for the results given here. A realization of
the observation process is given by
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where the measurement error  is a realization of .

6.2 Methods

Though the vector methodology is similar to that in the scaler case, for completeness we
outline it here for a system of differential equations such as the simple glucose regulation
model.

We begin by finding the optimal discrete sampling distribution of time points , for a
fixed number of points, N, and a fixed final time, T, using either SE-optimal, D-optimal, or
E-optimal. These three optimal design methods are then compared based on the asymptotic
standard errors formulae for parameters using these sampling times.

More specifically, once we have an optimal distribution of time points we will obtain data or

simulated data, , a realization of the random process  given by

corresponding to the optimal time points, , where . Define

.

A subset of the parameters is estimated using the inverse problem methodology [7]. Since
the variance is assumed to be constant, the inverse problem is formulated using ordinary
least squares (OLS). The OLS estimator for a vector system is defined by

For a given realization {yj}, the OLS estimate  is defined as

The definition of variance gives

In the case that V0 is unknown, an unbiased estimate can be obtained from the realizations

 and  by
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which is solved simultaneously (in an iterative procedure - see [7]) with normal equations

for the estimate , where p is the number of parameters being estimated.

To compute the standard errors of the estimated parameters, we first must compute the 2 × p

sensitivity matrices  which are given by

for j = 1, … , N. For this system we can rewrite Dj in terms of (G(tj, θ), I(tj, θ))T (since (f1(tj,
θ), f2(tj, θ))T = (G(tj, θ), I(tj, θ))T). We have

The true covariance matrix is approximately (asymptotically as N → ∞) given by

When the true values, θ0 and V0, are unknown, the covariance matrix is estimated by

The corresponding FIM, asymptotic standard errors and asymptotic distribution are again
given by (16), (17), (18), and (19), respectively.

6.2.1 The Bootstrap Method for a system—The bootstrap method for a system of
differential equations is the same as described in the previous section, except that each state
variable has its own residuals that must be separately sampled with replacement. The first
four steps of the bootstrap algorithm of Section 3.3 modified for a system with vector
observations is outlined here for completeness.

1. First estimate  from the entire sample, using OLS.

2. Using this estimate define the standardized residuals:
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for j = 1, … , N. Then ,  are realizations of iid random

variables from the empirical distribution , and p for the number of parameters.
Set m = 0.

3. Create a two different bootstrap sample of size N using random sampling with

replacement from the data (realizations)  and  to form

the bootstrap samples  and .

4. Create bootstrap sample points

where j = 1, … , N.

5. Steps 5-8 are the same as those of the algorithm for scalar observations in Section
3.3.

We compute the optimal time mesh using SE-optimality, D-optimality, and E-optimality, as
defined in the previous section, for a subset of the parameters θ = (p1, p2, p3, p4), and a fixed
number of time points (N = 30) and a final time of T = 150 minutes. We remark that a subset
of parameters was chosen to avoid an ill-conditioned FIM. The subset of parameters was
chosen based on the traditional sensitivity functions. The glucose and insulin model
solutions were most sensitive to θ = (p1, p2, p3, p4). The approximate asymptotic standard
errors (17) or (18) for θ = (p1, p2, p3, p4) were computed on the optimal mesh corresponding
to an optimal design method.

The optimal design methods were implemented using the constrained minimization
algorithm SolvOpt. The variations on the constraint employed were the same as in the
previous section. We compare SE-optimal, D-optimal and E-optimal design methods based
on these approximate asymptotic standard errors.

