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Abstract

A Bayesian semi-parametric estimation of the binary response model using Markov Chain

Monte Carlo algorithms is proposed. The performances of the parametric and semi-parametric

models are presented. The mean squared errors, receiver operating characteristic curve, and

the marginal effect are used as the model selection criteria. Simulated data and Monte Carlo

experiments show that unless the binary data is extremely unbalanced the semi-parametric

and parametric models perform equally well. However, if the data is extremely unbalanced

the maximum likelihood estimation does not converge whereas the Bayesian algorithms do.

An application is also presented.
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1 Introduction

The use of generalized linear models (GLMs) (Nelder and Wedderburn(1972)) for the quanti-

tative analysis of social science data has increased appreciably in the past four decades. Es-

pecially logit and probit parametric models have been widely used. Amemiya(1981), Aldrich

and Nelson (1984) present comprehensive discussions of the GLM binary choice models. Since

the distributions of binary responses are not known and are often not estimable, the persistent

question is whether semi-parametric models are better than logit or probit parametric models.

In this paper we propose a Bayesian semi-parametric binary choice model using the quasi-

likelihood function as the likelihood part of the posterior distribution. We compare the perfor-

mances of the Bayesian semi-parametric model with the sample theory semi-parametric model.

Also we compare the semi-parametric models with probit and logit parametric models. The

comparisons are based on simulated data and Monte Carlo experiments. As the criteria of

comparison we use the marginal effect, mean squared error (MSE) and receiver operating char-

acteristic (ROC)curve. What we find are (i) when the data is balanced the performances of the

semi-parametric models are indistinguishable from the performances of the parametric models

(i.e. probit and logit models.) (ii) However, when the data is extremely unbalanced (the yes re-

sponse rate being less than 3%), the maximum likelihood estimation of the semi-parametric as

well as the parametric models does not converge, whereas the Bayesian estimation converges.

After the simulated data and Monte Carlo experiments, we use the Panel Study of Income

Dynamics (PSID) data , and test the robustness of the Bayesian semi-parametric binary choice

model and other binary choice models.

The organization of the paper is as follows. In Section 2, the Bayesian binary choice model

and estimation method are presented. In Section 3 we compare different estimators using sim-

ulated data. In Section 4 Monte Carlo experiments are presented. An empirical application is

presented in Section 5. Concluding remarks are given in Section 6.
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2 Bayesian Semi-Parametric Binary Response Model

We have a sample of binary responses, y1, . . . , yn, where

yi =


1 if yes with probability pi

0 otherwise with probability 1− pi
.

and pi is given by pi = F(xiβ), where xi = (xi1, · · · , xik) and β = (β0, β1, · · · , βk)
′ .

Since F (·) is not known, we use the quasi-likelihood function:

`(β | fi, xi = 1, . . . , n) =
n∏
i=1

p̂fii ×
n∏
i=1

(1− p̂i)1−fi . (1)

We follow the single index-parametric model of Klein and Spady (1993) and Klein and Vella

(2009) among others, and obtain p̂i by

p̂i = Pr[Yi = 1 | Vi(β)]

=
p(Y = 1)ĝ(V | Y = 1)

ĝ(V )
=

n1

n

n∑
i=1

1
hn
K( t−vi

hn
)( yi
n1

)

n∑
i=1

1
hn

K(
t−vi
hn

)

n

. (2)

Vi(β) = β0 + β1xi1 + β2xi2 + · · ·+ βkxik. (3)

ĝ(t) =
n∑
i=1

1

hn

K( t−vi
hn

)

n
(4)

is a non-parametric kernel density estimation function, where

K(
t− vi
hn

)

is the kernel function satisfying
∫
K(x)dx = 1 and K(x) ≥ 0, and hn is the kernel density

window size or bandwidth.
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Vi(β) in equation (3) is the index. Given the linearity of Vi in equation (3) we may write:

Xiβ = β1(Xi1 + θ2Xi2 + · · ·+ θkXik) + β0, (5)

where θi = βi/β1, β1 6= 0. From equation (5) we get the new single index as

Vi(θ) = Xi1 + θ2Xi2 + · · ·+ θkXik. (6)

Because the probability of the linear transformation of the index is the same as the proba-

bility of the original index, equation (2) will have the following property:

Pr(Y = 1 | V = v(β)) = Pr(Y = 1 | V = v(θ)). (7)

Rather than maximizing the quasi-likelihood function, we propose a Bayesian semi-parametric

estimation algorithm by using the quasi-likelihood function (1) as the likelihood to obtain the

posterior distribution of θ = (θ2, . . . , θk):

p(θ) ∝ π(θ)`(θ | data), (8)

where π(θ) is the prior and `(·) is the quasi-likelihood.1 We use MCMC algorithms with the

Metropolis-Hastings criterion.

