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AbstrAct
Objectives: To evaluate occupational exposures in case–control studies, exposure assessors typically 
review each job individually to assign exposure estimates. This process lacks transparency and does not 
provide a mechanism for recreating the decision rules in other studies. In our previous work, nomi-
nal (unordered categorical) classification trees (CTs) generally successfully predicted expert-assessed 
ordinal exposure estimates (i.e. none, low, medium, high) derived from occupational questionnaire 
responses, but room for improvement remained. Our objective was to determine if using recently 
developed ordinal CTs would improve the performance of nominal trees in predicting ordinal occupa-
tional diesel exhaust exposure estimates in a case–control study.
Methods: We used one nominal and four ordinal CT methods to predict expert-assessed probability, 
intensity, and frequency estimates of occupational diesel exhaust exposure (each categorized as none, 
low, medium, or high) derived from questionnaire responses for the 14 983 jobs in the New England 
Bladder Cancer Study. To replicate the common use of a single tree, we applied each method to a single 
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sample of 70% of the jobs, using 15% to test and 15% to validate each method. To characterize vari-
ability in performance, we conducted a resampling analysis that repeated the sample draws 100 times. 
We evaluated agreement between the tree predictions and expert estimates using Somers’ d, which 
measures differences in terms of ordinal association between predicted and observed scores and can be 
interpreted similarly to a correlation coefficient.
Results: From the resampling analysis, compared with the nominal tree, an ordinal CT method that 
used a quadratic misclassification function and controlled tree size based on total misclassification 
cost had a slightly better predictive performance that was statistically significant for the frequency 
metric (Somers’ d: nominal tree = 0.61; ordinal tree = 0.63) and similar performance for the prob-
ability (nominal = 0.65; ordinal = 0.66) and intensity (nominal = 0.65; ordinal = 0.65) metrics. The 
best ordinal CT predicted fewer cases of large disagreement with the expert assessments (i.e. no 
exposure predicted for a job with high exposure and vice versa) compared with the nominal tree 
across all of the exposure metrics. For example, the percent of jobs with expert-assigned high inten-
sity of exposure that the model predicted as no exposure was 29% for the nominal tree and 22% for 
the best ordinal tree.
Conclusions: The overall agreements were similar across CT models; however, the use of ordinal mod-
els reduced the magnitude of the discrepancy when disagreements occurred. As the best performing 
model can vary by situation, researchers should consider evaluating multiple CT methods to maximize 
the predictive performance within their data.

K e y w O R d s :   classification; diesel exhaust; occupational exposure; ordinal data; statistical learning

IntroductIon
To derive occupational exposure estimates in case–
control studies of cancer and other chronic diseases, 
exposure assessors often review the occupational 
information for each job reported in questionnaires 
by study participants. Though such assessments have 
underlying decision rules, they usually lack transpar-
ency and are time-consuming to conduct (Wheeler 
et  al., 2013). Fortunately, there is growing evidence 
that using rule-based approaches results in similar 
exposure estimates to a one-by-one review (Behrens 
et  al., 2012; Pronk et  al., 2012; Friesen et  al., 2013; 
Wheeler et  al., 2013; Carey et  al., 2014; Peters et  al., 
2014) and may reasonably reflect the average rating 
of multiple raters (Friesen et al., 2013). Advantages of 
rule-based approaches include transparency and auto-
mation of the decisions, which allow for sensitivity 
analyses to be conducted and for feedback from other 
experts. Once decision rules have been developed, 
rule-based approaches can reduce the exposure assess-
ment time for that agent in future studies.

We previously used classification trees (CTs) to 
efficiently identify the underlying assessment decision 
rules that explained patterns between occupational 
questionnaire responses and expert-assessed ordinal 
estimates of the probability, intensity, and frequency 
of occupational exposure to diesel exhaust in a bladder 

cancer case–control study (Wheeler et  al., 2013). 
Each job in the study was assigned an estimate for each 
metric, categorized as none, low, medium, or high. The 
CTs used in our previous study treated the exposures 
as nominal categorical variables (unordered) because 
of the limited availability of methods that treated the 
outcome as ordinal (ordered). We found that, despite 
using nominal classification methods, the agreement 
between the CT predictions and the expert assess-
ments ranged from good to excellent for unexposed 
(86–90%) and highly exposed categories (57–85%). 
However, agreement was considerably less consistent 
and, at times, poor for low or medium exposed cat-
egories (7–71%). Though the performance was good 
overall, there was room for improvement in predicting 
the low and medium categories of exposure, particu-
larly for frequency of exposure.