6.3 Results for the Glucose Regulation Model

The optimal time points (found using the SolvOpt algorithm) for each of the three optimal
design methods are plotted with the model for T = 150 minutes and N = 30 under the first
constraint implementation (C1) in Fig. 7, the second constraint implementation (C2) in Fig.
8, the third constraint implementation (C3) in Fig. 9, and the last constraint implementation
(C4) in Fig. 10. The standard errors (17) from the asymptotic theory corresponding to these
optimal meshes are given in Table 6-9, respectively for the four different constraint
implementations.
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Note that for constraint implementations (C2) and (C4) initializing SolvOpt with the
uniform mesh resulted in a terminal error for D-optimal, stating that the gradient at the
starting point was zero. In these cases other initial mesh points were chosen such that D-
optimal’s initial gradient was non-zero, and optimization could be achieved. To be
consistent, all three methods were initialized by the same non-uniform mesh. For (C2) the
initial mesh was τ0 = {0, … , 0, 10, 37, 150, … , 150}, and for (C4) it was τ0 = {5, 15, 19,
21, 24, 26, 42, 59, 63, 73, 82, 95, 98, 98, 102, 111, 114, 119, 120, 122, 127, 136, 137, 137,
140, 144, 144, 144, 145, 146}. Optimal design methods are guaranteed to converge in a
local sense.

6.4 Discussion for the Glucose Regulation Model

Comparing the optimal design methods using approximate asymptotic standard errors, we
find that the optimal design methods that are best for (p1, p2, p3) are different than the ones
best for the standard error of p4. For constraint implementation (C1) (Table 6), SE-optimal
followed by E-optimal had the smallest standard errors for (p1, p2, p3), and D-optimal
followed by SE-optimal had the smallest standard errors for p4. For constraint
implementation (C2) (Table 7), the smallest standard errors were from E-optimal followed
by SE-optimal for (p1, p2, p3), and for p4 it was D-optimal followed by SE-optimal. For
constraint implementations (C3) and (C4) (Tables 8 and 9), SE-optimal followed by E-
optimal had the smallest standard errors for (p1, p2, p3), and D-optimal followed by E-
optimal had the smallest standard errors for p4.

In conclusion, D-optimal tended to have the smallest standard errors for p4, whereas SE-
optimal or E-optimal had the smallest standard errors for (p1, p2, p3). In the next section we
compute the estimated standard errors from simulated data using asymptotic theory and
bootstrapping as a different method of comparing the optimal design methods.

6.5 Result for the Glucose Regulation Model with the Inverse Problem

As in the harmonic oscillator example, we use the inverse problem with the OLS
formulation to obtain parameter estimates and standard errors from both asymptotic theory
(18) and the bootstrapping method (21). We create simulated noisy data corresponding to
the optimal time meshes (presented in the previous section) in agreement with our statistical
model (absolute error, with independent error processes for G and I) assuming true values θ0

to be the parameter values found in Table 5 and iid noise with . We assume the

true variances:  and . In this section we again only estimate a subset of the
parameters θ = (p1, p2, p3, p4). In addition to the estimates and standard errors, we also
report the estimated covariance between estimated parameters according to asymptotic
theory (18) and bootstrapping (21). For comparison purposes we also present these results
for a uniform grid using the same T = 150 and N = 30.

The optimal time points for each of the three optimal design methods are the same as
computed in the previous results section, and are plotted with the model in Figs. 7-10 for the
four different constraints. The parameter estimates, standard errors and covariances are
estimated from the asymptotic theory (18) corresponding to the (C2) optimal meshes are
given in Table 10. The parameter estimates, standard errors, and covariance between
parameters estimated from the bootstrapping method (21) corresponding to the (C2) optimal
meshes are given in Table 11. In each of the tables are also results on the uniform grid of
time points. Similar results for the other constraints can be found in [10].
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6.6 Discussion for the Glucose Regulation Model with the Inverse Problem

Comparing the resulting parameter estimates from simulated data on the different optimal
meshes to the true parameter values, θ0 = (p1, p2, p3, p4) = (2.6 × 10−2, 2.5 × 10−2, 1.25 ×
10−5, 4.1 × 10−3), we find there is no optimal design method that is always favorable. Using
either asymptotic theory or bootstrapping to compute parameter estimates for different
optimal design methods, we examine how close the parameter estimates are to the true
values. Often (but not always) these parameter estimates from the different optimal meshes
are the same order of magnitude as the true values.

The results for the uniform mesh are given for comparison. In most cases, the optimal design
methods produce closer parameter estimates with smaller standard errors and covariances
(as estimated by asymptotic theory and bootstrapping) than the uniform mesh.

