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Comparison of Particle Swarm Optimization and Backpropagation as Training 
Algorithms for Neural Networks 

Venu G. Gudise and Ganesh K. Venayagamoorthy, Senior- Member; /EEE 
Department of Electrical and Computer Engineering 

University of Missouri - Rolla, USA 
vgggwh@un,rrdrr.edu a n d g ~ ~ , n , r r ~ i r . r . o  

Abstract - Particle swarm optimization (PSO) motivated by 
the social behavior of organisms, is a step up to existing 
evolutionary algorithms (or optimization of continuous non- 
linear runctions. Backpropagation (BP) is generally used for 
neural network training. Choosing a proper algorithm for 
training a neural network is very important. In this paper, B 
comparative study i s  made on the computational requirements of 
the PSO and BP as training algorithms for neural networks. 
Results are presented for a feedforward neural network learning 
a non-linear fnnction and these results show that the feedforward 
neural network weights converge faster with the PSO than with 
the BP algorithm. 

I. INTRODUCTION 

The role of artificial neural networks in the present world 
applications is gradually increasing and faster algorithms are 
being developed for training neural networks. In general, 
backpropagation is a method used for training neural networks 
[ 1]-[5]. Gradient descent, conjugate gradient descent, resilient, 
BFGS quasi-Newton, one-step secant, Levenberg-Marquardt 
and Bayesian regularization are all different forms of the 
backpropagation training algorithm [6]-[ IO]. For all these 
algorithms storage and computational requirements are 
different, some of these are good for pattern recognition and 
others for function approximation but they have drawbacks in 
one way or other, like neural network size and their associated 
storage requirements. Certain training algorithms are suitable 
for some type of applications only, for example an algorithm 
which performs well for pattern recognition may not for 
classification problems and vice versa, in addition some 
cannot cater for high accuracylperformance. It is difficult to 
find a particular training algorithm that is the best for all 
applications under all conditions all the time. 

A newly developed algorithm known as particle swarm is 
an addition IO existing evolutionary techniques, which is 
based on simulation of the behavior of a flock of birds or 
school of fish. The main concept is to utilize the 
communication involved in such swarms or schools. Some of 
the previous work related to neural network training using the 
particle swarm optimization has been reported [11]-[15] hut 
none have compared against conventional training techniques. 
In this paper, particle swarm optimization is compared with 
the conventional backpropagation (a gradient descent 
algorithm) for training a feedforward neural network to learn a 
non-linear function. The problem considered is how fats and 
how accurate can the neural network weights be determined 
by BP and PSO learning a common function. Detailed 

comparison of BP lo PSO is presented with regard to their 
computational requirements. 

The paper is organized as follows: In section II ,  the 
architecture of feedforward neural network considered in this 
paper is explained with the forward path and the backward 
path for the backpropagation method. In section 111, a brief 
overview of the particle swarm optimization is given and its 
implementation is explained. Section IV describes how the 
optimal set of parameters for the PSO is determined. In 
section V, different neural network training procedures 
(incremental and batch) are described. In section VI, the 
results of training the neural network with BP and PSO are 
given and their performances are compared and contrasted. 

11. FEEDFORWARD NEURAL NETWORKS 

Neural networks are known to be universal approximators 
for any non-linear function [16]-[I71 and they are generally 
used for mapping error tolerant problems that have much 
data trained in noise. Training algorithms arc critical when 
neural networks are applied to high speed applications with 
complex nonlinearities. 

A neural network consists of many layers namely: an input 
layer, a number of hidden layers and an output layer. The 
input layer and the hidden layer are connected by synaptic 
links called weights and likewise the hidden layer and output 
layer also have connection weights. When more than one 
hidden layer exists, weights exist betweer? such layers. 
Neural networks use some sort of "leaming" rule by which 
the connections weights are determined in order to minimize 
the error between the neural network output and desired 
output. A three layer feedforward neural network is shown in 
Fig. I .  

