
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Electrical and Computer Engineering Faculty
Research & Creative Works Electrical and Computer Engineering

01 Jan 2003

Comparison of Particle Swarm Optimization and Backpropagation Comparison of Particle Swarm Optimization and Backpropagation

as Training Algorithms for Neural Networks as Training Algorithms for Neural Networks

Ganesh K. Venayagamoorthy
Missouri University of Science and Technology

Venu Gopal Gudise

Follow this and additional works at: https://scholarsmine.mst.edu/ele_comeng_facwork

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
G. K. Venayagamoorthy and V. G. Gudise, "Comparison of Particle Swarm Optimization and
Backpropagation as Training Algorithms for Neural Networks," Proceedings of the 2003 IEEE Swarm
Intelligence Symposium, 2003. SIS '03, Institute of Electrical and Electronics Engineers (IEEE), Jan 2003.
The definitive version is available at https://doi.org/10.1109/SIS.2003.1202255

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Electrical and Computer Engineering Faculty Research & Creative Works by an authorized
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including
reproduction for redistribution requires the permission of the copyright holder. For more information, please
contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng_facwork
https://scholarsmine.mst.edu/ele_comeng
https://scholarsmine.mst.edu/ele_comeng_facwork?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F669&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fele_comeng_facwork%2F669&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/SIS.2003.1202255
mailto:scholarsmine@mst.edu

Comparison of Particle Swarm Optimization and Backpropagation as Training
Algorithms for Neural Networks

Venu G. Gudise and Ganesh K. Venayagamoorthy, Senior- Member; /EEE
Department of Electrical and Computer Engineering

University of Missouri - Rolla, USA
vgggwh@un,rrdrr.edu a n d g ~ ~ , n , r r ~ i r . r . o

Abstract - Particle swarm optimization (PSO) motivated by
the social behavior of organisms, is a step up to existing
evolutionary algorithms (or optimization of continuous non-
linear runctions. Backpropagation (BP) is generally used for
neural network training. Choosing a proper algorithm for
training a neural network is very important. In this paper, B
comparative study i s made on the computational requirements of
the PSO and BP as training algorithms for neural networks.
Results are presented for a feedforward neural network learning
a non-linear fnnction and these results show that the feedforward
neural network weights converge faster with the PSO than with
the BP algorithm.

I. INTRODUCTION

The role of artificial neural networks in the present world
applications is gradually increasing and faster algorithms are
being developed for training neural networks. In general,
backpropagation is a method used for training neural networks
[1]-[5]. Gradient descent, conjugate gradient descent, resilient,
BFGS quasi-Newton, one-step secant, Levenberg-Marquardt
and Bayesian regularization are all different forms of the
backpropagation training algorithm [6]-[IO]. For all these
algorithms storage and computational requirements are
different, some of these are good for pattern recognition and
others for function approximation but they have drawbacks in
one way or other, like neural network size and their associated
storage requirements. Certain training algorithms are suitable
for some type of applications only, for example an algorithm
which performs well for pattern recognition may not for
classification problems and vice versa, in addition some
cannot cater for high accuracylperformance. It is difficult to
find a particular training algorithm that is the best for all
applications under all conditions all the time.

A newly developed algorithm known as particle swarm is
an addition IO existing evolutionary techniques, which is
based on simulation of the behavior of a flock of birds or
school of fish. The main concept is to utilize the
communication involved in such swarms or schools. Some of
the previous work related to neural network training using the
particle swarm optimization has been reported [11]-[15] hut
none have compared against conventional training techniques.
In this paper, particle swarm optimization is compared with
the conventional backpropagation (a gradient descent
algorithm) for training a feedforward neural network to learn a
non-linear function. The problem considered is how fats and
how accurate can the neural network weights be determined
by BP and PSO learning a common function. Detailed

comparison of BP lo PSO is presented with regard to their
computational requirements.

The paper is organized as follows: In section II , the
architecture of feedforward neural network considered in this
paper is explained with the forward path and the backward
path for the backpropagation method. In section 111, a brief
overview of the particle swarm optimization is given and its
implementation is explained. Section IV describes how the
optimal set of parameters for the PSO is determined. In
section V, different neural network training procedures
(incremental and batch) are described. In section VI, the
results of training the neural network with BP and PSO are
given and their performances are compared and contrasted.

11. FEEDFORWARD NEURAL NETWORKS

Neural networks are known to be universal approximators
for any non-linear function [16]-[I71 and they are generally
used for mapping error tolerant problems that have much
data trained in noise. Training algorithms arc critical when
neural networks are applied to high speed applications with
complex nonlinearities.

A neural network consists of many layers namely: an input
layer, a number of hidden layers and an output layer. The
input layer and the hidden layer are connected by synaptic
links called weights and likewise the hidden layer and output
layer also have connection weights. When more than one
hidden layer exists, weights exist betweer? such layers.
Neural networks use some sort of "leaming" rule by which
the connections weights are determined in order to minimize
the error between the neural network output and desired
output. A three layer feedforward neural network is shown in
Fig. I .