The MCMC algorithms are carried out as follows: let θ(i) be the i-th draw of θ.

Step 1 Choose an initial value θ(0). We use the OLS estimates of the standardized transformed

model of equation (6). 2

yi = xi1 + θ2xi2 + · · ·+ θkxik.

1Zhang, Silvapulley and Papaspirouz (2009) also use the quasi-likelihood in Bayesian inference, but they set
priors for both θ and the bandwidth and get the posterior with both θ and bandwidth.

2In the maximum likelihood estimation of the semi-parametric model, the covariate xij is standardized as
xij/sj , where sj is the standard deviation of xij ’s. This standardization of the covariates is done to make the
convergence of the MLE procedure easier and get rid of the large variances influences among different types of
variables.
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Step 2 We use a random walk draw:

θ(i) = θ(i−1) + εi

where εi is normal with mean 0 and variance c(X ′X)−1. We set c = 1.

Step 3 Set θ(i) = θ(i) if u < α. Otherwise set θ(i) = θ(i−1), where u is drawn from Uniform(0, 1)

and α is given by

α = min

{
1,

p(θ(i) | data)

p(θ(i−1) | data)

}
.

p(· | data) is the posterior pdf of θ.

Step 4 Repeat Step 2 and Step 3 for i = 1, 2, . . . ,M .

In estimating the semi-parametric model the kernel density of equation (4) is used for both

the MLE and Bayesian estimation. In the case of the Bayesian MCMC algorithm the kernel

density is estimated for each draw of θ(i). In the case of the MLE the kernel density is estimated

for each iteration until convergence is attained.

The kernel density is dependent on the choice of the kernel, K(·) and the bandwidth, h. Li

(2001) shows that the choice of the bandwidth is more important than the choice of the kernel.

Keeping the normal distribution as the kernel, we use two bandwidths to see if the choice of

the bandwidth makes the difference in the MLE as well as in the Bayesian estimation. The first

bandwidth we use is Silverman’s estimation (1998):

h =

(
4

3n

).2
σ. (9)

We call this bandwidth the usual bandwidth. The second bandwidth we use is the optimal

bandwidth given by

h∗optimal =

(
R(K)(∫

x2K(x)dx
)2
R(ĝ′′(x; p(h)))

).2

. (10)

The optimal bandwidth h∗optimal is explained in the appendix. The optimal bandwidth tends to

trace sharp modes of a density better than the usual bandwidth. This is illustrated in Figures 1
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and 2 where 15 Gaussian mixture densities are presented.

Figures 1 and 2 Here.

In Figures 1 and 2 the solid black lines are the true Gaussian mixture densities, whereas the

lines in red are kernel densities. In Figure 1 the kernel densities are obtained using the usual

bandwidth while in Figure 2 they are obtained by the optimal bandwidth. We see that the usual

bandwidth in Figure 1 misses the sharp modes of the true densities but the optimal bandwidth

in Figure 1 traces the sharp modes fairly accurately as vividly illustrated by the multimodal

claw distribution in the center of Figures 1 and 2.

The computation of the optimal bandwidth is time consuming and thus we use a graphic

processing unit (GPU). GPU computation has been used more and more in Bayesian estimation

of many models.

3 Comparing the Performances of Parametric and Semi-parametric

Binary Response Models

Let us compare the performances of the parametric and semi-parametric binary response mod-

els using the Bayesian and maximum likelihood estimators. We choose the probit and logit

models as the parametric models. For the semi-parametric model we use two bandwidths: the

usual bandwidth of equation (9) and the optimal bandwidth of equation (10). In summary the

estimators and models we compare are:

Bayesian



Probit

Logit

Semi-parametric with the usual bandwidth

Semi-parametric with the optimal bandwidth
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MLE



Probit

Logit

Semi-parametric with the usual bandwidth

Semi-parametric with the optimal bandwidth

As given in equation (5) in the semi-parametric model the regression coefficients, βi’s, are

transformed into θi’s. This makes it difficult to compare the regression coefficient estimates

from a parametric model to those from the semi-parametric model. Therefore let us use three

model selection criteria: the marginal effects, mean squared errors and the receiver operating

characteristic (ROC) curve.