A .  Forward Paih 

The feedforward path equations for the network in Fig. I 
with two input neurons, four hidden neurons and one output 
neuron are given below. The first input is x and the second is 
a bias input (I). The activation function of all the hidden 
neurons is given by eq (1). 

a, = Y i X  / o r ;  =/ lo 4 , j  = I, 2 (1) 

where W ,  is the weight and X = 

The hidden layer output called the decision vector d is 
calculated as follows for sigmoidal functions: 

is an input vector [;I 
0-7803-7914-4/03610.~2003 IEEE 
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The output of neural network? is determined as follows: 

rd, 1 
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Fig. I Fccdfonvard neural network with one hiddcn laycr 

B. Backward Path wifh ConvenIional Bac$ropaga!ion 

The serious constraint imposed for the usage of 
backpropagation algorithm is that the hidden layer neuron 
function should be differentiable. If the inputs and desired 
outputs of a function are known then backpropagation can be 
used to determine weights of the neural network by 
minimizing the error over a number of iterations. The weight 
update equations of all the layers (input, hidden, output) in the 
multilayer perceptron neural network (MLPNN) are almost 
similar, except that they differ in the way the local error for 
each neuron is computed. The error for the output layer is the 
difference between the desired output (target) and actual 
output of the neural network. Similarly, the errors for the 
neurons in the hidden layer are the difference between their 
desired outputs and their actual outputs. In a MLP neural 
network, the desired outputs of the neurons in the hidden layer 
cannot be known and hence the error of the output layer is 
backpropagated and sensitivities of the neurons in the hidden 
layers are calculated. 

The learning rate is an important factor in the BP. If it is too 
low, the network learns very slowly and if it is too high, then 
the weights and the objective function will diverge. So an 
optimum value should be chosen to ensure global convergence 
which tends to be difficult task to achieve. A variable learning 
rate will do better if there are many local and global optima 

for the objective function [ 181. Backpropagation equations 
are explained in detail in [ 191 and they are briefly described 
below. 

The output error e,. is calculated as the difference between 
the desired output vector?;l and actual output y. 

e ,  = ?,, - y (4) 

The decision error vector e,, is calculated by 
backpropagating the output error e, through weight matrix V. 

e,, = v,'er /or i = I  I O  4 

The activation function errors are given by the product of 
decision error vector e,,, and the derivatives of the decision 
vector d, with respect to the activations ai. 

( 5 )  

e,,, = d , ( I - d , ) e ,  (6) 

The sensitivities (changes in the weights) are calculated as 

A V ( k )  = y m A Y ( k  -I)+yxe,d' (7a) 

A W ( k )  = y m A W ( k - l ) + y x e J r  (7b) 

where y is a momentum term, y is the learning gain and 
k is the number of iteration. A momentum term produces a I 
filter effect in order to reduce abrupt gradient changes thus 
aiding learning. Finally the weight update equations are 
below. 

W ( k  + I )  = W ( k ) + A W ( k )  (8a) 
V ( k + l ) =  V ( k ) + A V ( k )  (8b) 

Ill.  PARTICLE SWARM OPTIMIZATION 

Particle swarm optimization is a form of evolutionary 
computation technique (a search method based on natural 
systems) developed by Kennedy and Eberhart [20]-[25]. PSO 
like a genetic algorithm (GA) is a population (swarm) based 
optimization tool. However, unlike in GA, crossover and 
mutation are carried out simultaneously in particle swarm. 
One major difference between particle swarm and traditional 
evolutionary computation methods is that particles' 
velocities are adjusted, while evolutionary individuals' 
positions are acted upon; it is as if the "fate" is altered rather 
than the "state" of the panicle swarm individuals [2S]. 

The system initially has a population of random solutions. 
Each potential solution, called particle, is given a random 
velocity and is flown through the problem space. The 
particles have memory and each particle keeps track of 
previous best position and corresponding fitness. The 
previous best value is called as 'pbrs;. Thus, pbesr is related 
only to a particular particle. It also has another value called 
'gbrs;, which is the best value of all the particles pbpsr in the 
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swarm. The basic concept of PSO technique lies in 
accelerating each particle towards its pbrsr and the 
locations at each time step. Acceleration has random weights 
for both ph<,.q, and locations. 

Figure 2 illustrates briefly the concept of PSO, where P' 
is current position. IS modified position, V;"i is initial 
velocity, V,,,,,d is modified velocity, Vpbesr is velocity 
considering pbes, and Vb'he,71 is velocity considering 

$tl 

V 

Fig. 2 Canccpl ofchanging a panicle's position in PSO 1261 

(i) Initialize a population (array) of particles with random 
positions and velocities of d dimensions in the problem 
space. 