An important area for potential improvement 
would be to take into account the ordinal nature of 
the exposure metrics. For example, a previous simula-
tion study showed that ensembles of CTs designed for 
nominal data had higher prediction error and lower 
agreement with an ordinal outcome according to a 
gamma statistic (an ordinal-based evaluation metric) 
than several CT ensembles designed for ordinal out-
comes (Archer and Mas, 2009). Moreover, in the ordi-
nal outcome setting, misclassifying observations to 
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adjacent categories is a less egregious error than mis-
classifying observations to more distant categories. 
Nominal CTs do not take advantage of the additional 
information present in the ordinal response. Hence, 
our previous analysis using nominal CTs treated a one-
category difference in assignment the same degree of 
disagreement as a two- or three-category difference 
in assignment. Because ordinal CTs account for the 
ordered nature of the categories, ordinal CTs are less 
likely to misclassify an observation into a distant cat-
egory. The previous analyses were facilitated by readily 
available software for CTs for nominal categorical out-
comes (Williams 2009; Therneau, Atkinson, Ripley, 
2014) in the R computing environment (R Core 
Team, 2014). Recently, software for CTs designed for 
ordinal outcomes also became freely available (Archer 
2010; Galimberti et al., 2012) and is now practical to 
implement.

Our primary objective was to determine whether 
using CT methods designed specifically for ordinal 
outcome measures would improve the performance 
of nominal CTs in predicting ordinal diesel exhaust 
exposures in a case–control study. Our secondary 
objective was to provide an overview of the simi-
larities and differences in CT methods for an expo-
sure science audience. Using the occupational diesel 
exhaust example (Wheeler et al., 2013), we compared 
the predictive performance between a previously used 
nominal CT method and four ordinal CT methods to 
predict an expert’s diesel exhaust exposure estimates 
derived from questionnaires. First, we evaluated the 
performance between methods based on a single tree 
to replicate the common use of a single tree to predict 
exposure class (hereafter, single tree analysis). Second, 
we evaluated the variability in performance between 
methods using a resampling analysis where the tree-
building process was repeated 100 times (hereafter, 
resampling analysis).

Methods

Study population
Our study population was the previously used New 
England Bladder Cancer Study, where an expert 
assessed the probability, intensity, and frequency of 
occupational diesel exhaust exposure (Pronk et  al., 
2012; Wheeler et al., 2013). The study was composed 
of 1170 bladder cancer cases and 1413 controls in 

Maine, New Hampshire, and Vermont enumerated 
between 2001 and 2004. All respondents gave writ-
ten informed consent to participate in this study. The 
study protocol was approved by the National Cancer 
Institute Special Studies Institutional Review Board, 
as well as the human subjects review boards of each 
participating institution. There were 14 983 total jobs 
reported by study participants using a lifetime occu-
pational history questionnaire. A subset of jobs (64%) 
also received job- or industry-specific questionnaires 
that asked more detailed task and exposure informa-
tion on a number of agents, including diesel exhaust.

The extraction of variables from the occupational 
questionnaires that were used in the previous and cur-
rent CT model evaluation was described in detail in 
Wheeler et al. (2013). Briefly, from the occupational 
histories, we extracted or derived 498 variables related 
to possible diesel exhaust-exposed scenarios based on 
responses to questions on occupation, industry, main 
tasks or activities, and tools, equipment, materials, 
and chemicals used. These variables included ‘job had 
traffic exposure’, ‘job used diesel equipment’, ‘industry 
likely or plausibly used diesel equipment’, ‘smelled or 
worked near diesel or other engines’, and previously 
assigned standardized occupation and industry codes 
(Colt et al., 2011). From the job- and industry-specific 
questionnaires, we extracted or derived an additional 
223 diesel-related variables, including ‘used diesel-
powered equipment’, ‘smelled exhaust’, ‘worked near 
idling diesel equipment’, ‘repaired diesel equipment’, 
‘equipment type’, and ‘job function’. These 721 vari-
ables were considered possible predictive variables.

The exposure estimates were previously obtained 
from a one-by-one review of each job by an industrial 
hygienist (P.A.S.) to assign the probability, intensity, 
and frequency of diesel exhaust exposure (Pronk et al., 
2012). Probability was assessed as the estimated pro-
portion of workers likely exposed to diesel exhaust 
based on all the information in the occupational his-
tory and job- and industry-specific questionnaires, 
including tasks, job, industry, and decade, with esti-
mated cut points of <5% (none/negligible, category 
0), 5–49% (low, 1), 50–79% (medium, 2), and ≥80% 
of workers (high, 3). Approximately 75% of the jobs 
were assessed as having negligible probability of expo-
sure. For all jobs assigned a probability ≥5%, intensity 
and frequency were estimated. Intensity was assessed 
on a continuous scale as the estimated average level 
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of respirable elemental carbon (REC, μg m−3) in the 
worker’s breathing zone during tasks where diesel 
exhaust exposure occurred and, for the CT models, 
categorized with cut points of <0.25 (none/inciden-
tal, category 0), 0.25 to <5 (low, 1), 5 to <20 (medium, 
2), and ≥20 (high, 3)  μg m−3 REC. Frequency was 
assessed on a continuous scale as the estimated average 
number of hours per week exposed to diesel exhaust 
and, for the CT models, categorized with cut points of 
<0.25 (none/negligible, category 0), 0.25 to <8 (low, 
1), 8 to <20 (medium, 2), and ≥20 (high, 3) hours per 
week. These cut points were set to the same categories 
defined for the original nominal CT models (Wheeler 
et al., 2013). These categories are described below as 
the outcome (variable) class or score.