The marginal effect is a popular statistic for the binary response model. When the distribu-

tion is known or the model is parametric, the generalized form of the true marginal effect of Xk

for models with known density distribution is:

∂F (xiβ)
∂xk

= ∂F (xiβ)
∂xiβ

∂xiβ
∂xk

= F ′(xiβ)βk = f(xiβ)βk.

Within the semi-parametric model the marginal effect needs to be defined differently: we

use the predicted probability, p̂, and define the estimated marginal effect as p̂(x + ∆x) − p̂(x),

in which p̂(.) is given in equation (2) and ∆x is an increment of the x. In order to capture the

entire distribution of the X , we will consider ∆x = {std(x), 2× std(x), 3× std(x)}.3

In regressions, one way to select model is to choose the model with the smallest unweighted

MSE or the normal MSE4, which is calculated by

n∑
i=1

(yi − P̂i)2

n− k
,

where yi = 1 or 0; P̂i is the computed probability F (xiβ̂) for the case of a parametric model or

the equation (2) for the case of the semi-parametric model.

3We may also use the quantile of X as ∆x.
4There is the weighted mean squared errors. Amemiya (1981) argues for the use of the weighted mean squared

errors, but as shown in Chen and Tsurumi (2010) the unweighted MSE is a better model selection criterion than
the weighted MSE.
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The receiver operating characteristic (ROC) curve is one of the best choices(McNeil and

Hanley(1982, 1984), Swets et al. (2000), Fawcett(2006), etc.) to select the binary response model.

We compare the area under the ROC curve (Alonzo(2002), Agresti(2007)). The bigger is the

area, the better the predictive power of the binary response model is. We will use the algorithm

from Fawcett(2006) to plot ROC curve and calculate the area under the ROC curve.

Let us compare the performances of the different estimation methods and models by a sim-

ulated data. We specify the binary choice model to be

Y ∗i = β0 + β1Xi2 + β3Xi3 + εi, (11)

whereXi3 is a zero-one dummy variable to represent a discrete covariate andXi2 is drawn from

a uniform distribution, U(0, a). The continuous regressor,Xi2 is included since the large sample

properties of the semi-parametric estimator requires that at least one regressor is a continuous

variable. The values of the parameters (β0, β1, β2, a) are chosen to control the percentage of

Yi = 1 to represent a balanced or unbalanced data. The observed binary values, Yi, are set as

Yi =


1 if Y ∗i > 0

0 otherwise
.

The sample size n is set at 1,000 (n = 1, 000).

Before we compare the performances of the sample theory and Bayesian estimates of the

binary response models, let us see how well the discretized marginal effect:

p(x+ ∆x)− p(x)

is estimated by the sample theory and Bayesian semi-parametric models. We generated a sam-

ple of size 1,000 (n = 1, 000) from the logistic distribution setting β = {β0, β1, β2}. The percent-

age of Y = 1 is 9.25%. ∆x is set at one, two, and three standard deviations.
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∆X true marginal effect
semi-parametric model

MLE Bayesian

one std(x1) .0109 .0159 .0149

two std(x1) .0233 .0273 .0266

three std(x1) .0370 .0302 .0307

Notes: std=standard deviation; Bayesian=posterior mean; The usual bandwidth is used.

From the table above we see that the discretized marginal effects are reasonably well esti-

mated by the sample theory and Bayesian models.

The error term in equation (11), εi , is also drawn from 16 distributions that are given in

Table 1. Distributions #1–15 are Gaussian mixture densities from Marron and Wand (1992) and

distribution #16 is a skew logistic distribution with the distribution function given by

Pr(yi = 1) =
1

(1 + e−xiβ)θ
.