(ii) For each particle, evaluate the desired optimization 
fitness function in d variables. 

(iii) Compare particle's fitness evaluation with particle'spksl. 
If current value is better than pbesr, then set pksr value 
equal to the current value and the pbesr location equal to 
the current location in d-dimensional space. 

(iv) Compare fitness evaluation with the population's overall 
previous best. It the current value is better than gbesr, then 
reset gbesr to the current particle's array index and value. 

(v) Change the velocity and position of the particle according 
to equations (9) and ( I O )  respectively. Vjd and Xjd 
represent the velocity and position of ?' particle with d 
dimensions respectively and, rand, and rand2 are two 
uniform random functions. 

(vi) Repeat step (ii) until a criterion is met, usually a 
sufficiently good fitness or a maximum number of 
iterationslepochs. 

PSO has many parameters and these are described as 
follows: W called the inertia weight controls the exploration 
and exploitation of the search space because i t  dynamically 
adjusts velocity. Local minima are avoided by small local 
neighborhood, but faster convergence is obtained by larger 
global neighborhood and in general, global neighborhood is 

preferred. Synchronous updates are more costly than the 
asynchronous updates. 

V,,,, is the maximum allowable velocity for the particles. 
i.e. in case the velocity of the particle exceeds V,,,, then it is 
reduced to Vnmr. Thus, resolution and fitness of search 
depends on V,,,,,. If V,,,, is too high, then particles will 
move beyond good solution and if V,,,,, is too low, then 
particles will be trapped in local minima. C I .  cz termed as 
cognition and social components respectively are the 
acceleration constants which changes the velocity of a 
particle towards phes and gbc,ss, (generally somewhere 
between pbesr and gbcvl). Velocity determines the tension in 
the system. A swarm of particles can be used locally or 
globally in a search space. In the local version of the PSO, 
the gbrsr is replaced by the Ibessr and the entire procedure is 
same. 

1V. SELECTION OF PARAMETERS FOR PSO 

The selection of these PSO parameters plays an important 
role in the optimization [24]. A single PSO parameter choice 
has a tremendous effect on the rate of convergence. For this 
paper, the optimal PSO parameters are determined by trial 
and error experimentations. Optimal here refers to the set of 
PSO parameters that yield the fastest neural network 
convergence. 

The optimal PSO parameters determination is by varying 
the inertia weight W, whose dynamic range is between 0.2 
and 1.2, maximum velocity V,,,,, search space range, social 
and cognitive coefficients and swarm size. Initial values for 
these parameters are taken to be: maximum velocity V,, (4) 
and an initial search space range is selected between (-4, 4), 
number of particles in the swarm (20). The PSO algorithm 
with non-optimal parameters may diverge therefore, the PSO 
parameters and the number of iterations are only recorded 
when convergence is achieved at least 7 times in the I O  runs. 
It is found that as the inertia weight ( W) is increased from 
0.2, the number of times of convergence on average 
increased and the optimum inertia weight observed is 
between 0.7 and 0.8. This process is repeated for the V,, 
varied from 0.2 to I O  with W = 0.8 and it is found that a V,,, 
of 2 gave the optimum results. Weights W of 0.7 and 0.8 
performed equally well with velocity V,, of 2, but the 
number of iterations required with W = 0.8 is lesser than that 
required with W =  0.7. 

The search space range available for the particles plays an 
important role in converging to the solution. A small search 
space range of (-1, I )  did not provide enough freedom for the 
particles to explore the space and hence they failed to find 
the best position. As the search space range allowed is 
increased gradually from ( - I ,  I )  to (-200, ZOO), it.is found 
that a larger space helped the particles to achieve the global 
optimum much quicker. A search space range of (-100, 100) 
is observed to be the best range. With no limit on the search 
space range, the convergence rate decreased, with even cases 
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of no convergence. This is as a result of the particles 
exploring and not exploiting the optimum position. 

Then the experiment is carried out with the optimal 
parameters obtained above for W, V,,,o.7 and search space 
range, now to determine the cognition ( C I )  and social (c2) 
coefficients. I t  is found that c /=2  and c2=2 gave best results 
(faster global convergence), also c1=2.5 and c2==1.3 gave good 
results. 