Asymptotic theory: parameter estimates—We compare the optimal design methods
based on how close their parameters are to the true values. For constraint implementation
(C2) (Table 10), parameters estimates of (p1, p2, p3) were closest to the true values for the
optimal sampling distributions from D-optimal and then SE-optimal. For p4 the closest
parameter estimates were from the uniform mesh, followed by D-optimal.

Asymptotic theory: standard errors—Here we compare the optimal design methods
based on which has the smallest standard error estimates as estimated by asymptotic theory.

For the constraint implementation (C2) (Table 10), the smallest standard error for
parameters (p1, p2, p3) come from SE-optimal followed by E-optimal. For p4, the smallest
standard error estimates are from the uniform grid followed by D-optimal.

Asymptotic theory: covariance estimates—We also compared the optimal design
methods based on which has the smallest covariance estimates in absolute value.

For constraint implementation (C2) (Table 10), SE-optimal or D-optimal have the smallest in
absolute value covariance estimates.

Bootstrapping: parameter estimates—Here we compare the optimal design methods
based on which had bootstrapping parameter estimates closest to the true values. Often these
results are different for the different parameters.

For constraint implementation (C2) (Table 11), parameter estimates for (p1, p2) the closest
parameter estimates came from E-optimal followed by D-optimal (for p1), and the uniform
grid followed by SE-optimal (for p2). For p3, the uniform grid then SE-optimal had the
closest parameter estimates to the true value. For p4 the closest estimate came from D-
optimal followed by E-optimal.

Bootstrapping: standard errors—We compare the optimal design methods based on
how small their standard errors are as estimated by the bootstrap method.

For the second constraint implementation (C2) (Table 11), the smallest standard errors for
parameters (p1, p3) are from E-optimal followed by SE-optimal. For p2, the uniform grid has
the smallest standard errors, followed by SE-optimal. For p4, the uniform grid has the
smallest standard errors followed by D-optimal.

Bootstrapping: covariance estimates—For constraint implementation (C2) (Table
11), D-optimal or E-optimal have the smallest in absolute value covariance estimates, except
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for  where SE-optimal is the smallest and  where the uniform grid is
the smallest.

Results for the other constraints are similar to those for (C2) in that no one optimal design
method is superior in every case; see [10] for details of use of the constraint implementation
(C1), (C3) and (C4) in each of the design situations considered in this paper.

7 Conclusions

We compared D-optimal, E-optimal and SE-optimal design methods for a simple differential
equation model: the logistic population model, a second order differential equation: the
harmonic oscillator model, and a vector system for glucose regulation. D-optimal and E-
optimal design methods are more established in the literature. Our comparisons test the
performance of SE-optimal design, which is a relatively newer method.

For the logistic example, the optimal design methods were compared using the Monte Carlo
method for asymptotic standard errors. Comparing the average and median parameter
estimates to their true values, we find that SE-optimal has closest parameter estimates for N
= 10 time points. For N = 15, no method had estimates that were always closest to the true
values. In all cases each optimal design methods produced estimates close to the true values.
The average and median standard errors for K were smallest from the optimal mesh from E-
optimal. For parameters r and x0, SE-optimal had the smallest average and median standard
errors. Overall, no optimal design method is consistently favorable for this logistic example.

For the harmonic example, comparing the approximate asymptotic standard errors, we found
that different optimal design methods were favorable for different parameters. D-optimal
often had the smallest standard errors for K and x1. SE-optimal often had the smallest
standard errors for C. For x2, either SE-optimal or E-optimal had the smallest standard
errors. We also compared methods using the inverse problem with simulated data and
asymptotic theory and bootstrapping. Comparing methods based on who’s parameter
estimates were closest to the true values, and who had the smallest standard errors or
covariances, there was no method that was preferred over the others. In each comparison,
the best optimal design method often depended on the constraint implementation, the choice
of T = 14.14 or T = 28.28, and the parameter.