The first 15 distributions are presented in Figures 1 and 2. Some of these distributions,

especially, trimodal, claw, and comb distributions may seldom occur in real data, but these

distributions are different from the probit or logit distributions and thus the semi-parametric

models may perform better than the parametric models.

Table 1: Distributions of the Error Terms of the Binary Response Models

Distribution Distribution

1 Gaussian 9 Trimodal
2 Skewed unimodal 10 Claw
3 Strongly skewed 11 Double Claw
4 Kurtotic unimodal 12 Asymmetric Claw
5 Outlier 13 Asymmetric Double Claw
6 Bimodal 14 Smooth Comb
7 Separated bimodal 15 Discrete Comb
8 Skewed bimodal 16 Skew Logistic

Table 2 and Table 3 present the ROC areas and MSE’s of different estimators based on sim-

ulated data. Although we have obtained results for all of the 16 distributions the results are
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quite similar to those given in Tables 2 and 3. Table 2 is for the balanced cases in which the

percentage of Y = 1 ranges from 21.4% to 66.7% while Table 3 is for extremely unbalanced

cases in which the percentage of Y = 1 ranges from 6% to 2.5%.

Tables 2 and 3 Here.

From Table 2 and 3 we conclude that judged by the ROC area and MSE, we cannot discrim-

inate among the different models and estimation procedures except in the cases of extremely

unbalanced data as given in Table 3: all the MLE estimation procedures failed to converge,

whereas all the Bayesian MCMC algorithms attain convergence. Hence we conclude that when

the data is extremely unbalanced the Bayesian MCMC algorithms may be preferred to the MLE

algorithms. Comparing the bandwidths, we see that the use of the optimal bandwidth does not

have a visible advantage over the standard bandwidth.

4 Monte Carlo Experiments

In the previous section based on one sample draw we compared the performances of the differ-

ent models and estimation procedures. In this section I conduct Monte Carlo (MC) experiments

to compare the performances of the different models and estimation procedures.

In the literature MC results using the optimal bandwidth is few because of the heavy com-

putational burden in searching the optimal bandwidth. The most difficult part of MC simula-

tion is to estimate the optimal bandwidth efficiently without smoothing techniques and specific

bounds, and to run Bayesian MCMC simulations quickly. By using GPU (graphics processing

unit) computing with C/C++ in Matlab(Li(2011)), which is more than 400 times faster than the

regular computing method, we are able to make the MC simulations effectively.

The number of Monte Carlo replications is 500. The Monte Carlo simulation results are

consistent with results obtained in the previous section for the simulated data. Therefore, we

only present two examples for balanced cases and unbalances cases.
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Table 4 Here.

In Table 4, the first part is for the balanced case with claw distribution and the second part

is for unbalanced case of the model with skewed log distribution; only Bayesian MC results

can be presented for the unbalanced case because not all 500 replications yield convergence

when the MLE is used. Clearly the results from ROC and MSE are very similar among differ-

ent models: either parametric or Semiparametric models by either MLE or Bayesian methods.

However, the marginal effects from both MLE or Bayesian Semiparametric methods are smaller

than parametric methods. In the balanced case we see that the mean of the Bayes Semi optimal

bandwidth and the mean of the MLE Semi optimal bandwidth are .3579 and .3323, respec-

tively, and they are close to each other, but the standard deviation of the Bayes Semi optimal

bandwidth is much smaller than that of the MLE Semi optimal bandwidth.

5 Analysis of employment status

Let us present an application to the employment status using the PSID data. The Panel Study

of Income Dynamics (PSID) is a longitudinal survey that collects economic and demographic

information of U.S. families Since 1968. PSID data has been frequently used to investigate

the employment status of the U.S. in the literature (James and Audrey (1992), David and Ann

(1999), Lawrence et.al. (2006)).

Our data is extracted from PSID family data for those individuals who are the family head

in the labor force market. There are 8002 family heads in labor force in 2005 survey. After

dropping the missing values there are 4034 observations. We set

Y =

 1 if head of family is unemployed

0 otherwise.

According to the Bureau of Labor Statistics , the annual unemployment rate in year 2005

is 6.1%. In our data, the unemployment rate (P(Y=1)) is 6.17%, and we may say the data is
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not extremely unbalanced. Three covariates or regressors are continuous variable: they are

age, years of education and years of the working experience. Four covariates are categorical

variables: sex (male or female, ’1’ or ’0’), race (white or non-white, ’1’ or ’0’), marital status

(married or not, ’1’ or ’0’), and city size (6 levels, ’1’ to ’6’, bigger number means smaller city).