With all these optimum values, the experiment is repeated 
varying the size of the swarm (no. of particles) from 1 to 
1000. As the size increased from 20 to 25 and 25 to 30, there 
is an improvement in the convergence rate. The improvement 
for 20 to 25 is noticeable higher than from 25 to 30. When 
size is increased from 30 to 50, 50 lo 100 and 100 lo 1000, the 
performance is also improved at the cost of a higher 
computational time. A compromise between the 
computational time and the performance is a size of 25 
particles for the swarm (for this example). The final optimal 
set of PSO parameters are: 

Maximum veloci?, V,,, 2 
Maximum search space range (-100.100) 
Inertia weight. W 0.8 
Accelerarion constants, ci, c2 2, 2 
Size ofswarm 25 

V. TRAINING PROCEDURES FOR NEURAL 
NETWORKS 

There are two ways of presenting data to a neural network 
during training, namely: batch and incremental fashion and 
these are explained below. 

A. Incremental Training 

In this method, each of the input pattern or training data is 
presented to the neural network and weights are updated for 
each data presented, thus the number of weight updates will 
be equal to the size of the training set. The inherent noise of 
this learning mode makes i t  possible to escape from undesired 
local minima of the error potential where the learning rule 
performs (stochastic) gradient descent. The noise is related to 
the fluctuations in the learning rule, which is a function of the 
weights. 

B. Batch Training 

In this method, all of the input pattern or training data are 
presented lo the neural network one after the other and then 
the weights are updated based on a cumulative error function. 
The process can be repeated over a number of 
iterations/epochs. In batch mode learning, the network gets 
struck in a local minimum, in where minimum only depends 
on the initial network state, the noise is homogeneous, i.e. 
same at each minimum. The neural network training 

comparison with BP and PSO carried out in this paper is 
based on the batch mode. 

VI. RESULTS 

In order to compare the training capabilities of BP and 
PSO algorithms, a non-linear quadratic equation ,v = 2xz+1, 
with data points (patterns) in range ( - I ,  1 )  presented in the 
batch mode to the feedfonvard neural network in Fig. 1. The 
flowchart procedure for implementing the PSO global 
version (gbus,) is given in Fig. 3. The PSO parameters used in 
this study are those mentioned in Section IV above. For 
training a neural network using the PSO, the fitness value of 
each particle (member) of the swarm is the value of the error 
function evaluated at the current position of the particle and 
position vector of the particle corresponds to the weight 
matrix of the network. The vector e(particle) in Fig. 3 stores 
the minimum error encountered by the particles for the input 
patterns 

-t , 
I .I 

"pdule 'el"cl,y. pYr,,i"n 

J. 
m,nerror=min(e,, 

update %best with values 
Corres~ondme 10 ,","error 

Fig. 3 Flowchan for training a fccdfonvard NN using PSO 

Table I shows the numerical values of total number of 
computations required for reaching an error goal of 0.001, 
The value of bias is taken in this case to be I .  The values 
shown were determined after averaging the values of 10 
different trainings. Fig. 4 shows the mean square error 
(MSE) vemus the number of iterations with BP and PSO 
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during training with bias value I .  Fig. 5 shows an expanded 
view of Fig. 4. I t  is clear that with the PSO the MSE drops to 
under 0.01 in few iterations unlike with BP. Fig. 6 shows the 
test plots after the neitral network is trained with BP and PSO 
and subjected to the input vectors between - I  and I .  Fig. 7 
shows an expanded view of Fig. 6 and i t  is clear that the 
neural network trained with the PSO algorithm approximates 
the nonlinear function better than the one trained with BP. 
This means that PSO yields a better global convergence than a 
conventional BP. Fig 8 shows the mean square error (MSE) 
versus the number of iterations with BP and PSO during 
training for the feedforward neural network with bias of 2.  
The bias has helped the BP algorithm performance but the 
PSO results are now obtained with 8 particles. It is observed 
from Table 11 that still PSO out performs the BP despite a 
change in bias. 

For training a feedforward neural network similar to Fig. 1 
of size n x m x r, where n is the number of the inputs, m is the 
number of hidden layer neurons and r is the number of the 
outputs, Tables 111 and IV show the number of computations 
(multiplications and additions) required with the BP and PSO 
training algorithms respectively for the batch mode learning. 
These tables give an idea on expectations of the computational 
demands. 

o 8  , .................... .... 