Statistical methods
CTs are built by recursively partitioning the data set 
using splitting rules, which are logical rules defined 
according to the values of selected explanatory varia-
bles. When deriving a CT, all observations in the train-
ing data start together in the root node, where nodes 
are denoted as t. Then, for each of the p predictor vari-
ables, the optimal binary split is determined. In node 
impurity-based CTs (impurity functions are defined 
below), optimality is defined as that split resulting 
in the largest decrease in node impurity, which is a 
measure of heterogeneity in the node with respect to 
the outcome variable class. Splits resulting in increas-
ingly more homogeneous nodes with respect to class 
are preferred. Hence, the splitting rules are depend-
ent on the node impurity function in this type of CT. 
Among all best splits for the p predictor variables, the 
very best split among the variables is selected for parti-
tioning the observations to the left and right descend-
ant nodes. This splitting process is repeated for all 
descendant nodes until the terminal nodes are either 
homogeneous with respect to the outcome class or 
there are too few observations for further partition-
ing according to a stopping rule. While splitting rules 
are used to build the tree, pruning and stopping rules, 
which vary based on the CT model chosen (described 
below) and user-specified parameters (e.g. minimum 
number of observations), control the growth or size 
of the tree. Pruning involves trimming some of the 
terminal nodes from a tree to prevent overfitting in a 
training data set, resulting in a smaller tree that may 
have better predictive performance in a validation data 

set. Both the splitting rules and pruning or stopping 
rules can impact the predictive performance of CT 
methods.

Here, we used the nominal CT method previously 
used (Wheeler et al., 2013) and four ordinal CT meth-
ods to predict the expert-assessed exposure metrics 
for each job (dependent variables) using the extracted 
and coded variables from the occupational question-
naire responses (explanatory variables). The splitting 
and pruning or stopping rules for the five CT methods 
used here (nominal: rpart; ordinal: rpartScore MC, 
rpartScore MR, ctree Bonferroni, ctree Univariate) are 
described below. We used the following R packages: 
rpart (Therneau, Atkinson, Ripley, 2014) for CTs 
with a nominal Gini impurity function, rpartScore 
(Galimberti et  al., 2012) for CTs with a generalized 
Gini impurity function, and ctree (Hothorn et  al., 
2006) for conditional inference trees. No particular 
ordinal method was expected a priori to provide sub-
stantially better performance because there has been 
no comparison of these ordinal models to each other 
in the published exposure assessment literature. Based 
on a previous analysis in the literature (Archer and 
Mas, 2009), we anticipated that at least the CT with 
a generalized Gini impurity function (rpartScore MC 
and/or rpartScore MR) would classify the ordinal die-
sel exhaust exposure metrics better than the CT with 
the nominal Gini impurity function (rpart).

rpart and rpartScore CT methods
The rpart and the two rpartScore methods use recur-
sive partitioning to build a tree using a Gini impurity 
function to determine each split in the tree. The opti-
mal binary splitting rule for a given node in a tree is the 
one that results in the largest decrease in node impu-
rity, as measured by a generalized impurity function 
(I) (Breiman et al., 1984; Galimberti et al., 2012) at a 
tree node t, defined as

 I t C w w p w t p w tj k j k
k

L

j

L

( ) ( | ) ( | ) ( | ),=
==

∑∑
11

 (1)

where C w wj k( | ) is the misclassification cost of 
assigning an observation to category j of variable w 
when it belongs to category k, and p w tj( | ) is the pro-
portion of observations in node t that belong to cat-
egory j of the L number of categories of the outcome 
variable. The nominal Gini impurity function used 
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by rpart sets the misclassification cost C w wj k( | ) =1 
when j ≠ k and sets C w wj k( | ) = 0 when j = k (correct 
assignment).

For both rpartScore methods, the misclassification 
cost is a measure of dissimilarity between the actual and 
assigned categories. Here, we used a quadratic misclas-
sification function C w w s sj k j k( | ) ( )= − 2, where s j is the 
classification score for category j of the outcome vari-
able and sk is the score for the observed category k using 
the ordinal coding scheme. In our case, the scores  = 
{ , , , }0 1 2 3  and the misclassification cost is the squared 
difference in category levels. For example, the misclas-
sification cost for the method assigning a job assessed 
by the expert as having a low (1) exposure to a high (3) 
exposure category would be (3 − 1)2 = 4; the misclas-
sification cost for assigning the same job to no expo-
sure would be (0 − 1)2 = 1. As a result, the rpartScore 
CTs place more emphasis in the impurity function on 
observations that are incorrectly classified far from the 
true class.