Summary statistics of all variables are in Table 5. The covariates characterizing the family head

are age and years of work. The mean and median age of the head of family is around 41 with

the standard deviation 12.33. The mean and median years of working is around 10 years with

the standard deviation 9.12. Judged by the quantiles all the variables distributed symmetric.

Table 5 Here.

The parameter estimates and standard deviations are given in Table 6. The estimated pa-

rameters of the logit and probit models yield the same signs except the constant term. The

MLE and Bayes estimates (posterior means) are similar. The signs of the estimated parameters

of the semi-parametric models are in general opposite of the signs of the estimated parameters

of the logit and probit models. This is because the parameters of the semi-parametric model is

normalized by the parameter of age, β1: θi =
βi − 1

β1
.

Table 6 Here.

The MSE and ROC of the parametric and semi-parametric models are similar but a careful

examination shows that the ROC curves of the semi-parametric models are higher than those

of the parametric models as shown in Figure 3.

Figure 3 Here.

The marginal effects analysis is in Table 7. The marginal effects are more informative mea-

sures than the parameters in a binary response model.

Table 7 Here.
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It is clear that the marginal effects among each model are close, except Citysize and YR-

WORK for the MLE estimate of the semi-parametric model. For Age and YRWORK variables,

the marginal effects are computed using three ∆(x): 1 std, 2 std, and 3 std where std is the

standard deviation, because these variables have large ranges: 18 to 83 for Age and 0 to 51

for YRWORK. The negative sign indicates that older people are less likely to be unemployed

than younger people. This is consistent with the fact that in general older people have more

working experience and are easy to find a job. Similarly, all the models show that white, high-

educated, married people have a less probability of losing jobs. All the models except the MLE

of the semi-parametric model give the result that people living in a large city have a lower

chance of getting unemployed. As to the years of working experience (YRWORK), all the mod-

els except the MLE semi-parametric model, show that a longer working experience increases

the probability of unemployment.

Although the differences among models are small, generally the semi-parametric model

estimated by either the MLE or MCMC yields a better ROC. Based on ROC we may say that

the semi-parametric model is a better model for the PSID data.

6 Concluding Remarks

We first presented a Bayesian semi-parametric binary response model based on the quasi-

likelihood function that is based on the kernel density estimate. The major difference between

our Bayesian semi-parametric binary response model and the sample theoretic semi-parametric

binary response model of Klein and Spady (1993) is that we use the Markov Chain Monte Carlo

(MCMC)algorithm with the Metropolis-Hastings criterion rather than the maximum likelihood

estimator. We used the normal kernel and employed two bandwidths: the usual bandwidth

and the optimal bandwidth.

Using simulated data we compared the performances of the semi-parametric models to

those of the logit and probit models. We used the MLE and MCMC algorithms. The error

term of the regression model is generated from 16 different distributions. The comparison of
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performances is based on the mean squared errors (MSE), the receiver operating character-

istic curve (ROC) and the marginal effect. We find that the performances of the parametric

and semi-parametric models are virtually indistinguishable if they estimated by the MLE or

MCMC procedures except when the data is extremely unbalanced ( % of ′Y = 1′ < 3%). In the

extremely unbalanced cases the MCMC procedure work but the MLE does not converge.

Although the optimal bandwidth traces sharp modes better than the usual bandwidth as

shown in Figures 1 and 2, the quasi-likelihood function produced by the kernel density with

the optimal bandwidth is not much different than the one produced by the usual bandwidth.

Consequently, the semi-parametric models based on the optimal bandwidth yield virtually the

same results as the semi-parametric models based on the usual bandwidth do.

As an application we estimated the binary response model using the PSID data. We set the

unemployed head of family as 1, and the employed head of family as 0. All the parametric and

semi-parametric models yield similar estimates except the city size and years of work variables.

Judged by the ROC curves, the semi-parametric models are better than the parametric models.