For the glucose regulation model, comparing the approximate asymptotic standard errors,
we found that for parameters (p1, p2, p3) either SE-optimal or E-optimal had the smallest
standard errors. D-optimal tended to have the smallest standard errors for p4. We also
compared the optimal design methods for the inverse problem using asymptotic theory and
bootstrapping. Comparing the parameter estimates to their true values, none of the optimal
design methods were consistently closer. Comparing the optimal design methods based on
which had the smallest standard errors and covariances we found that no method was
preferable over the others. However, the optimal design methods often had smaller standard
errors and covariances than the uniform mesh. The constraint implementation, parameter,
and choice of asymptotic theory or bootstrapping influenced which optimal design method
would be favorable for this example.

The best choice of optimal design method depends on the complexity of the model, the type
of constraint one is using, the subset of parameters you are estimating, and even the choice
of N and T. The examples in this comparison provide evidence that SE-optimal design is
competitive with D-optimal and E-optimal design, and in some cases SE-optimal design is a
more favorable method.
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Figure 1.

The distribution of optimal time points and uniform sampling time points plotted on the
logistic curve. Optimal times points obtained using SolvOpt, with N = 10, and the optimal
design methods SE-optimality, D-optimality, and E-optimality. Optimization with constraint
implementation (C2).
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Figure 2.

Plot of model with optimal time points resulting from different optimal design methods for
θ0 = (C, K, x1, x2), with T = 14.14 (one period) for N = 5 (panel (a)) and N = 10 (panel (c))
and T = 28.28 (two periods) for N = 10 (panel (b)) and N = 20(panel (d)). Optimization with
constraint implementation (C1).
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Figure 3.

Plot of model with optimal time points resulting from different optimal design methods for
θ0 = (C, K, x1, x2), with T = 14.14 (one period) for N = 5 (panel (a)) and N = 10 (panel (c))
and T = 28.28 (two periods) for N = 10 (panel (b)) and N = 20(panel (d)). Optimization with
constraint implementation (C2).
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Figure 4.

Plot of model with optimal time points resulting from different optimal design methods for
θ0 = (C, K, x1, x2), with T = 14.14 (one period) for N = 5 (panel (a)) and N = 10 (panel (c))
and T = 28.28 (two periods) for N = 10 (panel (b)) and N = 20(panel (d)). Optimization with
constraint implementation (C3).
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Figure 5.

Plot of model with optimal time points resulting from different optimal design methods for
θ0 = (C, K, x1, x2), with T = 14.14 (one period) for N = 5 (panel (a)) and N = 10 (panel (c))
and T = 28.28 (two periods) for N = 10 (panel (b)) and N = 20(panel (d)). Optimization with
constraint implementation (C4).
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Figure 6.

Plot of model with optimal time points resulting from different optimal design methods for
θ0 = (C, K), N = 15, with T = 14.14 (one period) (panel (a)) and T = 28.28 (two periods)
(panel (b)). Optimization with constraint implementation (C2).
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Figure 7.

Plot of model with optimal time points resulting from different optimal design methods for
θ0 = (p1, p2, p3, p4), with T = 150 for N = 30. Optimal time points with the Glucose model in
panel (a) and with the Insulin model in panel (b). Optimization, using SolvOpt, with
constraint implementation (C1).

Banks et al. Page 32

Inverse Probl. Author manuscript; available in PMC 2012 July 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 8.

Plot of model with optimal time points resulting from different optimal design methods for
θ0 = (p1, p2, p3, p4), with T = 150 for N = 30. Optimal time points with the Glucose model in
panel (a) and with the Insulin model in panel (b). Optimization, using SolvOpt, with
constraint implementation (C2).
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Figure 9.

Plot of model with optimal time points resulting from different optimal design methods for
θ0 = (p1, p2, p3, p4), with T = 150 for N = 30. Optimal time points with the Glucose model in
panel (a) and with the Insulin model in panel (b). Optimization, using SolvOpt, with
constraint implementation (C3).
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Figure 10.

Plot of model with optimal time points resulting from different optimal design methods for
θ0 = (p1, p2, p3, p4), with T = 150 for N = 30. Optimal time points with the Glucose model in
panel (a) and with the Insulin model in panel (b). Optimization, using SolvOpt, with
constraint implementation (C4).
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SÊ

(Ĉ
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Table 5

Description of model parameters and typical values.