The two rpartScore methods differ in the pruning 
function controlling the size of the tree. A tree that is 
too large may fit the training data very well but predict 
poorly in a testing data set. The pruning approach used 
here is the cost-complexity measure in equation (2) 
(Breiman et al., 1984; Galimberti et al., 2012), which 
combines a measure of predictive performance and 
a measure of the complexity of the tree, usually the 
number of leaves or terminal nodes. Specifically, the 
cost-complexity measure is

 R T R T card Tα α( ) ( ) ( ),= + ×  (2)

where R T( ) is the predictive performance, card T( ) 
is the size of the tree T measured by the number of 
terminal nodes, and α  is a tuning parameter that con-
trols the trade-off between predictive performance 
and model complexity. The rpartScore MC sets the 
predictive performance measure to the total misclas-
sification cost, whereas rpartScore MR sets it to the 
total number of misclassified observations. The latter 
is a sum of all the observations that are classified incor-
rectly, whereas the former is a sum over all observa-
tions of the absolute difference between the observed 
score and the predicted score.

To build and prune the rpart and rpartScore CTs, 
we selected the best model for each type of tree using 
the 1-SE rule (Breiman et al., 1984) where the SE was 

estimated using 10-fold cross-validation in the testing set 
and a complexity parameter (α in equation (2)) ≥0.001, 
a small minimum bound to allow for pruning. The 1-SE 
rule selects the tree that has the maximum predictive 
error that is within 1 SE of the minimum predictive error.

ctree CT methods
The ctree methods are conditional inference trees, 
which estimate a regression relationship by binary 
recursive partitioning in a conditional inference frame-
work (Hothorn et al., 2006). The conditional inference 
tree approach begins by testing the global null hypoth-
esis of independence between the outcome variable 
and any of the input variables. If the hypothesis is not 
rejected, the algorithm selects the input variable with 
the strongest association with the response. The associa-
tion is measured by a P-value corresponding to a test for 
the partial null hypothesis of a single input variable and 
the outcome variable. A binary split on the selected pre-
dictor is then made. The process of testing for a signifi-
cant association and then conducting a binary split on 
the selected significant predictor continues until a stop-
ping criterion is satisfied. The condition for stopping 
is based on univariate P-values for the ctree Univariate 
method and on multiplicity-adjusted P-values for the 
ctree Bonferroni method. A split is made as long as the 
minimum univariate or Bonferroni-adjusted P-value is 
below a nominal level, such as 0.05. Due to the nature of 
the stopping criteria, no pruning is necessary using con-
ditional inference trees. Ordinal outcome variables are 
accommodated through scores that reflect the distance 
between categories of the outcome.

Evaluating performance of CT methods
To evaluate the performance of the five CT methods 
in predicting diesel exhaust exposure score, we con-
ducted a single tree analysis and a resampling analysis 
using each of the methods. The 498 occupational his-
tory variables and 223 job- and industry-specific vari-
ables were the predictors considered to build the CTs. 
For the single tree analysis, we used a single 70% sam-
ple (n = 10 488 jobs) to build the model, a 15% sample 
(n = 2247) to select a model among a set of candidate 
models, and a 15% sample (n = 2248) to validate the 
selected model. Candidate models differed in the set 
of input variables (e.g. including or excluding stand-
ardized occupation and industry codes) considered to 
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build the CT. For the resampling analysis, we gener-
ated 100 training samples (70% of data) and evaluated 
model performance in 100 validation sets (30% of 
data). The input variable set for the best model from 
the single tree analysis was used to build the CTs in 
the resampling analysis. In each of the 100 training 
samples, sampling of the jobs was stratified propor-
tional to the number of jobs assigned by the industrial 
hygienist to each category of each exposure metric.

In both the single tree and resampling analyses, 
measures of the predictive performance of the mod-
els were evaluated on the validation set. We evaluated 
the agreement of the model predictions and the expert 
exposure assignments in the validation sets using 
Somers’ d (Agresti, 2002), which measures differences 
in terms of ordinal association between predicted and 
observed scores (Galimberti et  al., 2012), and can be 
interpreted similarly to other correlation measures with 
a scale ranging from −1 to 1. It is an asymmetric measure 
of association, computed as the difference between the 
proportions of pairs of observations that are concordant 
and those that are discordant in the observed and pre-
dicted scores (among the observations that are not tied 
in the observed scores). We tested the global hypothesis 
of no difference in the agreement among models using 
Friedman’s non-parametric rank test for repeated meas-
urements in a randomized complete block design, treat-
ing each of the 100 training sets as a block (Hollander 
and Wolfe, 1999; Galimberti et al., 2012). The test sta-
tistic and asymptotic P-value were calculated using the 
coin R package (Hothorn et al., 2008). We tested for dif-
ferences in model agreement for pairs of models using 

the Wilcoxon signed rank test, where the primary inter-
est was on differences between the nominal tree and 
ordinal trees.