A . Forward Paih

The feedforward path equations for the network in Fig. I
with two input neurons, four hidden neurons and one output
neuron are given below. The first input is x and the second is
a bias input (I). The activation function of all the hidden
neurons is given by eq (1).

a, = Y i X / o r ; =/ lo 4 , j = I, 2 (1)

where W , is the weight and X =

The hidden layer output called the decision vector d is
calculated as follows for sigmoidal functions:

is an input vector [;I
0-7803-7914-4/03610.~2003 IEEE

mailto:vgggwh@un,rrdrr.edu

The output of neural network? is determined as follows:

rd, 1

14 1

TRIINw3*GORITH(

Fig. I Fccdfonvard neural network with one hiddcn laycr

B. Backward Path wifh ConvenIional Bac$ropaga!ion

The serious constraint imposed for the usage of
backpropagation algorithm is that the hidden layer neuron
function should be differentiable. If the inputs and desired
outputs of a function are known then backpropagation can be
used to determine weights of the neural network by
minimizing the error over a number of iterations. The weight
update equations of all the layers (input, hidden, output) in the
multilayer perceptron neural network (MLPNN) are almost
similar, except that they differ in the way the local error for
each neuron is computed. The error for the output layer is the
difference between the desired output (target) and actual
output of the neural network. Similarly, the errors for the
neurons in the hidden layer are the difference between their
desired outputs and their actual outputs. In a MLP neural
network, the desired outputs of the neurons in the hidden layer
cannot be known and hence the error of the output layer is
backpropagated and sensitivities of the neurons in the hidden
layers are calculated.

The learning rate is an important factor in the BP. If it is too
low, the network learns very slowly and if it is too high, then
the weights and the objective function will diverge. So an
optimum value should be chosen to ensure global convergence
which tends to be difficult task to achieve. A variable learning
rate will do better if there are many local and global optima

for the objective function [181. Backpropagation equations
are explained in detail in [191 and they are briefly described
below.

The output error e,. is calculated as the difference between
the desired output vector?;l and actual output y.

e , = ?,, - y (4)

The decision error vector e,, is calculated by
backpropagating the output error e, through weight matrix V.

e,, = v,'er /or i = I I O 4

The activation function errors are given by the product of
decision error vector e,,, and the derivatives of the decision
vector d, with respect to the activations ai.

(5)

e,,, = d , (I - d ,) e , (6)

The sensitivities (changes in the weights) are calculated as

A V (k) = y m A Y (k -I)+yxe,d' (7a)

A W (k) = y m A W (k - l) + y x e J r (7b)

where y is a momentum term, y is the learning gain and
k is the number of iteration. A momentum term produces a I
filter effect in order to reduce abrupt gradient changes thus
aiding learning. Finally the weight update equations are
below.

W (k + I) = W (k) + A W (k) (8a)
V (k + l) = V (k) + A V (k) (8b)

Ill. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization is a form of evolutionary
computation technique (a search method based on natural
systems) developed by Kennedy and Eberhart [20]-[25]. PSO
like a genetic algorithm (GA) is a population (swarm) based
optimization tool. However, unlike in GA, crossover and
mutation are carried out simultaneously in particle swarm.
One major difference between particle swarm and traditional
evolutionary computation methods is that particles'
velocities are adjusted, while evolutionary individuals'
positions are acted upon; it is as if the "fate" is altered rather
than the "state" of the panicle swarm individuals [2S].

The system initially has a population of random solutions.
Each potential solution, called particle, is given a random
velocity and is flown through the problem space. The
particles have memory and each particle keeps track of
previous best position and corresponding fitness. The
previous best value is called as 'pbrs;. Thus, pbesr is related
only to a particular particle. It also has another value called
'gbrs;, which is the best value of all the particles pbpsr in the

1 1 1

swarm. The basic concept of PSO technique lies in
accelerating each particle towards its pbrsr and the
locations at each time step. Acceleration has random weights
for both ph<,.q, and locations.

Figure 2 illustrates briefly the concept of PSO, where P'
is current position. IS modified position, V;"i is initial
velocity, V,,,,,d is modified velocity, Vpbesr is velocity
considering pbes, and Vb'he,71 is velocity considering

$tl

V

Fig. 2 Canccpl ofchanging a panicle's position in PSO 1261

(i) Initialize a population (array) of particles with random
positions and velocities of d dimensions in the problem
space.

(ii) For each particle, evaluate the desired optimization
fitness function in d variables.

(iii) Compare particle's fitness evaluation with particle'spksl.
If current value is better than pbesr, then set pksr value
equal to the current value and the pbesr location equal to
the current location in d-dimensional space.