θ Description value

Gb basal pre-injection level of glucose 83.7 mg/dl

Ib basal pre-injection level of insulin 11 μU/ml

p 0 the theoretical glucose concentration in plasma at
time t = 0

279 mg/dl

p 1 the rate constant of insulin-independent glucose
uptake in muscles, and adipose tissue

2.6 × 10−2 min−1

p 2 the rate constant for decrease in tissue glucose
uptake ability

0.025 min−1

p 3 the rate constant for the insulin-dependent increase
in glucose uptake ability in tissue per unit of insulin
concentration above Ib

1.25 × 10−5 min−2(μU/ml)−1

p 4 the rate constant for insulin secretion by the
pancreatic β-cells after the glucose injection and
with glucose concentration above p5

4.1 × 10−3 (μU/ml) min−2(mg/dl)−1

p 5 the threshold value of glucose in plasma above
which the pancreatic β-cells secrete insulin

83.7 mg/dl

p 6 the first order decay rate for insulin in plasma 0.27 min−1

p 7 p7 + Ib is the theoretical insulin concentration in
plasma at time t = 0

352.7 μU/ml
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Table 6

Approximate asymptotic standard errors from the asymptotic theory (17) resulting from different optimal
design methods for θ0 = (p1, p2, p3, p4), optimization, using SolvOpt, with constraint implementation (C1).

Method SE(p1) SE(p2) SE(p3) SE(p4)

SE-optimal 4.173 × 10−3 6.501 × 10−3 3.100 × 10−6 2.959 × 10−4

D-optimal 8.411 × 10−3 1.236 × 10−2 6.133 × 10−6 1.714 × 10−4

E-optimal 4.381 × 10−3 6.520 × 10−3 3.182 × 10−6 4.941 × 10−4
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Table 7

Approximate asymptotic standard errors from the asymptotic theory (17) resulting from different optimal
design methods for θ0 = (p1, p2, p3, p4), optimization, using SolvOpt, with constraint implementation (C2).

Method SE(p1) SE(p2) SE(p3) SE(p4)

SE-optimal 4.019 × 10−3 6.451 × 10−3 3.088 × 10−6 3.452 × 10−4

D-optimal 8.322 × 10−3 1.103 × 10−2 6.230 × 10−6 2.748 × 10−4

E-optimal 3.882 × 10−3 6.284 × 10−3 3.063 × 10−6 5.390 × 10−4
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Table 8

Approximate asymptotic standard errors from the asymptotic theory (17) resulting from different optimal
design methods for θ0 = (p1, p2, p3, p4), optimization, using SolvOpt, with constraint implementation (C3).

Method SE(p1) SE(p2) SE(p3) SE(p4)

SE-optimal 4.205 × 10−3 6.535 × 10−3 3.151 × 10−6 3.041 × 10−4

D-optimal 7.434 × 10−3 1.517 × 10−2 6.171 × 10−6 1.181 × 10−4

E-optimal 7.528 × 10−3 1.123 × 10−2 5.509 × 10−6 1.833 × 10−4
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Table 9

Approximate asymptotic standard errors from the asymptotic theory (17) resulting from different optimal
design methods for θ0 = (p1, p2, p3, p4), optimization, using SolvOpt, with constraint implementation (C4).

Method SE(p1) SE(p2) SE(p3) SE(p4)

SE-optimal 4.921 × 10−3 6.995 × 10−3 3.633 × 10−6 4.796 × 10−4

D-optimal 8.767 × 10−3 1.249 × 10−2 6.405 × 10−6 1.965 × 10−4

E-optimal 7.154 × 10−3 1.020 × 10−2 5.253 × 10−6 2.302 × 10−4
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Table 10

Estimates, standard errors, and covariances between parameters from the asymptotic theory (18) resulting

from different optimal design methods (as well as for the uniform mesh) for θ0 = (p1, p2, p3, p4) = (2.6 × 10−2,

2.5 × 10−2, 1.25 × 10−5, 4.1 × 10−3) and N = 30, optimization, using fmincon, with constraint implementation
(C2).