results
In the single tree analysis, the best agreement for 
probability of exposure and intensity of exposure was 
observed using rpartScore MC, with rpart only slightly 
lower (Table 1). The best agreement for frequency of 
exposure was with ctree Univariate; however, rpart 
and rpartScore MC provided nearly identical predic-
tive performance. For the rpart and rpartScore meth-
ods, CTs for the probability metric had nearly the 
same or slightly better performance than CTs predict-
ing intensity, with the lowest performance observed 
for CTs predicting frequency. For the ctree methods, 
the order from highest to lowest performance by met-
ric was intensity, frequency, and probability for the 
Bonferroni stopping condition and frequency, inten-
sity, and probability for univariate stopping.

To examine where certain methods differed in 
prediction agreement with the expert assessments, 
we calculated the absolute value of the difference in 
scores for the expert-assigned exposures and the CT 
predicted exposures. The cross-tabulations for the 
absolute score differences for the two best overall 
methods according to the single tree analysis (rpart 
and rpartScore MC) methods are listed in Table  2 
for the three exposure metrics. The (0, 0) cell in the 
table for each metric lists the number of jobs where 
both rpart and rpartScore MC predictions agreed 
with the expert-assigned exposure. The (3, 0)  cell 

Table 1. Single tree analysis: Somers’ d values based on the validation set comparing the predicted 
estimates from five CT models to the expert-assigned estimates for three diesel exhaust exposure 
metrics

Modela Somers’ d

Probability Intensity Frequency

rpart 0.67 0.66 0.60

rpartScore MC 0.70 0.67 0.60

rpartScore MR 0.64 0.66 0.56

ctree Bonferroni 0.55 0.60 0.58

ctree Univariate 0.56 0.58 0.61

aSee text for descriptions of the differences in splitting and stopping/pruning rules used in each model.
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lists the number of jobs where the rpart predicted 
score differed by 3 from the expert assignment, but 
the rpartScore MC predicted score matched the 
expert-based score. This is the situation where rpart 
predicted either no exposure for a high exposure 
job or a high exposure for a no exposure job, i.e. the 
largest possible disagreement. The table shows that 
rpartScore MC had fewer large disagreements in 
exposure estimates (score difference of 2 or more) 
than did rpart. The number of large disagreements 
for rpart compared with rpartScore MC was 15 (6 
+ 4 + 5)  to 7 (1 + 6 + 0)  for probability, 8 to 0 for 
intensity, and 26 to 13 for frequency. The tendency 

for rpartScore MC to have fewer large disagreements 
than rpart was also evident in tables of predicted ver-
sus expert-assigned exposure scores across the expo-
sure metrics, even though the proportion in perfect 
agreement was usually slightly higher with rpart than 
rpartScore MC (see Supplementary Table 1, available 
at Annals of Occupational Hygiene online).

To compare the composition of each tree, we deter-
mined the number of variables in each of the five tree 
models for each exposure metric and the number of 
variables that were common to each of the four ordi-
nal trees and the nominal tree. There was considerable 
overlap between the variables selected by the ordinal 
trees and the nominal tree, but also some differences 
(Table  3). For example, rpartScore MC had 77% 
(109/141) of its variables in common with rpart for 
probability, 72% for intensity, and 79% for frequency 
of exposure. The rpartScore MC trees had fewer varia-
bles than the rpart trees for each exposure metric. The 
ctree models were substantially smaller than the other 
trees. There was also some overlap in the 10 most 
important variables for each tree (see Supplementary 
Tables 2 and 3, available at Annals of Occupational 
Hygiene online). For example, using equipment pow-
ered by diesel was either the most important or second 
most important variable in all trees for probability of 
exposure. Additional details on the variables for the 
nominal tree are available in Wheeler et al. (2013).

In the resampling analysis, similar patterns to the 
single tree analysis were observed in the mean Somers’ 
d values comparing model and expert estimates 
(Table  4). For the rpart and rpartScore methods, 
probability and intensity had approximately similar 
performance measures, with rpartScore MC having 
better performance for frequency. The ctree methods 
were slightly lower (0.01–0.05 units) than the rpart 
and rpartScore methods, with the lowest performance 
observed for intensity. The two ctree methods were 
nearly indistinguishable in performance from each 
other, with the Univariate method having slightly bet-
ter performance for the frequency measure than the 
Bonferroni method.