There are Bayesian semi-parametric qualitative choice models. One model is based on the

B-splines to approximate the link function using Laplace transform of the normal distribution

(Fahrmeir and Lang (2001), Antoniadis and Ian (2004), Fahrmeir and Raach (2007)). The second

model uses the binary response version of the median regression model (Newton and Chappell

(1996), Kottas and Gelfand (2001)). Both of these methods need link functions subject to iden-

tifiability. It will be interesting to compare our Bayesian semi-parametric model to the models

by these authors.
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Appendix Optimal bandwidth

Wand and Jones (1995) and Silverman (1986) show that we can obtain the optimal band-

width h by minimizing the Mean Integrated Squared Error (MISE):

MISE {ĝ(xlh), g(x)} = E

[∫
(ĝ(x;h)− g(x))2dx

]
,

where g(·) is the non-parametric kernel density estimation function. It is clear that integration

needs to be made on the whole real line, x ∈ (−∞,∞) instead of a finite discrete set. Li (2011)

shows that the choice of the kernel function K(x) is not as important as the choice of the band-

width. Hence, we will use the standard normal distribution for K(·) = Φ(·) and will find the

optimal bandwidth.

By applying the Central Limit Theorem (CLT), we get an approximation of MISE called

Asymptotic Mean Integrated Squared Error (AMISE):

AMISE {ĝ(x;h), g(x)} = (Nh)−1R(K) +
1

4
h4µ2(K)2R(g),

where R(K) =
∫
K(x)2dx and µ2(K) =

∫
x2K(x)dx. The AMISE is a monotonic function of the

optimal bandwidth h and the optimal h is generally defined as:

hoptimal =

[
R(K)(∫

x2K
)2
R(g′′)N

] 1
5

This optimal bandwidth cannot be calculated directly because R(g′′) is a function of the second

order derivative of the true density function g which is unknown.

When the data set is Gaussian or asymptotically Gaussian with standard deviation, we will

get the regular optimal bandwidth in the literature:

hoptimal =

[
4

3N

] 1
5

σ (12)

When data is not normal, this optimal bandwidth may not fit into the real data, and we may
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use the most popular solve-the-equation plug-in approach and get the optimal bandwidth as

h∗optimal =

[
R(K)(∫

x2K(x)dx
)2
R(ĝ′′(x; p(h)))

] 1
5

(13)

Here p(h) =
[
−2K(4)(0)µ2(K)ψ̂4

R(K)ψ̂6

] 1
7
h

5
7 is the optimal pilot bandwidth and ψ̂r = 1

N

N∑
i=1

ĝ(r)(xi; p
(r)),

where p(r) is the pilot bandwidth to estimate the rth derivative of the density g(r).

Equation (12) is the most popular simple optimal bandwidth and it is only optimal for

Gaussian data. If data is not Gaussian, we should use equation (13), which requires multiple

complex computations and it is extremely time consuming. This is one of the reason that many

people use different estimation methods to estimate bandwidth such as Zhang, Silvapulley and

Papaspirouz (2009), or build different smooth factors (Chan Shen, Klein (2010)) with specific

bound to minimize the bias in estimating bandwidth. The computation in equation (13) can be

realized efficiently by using graphic processing unit (GPU) computing with C/C++ in Matlab

(Li (2011)), and its speed is about 400 time faster than the regular computing method such as

in Gauss or Matlab itself. Therefore, we can estimate much more accurate optimal bandwidth

because we will consider all real numbers without any arbitrary lower or upper bound.
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Table 2: ROC areas and MSE’s: Balanced Cases
Strongly skewed Sparated bimodal Claw

Y=1 is 66.7% Y=1 is 21.4% Y=1 is 21.4%

ROC area MSE ROC area MSE ROC area MSE
Bayes Bayes Bayes

probit 0.67 0.2 0.76 0.15 0.88 0.04
logit 0.67 0.2 0.76 0.15 0.88 0.04
semi 0.67 0.19 0.75 0.14 0.88 0.03

semi-opt 0.67 0.19 0.76 0.14 0.88 0.03

MLE MLE MLE
probit 0.67 0.2 0.76 0.14 0.88 0.04

logit 0.27 0.2 0.76 0.15 0.88 0.04
semi 0.67 0.19 0.76 0.14 0.88 0.04

semi-opt 0.67 0.19 0.76 0.14 0.88 0.03
Notes: semi = semi parametric with the bandwidth h in equation (9)

semi-opt = semi prametric with he optimal , h∗optimal in equation (10)
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Table 3: ROC areas and MSE’s: Extremely unbalanced Cases