SE-optimal D-optimal E-optimal Uniform

p̂1 2.118 × 10−2 2.232 × 10−2 2.116 × 10−2 2.045 × 10−2

SÊ ( p̂1) 5.063 × 10−3 8.596 × 10−3 5.298 × 10−3 1.056 × 10−2

p̂2 3.509 × 10−2 3.337 × 10−2 4.356 × 10−2 3.607 × 10−2

SÊ ( p̂2) 8.020 × 10−3 1.139 × 10−2 8.465 × 10−3 1.536 × 10−2

p̂3 1.772 × 10−5 1.628 × 10−5 1.958 × 10−5 1.766 × 10−5

SÊ ( p̂3) 4.247 × 10−6 6.573 × 10−6 4.874 × 10−6 7.787 × 10−6

p̂4 4.486 × 10−3 3.993 × 10−3 4.249 × 10−3 4.027 × 10−3

SÊ ( p̂4) 9.537 × 10−4 5.919 × 10−4 1.607 × 10−3 4.817 × 10−4

Cov̂( p̂1, p̂2) −3.569 × 10−5 −9.416 × 10−5 −3.811 × 10−5 −1.579 × 10−4

Cov̂( p̂1, p̂3) −2.036 × 10−8 −5.566 × 10−8 −2.376 × 10−8 −8.160 × 10−8

Cov̂( p̂1, p̂4) 6.620 × 10−7 1.227 × 10−7 1.774 × 10−6 8.615 × 10−7

Cov̂( p̂2, p̂3) 3.131 × 10−8 7.280 × 10−8 3.585 × 10−8 1.181 × 10−7

Cov̂( p̂2, p̂4) 4.626 × 10−7 4.238 × 10−7 9.670 × 10−7 −5.341 × 10−7

Cov̂( p̂3, p̂4) −6.824 × 10−10 9.532 × 10−13 −2.353 × 10−9 −5.605 × 10−10
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Table 11

Estimates, standard errors, and covariances between parameters from the bootstrap method (21) resulting from

different optimal design methods (as well as for the uniform mesh) for θ0 = (p1, p2, p3, p4) = (2.6 × 10−2, 2.5 ×

10−2, 1.25 × 10−5, 4.1 × 10−3) , M = 1000 bootstraps and N = 30, optimization, using fmincon, with constraint
implementation (C2).

SE-optimal D-optimal E-optimal Uniform

p̂1 1.874 × 10−2 1.883 × 10−2 2.104 × 10−2 1.973 × 10−2

SÊ ( p̂1) 6.619 × 10−3 8.291 × 10−3 6.397 × 10−3 8.563 × 10−3

p̂2 4.034 × 10−2 4.249 × 10−2 4.337 × 10−2 3.730 × 10−2

SÊ ( p̂2) 1.305 × 10−2 1.458 × 10−2 1.409 × 10−2 1.279 × 10−2

p̂3 2.124 × 10−5 2.069 × 10−5 2.075 × 10−5 1.916 × 10−5

SÊ ( p̂3) 8.241 × 10−6 8.799 × 10−6 7.733 × 10−6 8.017 × 10−6

p̂4 4.341 × 10−3 3.920 × 10−3 3.988 × 10−3 3.984 × 10−3

SÊ ( p̂4) 4.228 × 10−4 3.107 × 10−4 6.192 × 10−4 2.098 × 10−4

Cov̂( p̂1, p̂2) −8.157 × 10−5 −1.149 × 10−4 −7.952 × 10−5 −1.053 × 10−4

Cov̂( p̂1, p̂3) −5.272 × 10−8 −7.128 × 10−8 −4.687 × 10−8 −6.722 × 10−8

Cov̂( p̂1, p̂4) 1.240 × 10−8 1.275 × 10−7 −5.657 × 10−7 5.716 × 10−8

Cov̂( p̂2, p̂3) 1.048 × 10−7 1.249 × 10−7 1.042 × 10−7 9.990 × 10−8

Cov̂( p̂2, p̂4) 4.220 × 10−7 8.311 × 10−8 2.226 × 10−6 2.310 × 10−7

Cov̂( p̂3, p̂4) 6.133 × 10−11 −2.764 × 10−11 9.390 × 10−10 8.308 × 10−11
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