The above patterns are more clearly shown in the 
distributions of the Somers’ d metrics (Fig.  1). For 
probability and intensity, the rpart and rpartScore dis-
tributions were similar to each other and were higher 
than both ctree models. For exposure frequency, 
the median agreement from rpartScore MC was the 

Table 2. Single tree analysis: cross-tabulation 
of the absolute differences in ordinal scores 
for expert-assigned exposures and predicted 
exposures from the nominal rpart and ordinal 
rpartScore MC CTs in the validation data set 
(n = 2248 jobs).

rpart rpartScore MC

Absolute score difference between 
predicted and assigned category

0 1 2 3

Probability difference

 0 1930 48 6 1

 1 26 116 6 0

 2 4 11 49 1

 3 6 5 5 34

Intensity difference

 0 1948 48 0 0

 1 24 116 1 0

 2 5 10 21 0

 3 3 0 5 15

Frequency difference

 0 1882 40 8 5

 1 12 161 5 0

 2 9 8 71 1

 3 6 11 3 26
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highest, and its distribution of agreement was gen-
erally higher those from the other models. For fre-
quency, the interquartile range and overall range from 
rpartScore MC were considerably narrower than that 
from rpartScore MR and rpart. Generally, the two 
ctree methods had similar median and interquartile 
agreement measures.

We also examined the relationship between the 
Somers’ d measures across the 100 models built 
in the resampling analysis for each combination of 
method pairs using scatter plots (see Supplementary 
Figures 1–3, available at Annals of Occupational 
Hygiene online). For frequency, the ctree methods 
were more similar to each other than to the rpart and 
rpartScore methods. Similarly, the two rpartScore 
methods were more similar to each other than the 
rpart and ctree models. Similar patterns were also 

observed for probability and intensity, although the 
two ctree methods were most correlated for the inten-
sity metric.

Friedman’s test rejected symmetry in agreement 
across the five models for each of the three exposure 
metrics (P  <  0.0001). For exposure probability, the 
median agreement for rpart was significantly differ-
ent from both ctree methods and rpartScore MR but 
was not significantly different from the rpartScore MC 
model according to the Wilcoxon tests. The median 
agreement for rpartScore MC was significantly dif-
ferent from that of the rpartScore MR and the ctree 
methods. For exposure intensity, the ctree models 
were significantly different in agreement from the 
three other models, but the rpart and rpartScore meth-
ods were not significantly different in agreement. For 
exposure frequency, there were significant differences 

Table 4. Resampling analysis (100 trees): mean Somers’ d values based on the validation set 
comparing the predicted estimates from five CT models to the expert-assigned estimates for three 
diesel exhaust exposure metrics.

Modela Somers’ d (variance)

Probability Intensity Frequency

rpart 0.65 (0.0004) 0.65 (0.0004) 0.61 (0.0004)

rpartScore MC 0.66 (0.0004) 0.65 (0.0004) 0.63 (0.0004)

rpartScore MR 0.65 (0.0006) 0.65 (0.0004) 0.60 (0.0007)

ctree Bonferroni 0.62 (0.0003) 0.60 (0.0005) 0.61 (0.0007)

ctree Univariate 0.62 (0.0004) 0.60 (0.0004) 0.62 (0.0004)

aSee text for descriptions of the differences in splitting and stopping/pruning rules used in each model.

Table 3. Number of variables selected in each tree model and the number of variables common to 
each model and the nominal CT (rpart) in the single tree analysis.

Model Probability Intensity Frequency

Number 
variables

Common  
with rpart

Number 
variables

Common  
with rpart

Number 
variables

Common  
with rpart

rpart 166 166 140 140 161 161

rpartScore MC 141 109 130 93 122 96

rpartScore MR 154 120 162 102 154 108

ctree Bonferroni 19 18 27 24 21 21

ctree Univariate 26 20 37 29 44 38
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in the median agreement between the rpart method 
and the rpartScore MC method and ctree Univariate 
method according to the Wilcoxon tests.

The tendency for rpartScore MC to have fewer 
large disagreements in exposure estimates than rpart 
was again evident in the tables of mean agreement 

Figure 1 Distribution of Somers’ d comparing expert estimates and estimates from five CT models for exposure 
probability, intensity, and frequency in the resampling analysis.
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between the expert-assigned and model-predicted 
exposures over the 100 resampled validation data 
sets for the exposure metrics (see Supplementary 
Table  4, available at Annals of Occupational Hygiene 
online). For probability, 47% of the jobs assigned 
a score of 2 by the expert were predicted to be 0 by 
rpart, whereas rpartScore MC predicted a score of 0 
for only 42% of these jobs. For intensity, 29% of the 
jobs assigned a score of 3 were predicted to be 0 by 
rpart, but rpartScore MC predicted only 22% of them 
to be 0.  For frequency, rpart predicted 20% of the 
jobs assigned a score of 3 to have a score of 0, while 
rpartScore MC predicted 16% of them to be 0.

dIscussIon
This study compared the predictive ability of multiple 
CT methods to assess ordinal estimates on a four-cate-
gory scale for the expert-assigned probability, intensity, 
and frequency of occupational diesel exhaust exposure 
estimates in a case–control study. Differences between 
methods were detected and varied somewhat by the 
exposure metric. The ordinal rpartScore MC model 
had a slightly better predictive performance in the 
resampling analyses than the nominal rpart model for 
the frequency exposure metric, which we previously 
found to be the most difficult metric to predict with 
the nominal tree (Wheeler et al., 2013). We found little 
difference between the overall predictive performance 
of the nominal rpart and ordinal rpartScore CT mod-
els for the exposure probability and intensity metrics. 
However, rpartScore MC tended to have fewer large 
disagreements in exposure estimates compared with 
rpart across all of the exposure metrics.