Skewed logitic (θ = .1) Outlier Kurtotic unimodal
Y=1 is 2.5% Y=1 is .6% Y=1 is 1.5%

ROC area MSE ROC area MSE ROC area MSE
Bayes Bayes Bayes

probit .96 .02 .85 .01 .96 .04
logit .96 .02 .85 .01 .95 .04
semi .96 .02 .87 .01 .98 .01

semi-opt .96 .02 .87 .01 .98 .01

MLE MLE MLE
probit NC NC NC

logit NC NC NC
semi NC NC NC

semi-opt NC NC NC
Notes: semi = semi parametric with the bandwidth h in equation (9)

semi-opt = semi prametric with he optimal , h∗optimal in equation (10)
NC = not converged
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Table 4: Monte Carlo Experiment Result

Claw distribution, around 20% of ’Y=1’ Replications = 500

Binary Model Evaluation Criteria Marginal Effect

ROC area MEAN STD. MSE MEAN STD. MEAN STD.

Bayes Probit 0.8357 0.0283 Bayes Probit 0.0370 0.0042 0.0702 0.0121
Bayes Logit 0.8356 0.0284 Bayes Logit 0.0370 0.0042 0.0739 0.0122
Bayes Semi 0.8387 0.0270 Bayes Semi 0.0365 0.0042 0.0519 0.0084
Bayes Semiopt 0.8384 0.0273 Bayes Semiopt 0.0365 0.0042 0.0516 0.0086
MLE Probit 0.8357 0.0283 MLE Probit 0.0370 0.0042 0.0704 0.0121
MLE Logit 0.8355 0.0283 MLE Logit 0.0370 0.0042 0.0739 0.0122
MLE Semi 0.8428 0.0261 MLE Semi 0.0363 0.0042 0.0576 0.0103
MLE Semiopt 0.8427 0.0258 MLE Semiopt 0.0364 0.0042 0.0552 0.0113

Optimal Bandwidth
MEAN STD. MEAN STD.

BayesSemi opti-
mal bandwidth 0.3579 0.0198 MLE Semi opti-

mal bandwidth 0.3323 0.0480

Skewed log alpha=0.25, around 2.5% of ’Y=1’ Replications = 500

Binary Model Evaluation Criteria Marginal Effect

ROC area MEAN STD. MSE MEAN STD. MEAN STD.

Bayes Probit 0.9790 0.0075 Bayes Probit 0.0108 0.0019 0.0890 0.0154
Bayes Logit 0.9788 0.0076 Bayes Logit 0.0108 0.0020 0.0907 0.0151
Bayes Semi 0.9788 0.0071 Bayes Semi 0.0109 0.0019 0.0752 0.0153
Bayes Semiopt 0.9789 0.0071 Bayes Semiopt 0.0109 0.0019 0.0712 0.0144

BayesSemi opti-
mal bandwidth 0.3225 0.0019

Table 5: Summary Statistics of the 2005 PSID data

Variable N Mean StDev Min Q1 Median Q3 Max

unemployment 4034 0.06173 0.24069 0 0 0 0 1
racial05 4034 0.42712 0.49472 0 0 0 1 1

sex 4034 0.76301 0.42529 0 1 1 1 2
age05 4034 41.556 12.332 18 31 42 51 83

educ05 4034 13.272 2.469 0 12 13 16 17
marital05 4034 0.66262 0.47288 0 0 1 1 1
citysize05 4034 3.3508 1.7707 1 2 3 5 6

YRWORK05 4034 10.944 9.12 0 4 9 16 51
Notes: Q1 and Q3 are 25 and 75 percentiles, respectively.
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Table 6: Estimations for the 2005 PSID data (Y=1.0 is 6.17%)
variable MLE Bayes1 Semi (θ)2

Logistic Probit Logistic Probit MLE Bayes

c Constant 0.4148 -0.0183 0.3866 -0.0303 / /0.4150 0.2097 0.4254 0.2094

β1 Age -0.0118 -0.0054 -0.01211 -0.0050 / /0.0075 0.0036 0.0074 0.00368

β2 Racial05 -0.1464 -0.0657 -0.1369 -0.0633 7.4515 5.3118
0.1363 0.0652 0.1343 0.0661 5.6099 8.9994