0.4; 

0.3; I--.. I C  , BP 

0.2; 

.............. OL ..... ............. ̂ ^" __-, 
0 yl ,m 150 2w 2% 3w 3yl 4w 1yI 

Fig. 4 Mean squarc error CUNCS of neural ncrworks during mining with 
BP and PSO for bias I 

0 35 

0 3  

025 

0 2  

0 15 

0 1  

0.5 
-1 .O.B -06 -0.1 -02 0 0.2 0 1  0.6 0.8 I 

l"P"I " 
Fig. 6 Test CUNCS for traincd ncural nctworks with fixcd weights oblaincd 

from BP and PSO training algonrhmr with bias I 

1.015: '>,, 

W I .  

11 

0.9951 

Fig. 7 Magniticd vicw o f  the abovc test curycs 

E m *  

BP and PSO for bias 2 
Fig. 8 Mcan square cmor CUNCS of ncural ncrworks during mining with 

0 20 40 W 80 (00 120 140 

Fig 5 Expanded view of Fig 4 
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TABLE I 
COMPARISION OF NUMBER OF COMPUTATIONS (MULTIPLICATIONS AND ADDITIONS) INVOLVED IN TRAINING A FEEDFORWARD 

NEURAL NETWORK OF SIZE 2 x 4  x I FOR BP AND PSO (WITH BIAS I ) 

Error=O.OOl 

ltcrations, 

Forward pslh 
(addilionst 
multiplications) 
Backward path 
(additionst 
multiplicaliona) 
Total (Forward + 
Backward) 

Ratio of computations 

Pattrms (inpul I) 

PSO I UP PSO 1 BP 
~ 1 : o . O l :  I 

I94 9836 116 962 

2546250 4750788 14572500 4447326 

- 1  :O. I : I 

523800 14045808 835200 13148616 

3070050 18796596 I5407700 17595942 

6.1226 1.1420 

TABLE II 
COMPARlSlON OF NUMBER OF COMPUTATIONS (MULTIPLICATIONS AND ADDITIONS) INVOLVED IN TRAINING A FEEDFORWARD 

NEURALNETWORKOFSlZE2x4xl FORBPANDPSO(WITHBlAS2) 

I Erro~0 .001  I psn I RP I 

Backward path 
(additions+ 

Patterns (inputx) I -I :0.1 :I 
Iterations I 194(83 I 9836(307 

Forward oath I I 

71712 438396 

I (addition;+ I 348600 I 148281 I 

Total (Forward + 
Backward) 420312 586617 

Ratio ofcompulations 1.3958 

Equation No. 

I (activation) 

2 (sigmoid) 

3 (output) 

Forward path 

4 (0"tp"t CrrOC) 

5 (decision mor) 

6 (activation m o r )  

7a (A") 

7b (Aw) 
8 

Training 

Total computations 

OF SIZE n x m  x r  WITH BP 
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TABLE IV 
NUMBER OF COMPUTATIONS (MULTIPLICATIONS AND ADDITIONS) INVOLVED I N  TRAINING A FEEDFORWARD NEURAL NETWORK 

OF SIZE 17 X In X I '  WITH PSO 

V11. CONCLUSIONS 

A feedforward neural network leaming a nonlinear function 
with the backpropagation and particle swarm optimization 
algorithms have been presented in this paper. The number of 
computations required by each algorithm has shown that PSO 
requires less to achieve the same error goal as with the BP. 
Thus, PSO is a better one for applications that require fast 
learning algorithms. An important observation made is that 
when the training points are fewer, the neural network learns 
the nonlinear function with six times lesser number of 
computations with PSO than that required by the BP and in 
other cases, comparable performance is observed. Moreover, 
the success of BP depends on choosing a bias value unlike 
with PSO. The use of PSO as a training algorithm for 
recurrent neural networks has been studied and similar results 
are also found. Further work is to investigate using PSO to 
optimize PSO parameters for neural network training and 
other tasks. The concept of the PSO can be incorporated into 
BP algorithm to improve its global convergence rate. This is 
currently being studied for online learning which is critical for 
adaptive real time identification and control functions. 
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