Conditional inference trees (ctree models) gener-
ally had lower predictive performance than either the 
nominal or ordinal recursive partitioning (rpart) mod-
els in the studied setting. The stopping rules for ctree 
models are based on P-values and tended to result in 
substantially smaller trees than rpart and rpartScore 
models, which base the growth and pruning of the tree 
on prediction error. The ctree Univariate method gen-
erally results in a larger tree than does ctree Bonferroni 
due to a less strict stopping criterion. In this study, ctree 
Univariate had a better predictive performance for the 
frequency metric and higher mean agreement across 
metrics. Given that many exposure scenarios reported 
within a population-based study are rare, smaller trees 
would likely miss important exposure distinctions that 

could be captured by larger trees. This is consistent 
with early CT research that indicated stopping rules 
may omit good splits; thus, pruning is preferable to 
stopping (Breiman et al., 1984).

Overall, our findings provide reassurance that our 
previous use of nominal CT models using rpart to pre-
dict diesel exhaust in this study population (Wheeler 
et al., 2013) was reasonably robust to the misspecifica-
tion of the outcome variable. Nominal CTs, which are 
easy to implement with an R package that includes a 
graphical user interface (Williams, 2009), provided a 
reasonable starting point for exploration of predictive 
performance. However, our findings also suggest that 
researchers should consider using CT models spe-
cifically designed for ordinal outcomes when feasible, 
especially for situations where the predictive perfor-
mance of the nominal CT method was less successful. 
Here, some improvements using ordinal CT meth-
ods occurred for the metric for which the nominal 
CT approach had the lowest agreement (frequency), 
whereas similar performance between the ordinal and 
nominal methods was observed for the two metrics 
that had the highest agreement in the original nominal 
CT analyses. This suggests that as the practical barri-
ers to using ordinal classification methods dissipate, 
it becomes preferable to use them in the studied set-
ting. Regardless of the method used, no method had 
perfect predictive performance. As a result, to avoid 
the most egregious discrepancies in exposure assign-
ments, CT users would benefit from inspecting the 
additional predictive information that is provided by 
each model at a decision rule level (not shown here) to 
identify where the models had poorer performance to 
prioritize those jobs for additional expert review.

Differences in performance can be expected 
between ordinal CTs and nominal CTs when predict-
ing ordinal outcomes due to differences in the node 
impurity function. One argument against using the 
nominal Gini impurity function for ordinal data is 
that it violates one of the ordinal impurity function 
properties described by Archer and Mas (2009). 
The violated property is that the impurity function 
is required to be a non-negative function such that 
the node impurity is largest when extreme classes in 
the outcome are equally mixed together (i.e. half of 
the observations in the no exposure and half in the 
high exposure groups). In addition, when the predic-
tor variables have monotonic relationships with the 
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ordinal response, the generalized Gini impurity func-
tion should lead to better predictive performance. 
However, when the predictors have a U or J shape with 
the response, the nominal Gini impurity function may 
perform well relative to the generalized Gini impurity 
function because the nominal Gini impurity function 
is capable of detecting associations between covariates 
that are not monotonic with the ordinal class (Archer 
and Mas, 2009). Nevertheless, cross-tabulations 
of observed versus predicted ordinal response for 
nominal and ordinal CTs may demonstrate different 
disagreement patterns and if misclassifications into 
distant categories are to be penalized more heavily, 
the generalized Gini impurity function will likely per-
form better with respect to yielding a higher Somer’s 
d (Supplementary Tables 1 and 2, available at Annals 
of Occupational Hygiene online). According to the No 
Free Lunch theorem (Wolpert and Macready, 1997), 
no one method will dominate all the others in every 
situation. Therefore, one cannot make a general state-
ment about which method will perform better when 
analyzing all future data sets.

A limitation of our work is the use of exposure 
estimates from one expert assessor as the gold stand-
ard with which to evaluate model agreement, as there 
were no quantitative exposure data or data from 
more assessors available. The use of one expert is a 
shortcoming that may have introduced some bias in 
the estimation of the true exposures. However, the 
goal of this effort was not to predict truth but rather 
to replicate the assessments for use in another study. 
The expert was not involved with the model-building 
process and hence had no direct influence on the 
relative performance of the different tree models. 
Therefore, treating the exposure estimates from one 
expert as the gold standard is unlikely to explain the 
differences in relative performance among the tree 
models.