β3 Sex -0.4312 -0.2121 -0.4379 -0.2012 40.3179 44.8558
0.1802 0.08715 0.1908 0.0897 13.762 10.468

β4 Educ05 -0.1487 -0.0723 -0.1471 -0.0722 22.6273 14.8074
0.0250 0.0127 0.0245 0.0131 6.7067 1.8031

β5 Marital05 -0.4441 -0.2098 -0.4282 -0.2219 42.6703 34.9547
0.1759 0.0829 0.1878 0.0835 14.3294 9.4151

β6 Citysize05 -0.0457 -0.0261 -0.0488 -0.0276 -2.478 3.18461
0.0376 0.0180 0.0380 0.0179 1.5281 2.5144

β7 YRWORK05 0.0023 0.0018 0.0028 0.0020 1.6060 -0.6088
0.0102 0.0048 0.0099 0.0049 0.7997 0.4881

MSE 0.0566 0.0566 0.0567 0.0567 0.0557 0.0565
ROC area 0.6641 0.6646 0.6643 0.6645 0.6875 0.6711

Notes: 1. First row is MLE. second row is standard error.
2. First row and second row are posterior mean and standard error, respectively.

22



Table 7: Marginal Effects of the 2005 PSID data

Explanatory Marginal MLE Bayes MLE-Semi Bayes-SemiVariables Effects Logistic Probit Logistic Probit

Age

∆x = 1std -0.0077 -0.0074 -0.0080 -0.0067 -0.0041 -0.0075
∆x = 2std -0.0146 -0.0141 -0.0151 -0.0129 -0.0077 -0.0142
∆x = 3std -0.0207 -0.0201 -0.0212 -0.0185 -0.0111 -0.0200

Racial05 dummy -0.0034 -0.0032 -0.0034 -0.0031 -0.00128 -0.00099

Sex dummy -0.0185 -0.0191 -0.0256 -0.0186 -0.01502 -0.0227

Educ05 ∆x = 1std -0.0178 -0.0182 -0.0176 -0.0174 -0.0157 -0.0171

Marital05 dummy -0.0156 -0.0155 -0.0156 -0.0148 -0.0135 -0.0138

Citysize05 ∆x = 1std -0.0044 -0.0052 -0.0044 -0.0046 0.001755 -0.00264

YRWORK05

∆x = 1std 0.0012 0.0020 0.001468 0.0017 -0.0048 0.0031
∆x = 2std 0.0025 0.0041 0.0029 0.0035 -0.0091 0.0066
∆x = 3std 0.0038 0.0062 0.0045 0.0054 -0.0129 0.0105

Notes: std=standard deviation.
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Figure 1: Various distributions and kernel densities using the usual bandwidth
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Figure 2: Various distributions and kernel densities using the optimal bandwidth
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Figure 3: ROC curve analysis for the PSID data (4034 observations)

 

 
The ROC curves above show that at the same level of the 'False Positive Rate' ( ˆ( 1 | 0)P y y= = ), Semiparametric 
model gives a greater value of the 'True positive rate'( ˆ( 1 | 1)P y y= = ).  
 
For example:when  ''False Positive Rate(FP) =0.5',  'True positive  rate  (TP) of Semi=0.71' >  'True positive  rate of 
Probit&Logit=0.65'.  The Fp&Tp rates of the Semiparametric model are calculated by a specific cut‐off  0π  from the 

following classification table: 
 Prediction, set 0π =0.64 
Actual ˆ 1y =  ˆ 0y =  
y= 1 a b 
y = 0 c d 

 
           The predicted  ŷ 's in this table get from setting 0π =0.64 in the example. 
       So the TP rate = ˆ( 1 | 1)P y y= =  = a/(a+b)=0.71; and FP rate = ˆ( 1 | 0)P y y= =  =  c/(c+d)=0.5. 

This is only for one point on the ROC curve according to one cut-off 0π  .  For each model, we can calculate N 
points according to N values of 0π   , linking these N points will be our ROC curve for the Semiparametric model.  
The ROC curve for logit&probit model are plotted by the same way.  
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