The recent development of ordinal CT methods 
somewhat improved our ability to detect relation-
ships between occupational questionnaire responses 
and expert-assessed exposure estimates for occu-
pational diesel exhaust. However, our findings are 
based on a single exposure agent in a single study. 
The effect of CT model selection should be exam-
ined for a range of agents, with varying exposure 
prevalences, numbers of relevant occupational ques-
tions, and distributions across exposure categories, 

to determine whether or not our findings are gener-
alizable to other exposures and studies. Because the 
best performing model is expected to vary by situa-
tion, researchers should consider evaluating several 
methods to maximize the predictive performance for 
their data.
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FundIng
Intramural Research Program of the Division of 
Cancer Epidemiology and Genetics, National 
Cancer Institute, National Institutes of Health (Z01 
CP10122-19).

AcknowledgeMents
We declare no conflicts of interest.

reFerences
Agresti A. (2002) Categorical data analysis. 2nd edn. Hoboken, 

NJ: John Wiley & Sons.
Archer K. (2010) rpartOrdinal: an R package for deriving a 

classification tree for predicting an ordinal response. J Stat 
Softw; 34: 1–17.

Archer K, Mas V. (2009) Ordinal response prediction using 
bootstrap aggregation, with application to a high-through-
put methylation data set. Stat Med; 28: 3597–610.

Behrens T, Mester B, Fritschi L. (2012) Sharing the knowledge 
gained from occupational cohort studies: a call for action. 
Occup Environ Med; 69: 444–8.

Breiman L, Friedman J, Olshen R et al. (1984) Classification and 
regression trees. Pacific Groove, CA: Wadsworth & Brooks/
Cole Advanced Books & Software.

Carey R, Driscoll T, Peters S et al. (2014) Estimated prevalence 
of exposure to occupational carcinogens in Australia (2011-
2012). Occup Environ Med; 71: 55–62.

Colt J, Karagas M, Schwenn M et al. (2011) Occupation and 
bladder cancer in a population-based case-control study in 
Northern New England. Occup Environ Med; 68: 239–49.

Friesen MC, Pronk A, Wheeler DC et al. (2013) Comparison 
of algorithm-based estimates of occupational diesel exhaust 
exposure to those of multiple independent raters in a 
population-based case-control study. Ann Occup Hyg; 57: 
470–81.

Galimberti G, Soffritti G, Di Maso M. (2012) Classification 
trees for ordinal responses in R: the rpartScore package. J 
Stat Softw; 47: 1–25.

Hollander M, Wolfe D. (1999) Nonparametric statistical meth-
ods. 2nd edn. New York, NY: John Wiley & Sons.

334 • Comparison of ordinal and nominal classification trees

http://annhyg.oxfordjournals.org/lookup/suppl/doi:10.1093/annhyg/meu098/-/DC1
http://annhyg.oxfordjournals.org/lookup/suppl/doi:10.1093/annhyg/meu098/-/DC1
http://annhyg.oxfordjournals.org/lookup/suppl/doi:10.1093/annhyg/meu098/-/DC1
http://annhyg.oxfordjournals.org/lookup/suppl/doi:10.1093/annhyg/meu098/-/DC1


Hothorn T, Hornik K, van de Wiel M et al. (2008) Implementing 
a class of permutation tests: the coin package. J Stat Softw; 
28: 1–23.

Hothorn T, Hornik K, Zeileis. (2006) Unbiased recursive 
partitioning: a conditional inference framework. J Comput 
Graph Stat; 15: 651–74.

Peters S, Glass D, Milne E et  al.; the Aus-ALL consortium. 
(2014) Rule-based exposure assessment versus case-by-
case expert assessment using the same information in a 
community-based study. Occup Environ Med; 71: 215–19.

Pronk A, Stewart P, Coble J et al. (2012) Comparison of two 
expert-based assessments of diesel exhaust exposure in a 
case-control study: programmable decision rules versus 
expert review of individual jobs. Occup Environ Med; 69: 
752–8.

R Core Team. (2014)  R: A language and environment for sta-
tistical computing. R Foundation for Statistical Computing, 
Vienna, Austria. http://www.R-project.org/.

Therneau T, Atkinson B, Ripley B. (2014) rpart: recursive 
partitioning and regression trees. R package version 4.1-5. 
http://CRAN.R-project.org/package=rpart.

Wheeler DC, Burstyn I, Vermeulen R et al. (2013) Inside the 
black box: starting to uncover the underlying decision rules 
used in a one-by-one expert assessment of occupational 
exposure in case-control studies. Occup Environ Med; 70: 
203–10.

Williams GJ. (2009) Rattle: a data mining GUI for R. R J; 1: 
45–55.

Wolpert D, Macready W. (1997) No free lunch theorems for 
optimization. IEEE Trans Evolut Comput; 1: 67–82.

Comparison of ordinal and nominal classification trees • 335

http://www.R-project.org/
http://CRAN.R-project.org/package=rpart