(iv) Compare fitness evaluation with the population's overall
previous best. It the current value is better than gbesr, then
reset gbesr to the current particle's array index and value.

(v) Change the velocity and position of the particle according
to equations (9) and (I O) respectively. Vjd and Xjd
represent the velocity and position of ?' particle with d
dimensions respectively and, rand, and rand2 are two
uniform random functions.

(vi) Repeat step (ii) until a criterion is met, usually a
sufficiently good fitness or a maximum number of
iterationslepochs.

PSO has many parameters and these are described as
follows: W called the inertia weight controls the exploration
and exploitation of the search space because i t dynamically
adjusts velocity. Local minima are avoided by small local
neighborhood, but faster convergence is obtained by larger
global neighborhood and in general, global neighborhood is

preferred. Synchronous updates are more costly than the
asynchronous updates.

V,,,, is the maximum allowable velocity for the particles.
i.e. in case the velocity of the particle exceeds V,,,, then it is
reduced to Vnmr. Thus, resolution and fitness of search
depends on V,,,,,. If V,,,, is too high, then particles will
move beyond good solution and if V,,,,, is too low, then
particles will be trapped in local minima. C I . cz termed as
cognition and social components respectively are the
acceleration constants which changes the velocity of a
particle towards phes and gbc,ss, (generally somewhere
between pbesr and gbcvl). Velocity determines the tension in
the system. A swarm of particles can be used locally or
globally in a search space. In the local version of the PSO,
the gbrsr is replaced by the Ibessr and the entire procedure is
same.

1V. SELECTION OF PARAMETERS FOR PSO

The selection of these PSO parameters plays an important
role in the optimization [24]. A single PSO parameter choice
has a tremendous effect on the rate of convergence. For this
paper, the optimal PSO parameters are determined by trial
and error experimentations. Optimal here refers to the set of
PSO parameters that yield the fastest neural network
convergence.

The optimal PSO parameters determination is by varying
the inertia weight W, whose dynamic range is between 0.2
and 1.2, maximum velocity V,,,,, search space range, social
and cognitive coefficients and swarm size. Initial values for
these parameters are taken to be: maximum velocity V,, (4)
and an initial search space range is selected between (-4, 4),
number of particles in the swarm (20). The PSO algorithm
with non-optimal parameters may diverge therefore, the PSO
parameters and the number of iterations are only recorded
when convergence is achieved at least 7 times in the I O runs.
It is found that as the inertia weight (W) is increased from
0.2, the number of times of convergence on average
increased and the optimum inertia weight observed is
between 0.7 and 0.8. This process is repeated for the V,,
varied from 0.2 to I O with W = 0.8 and it is found that a V,,,
of 2 gave the optimum results. Weights W of 0.7 and 0.8
performed equally well with velocity V,, of 2, but the
number of iterations required with W = 0.8 is lesser than that
required with W = 0.7.

The search space range available for the particles plays an
important role in converging to the solution. A small search
space range of (-1, I) did not provide enough freedom for the
particles to explore the space and hence they failed to find
the best position. As the search space range allowed is
increased gradually from (- I , I) to (-200, ZOO), it.is found
that a larger space helped the particles to achieve the global
optimum much quicker. A search space range of (-100, 100)
is observed to be the best range. With no limit on the search
space range, the convergence rate decreased, with even cases

112

of no convergence. This is as a result of the particles
exploring and not exploiting the optimum position.

Then the experiment is carried out with the optimal
parameters obtained above for W, V,,,o.7 and search space
range, now to determine the cognition (C I) and social (c2)
coefficients. I t is found that c /=2 and c2=2 gave best results
(faster global convergence), also c1=2.5 and c2==1.3 gave good
results.

With all these optimum values, the experiment is repeated
varying the size of the swarm (no. of particles) from 1 to
1000. As the size increased from 20 to 25 and 25 to 30, there
is an improvement in the convergence rate. The improvement
for 20 to 25 is noticeable higher than from 25 to 30. When
size is increased from 30 to 50, 50 lo 100 and 100 lo 1000, the
performance is also improved at the cost of a higher
computational time. A compromise between the
computational time and the performance is a size of 25
particles for the swarm (for this example). The final optimal
set of PSO parameters are:

Maximum veloci?, V,,, 2
Maximum search space range (-100.100)
Inertia weight. W 0.8
Accelerarion constants, ci, c2 2, 2
Size ofswarm 25

V. TRAINING PROCEDURES FOR NEURAL
NETWORKS

There are two ways of presenting data to a neural network
during training, namely: batch and incremental fashion and
these are explained below.

A. Incremental Training

In this method, each of the input pattern or training data is
presented to the neural network and weights are updated for
each data presented, thus the number of weight updates will
be equal to the size of the training set. The inherent noise of
this learning mode makes i t possible to escape from undesired
local minima of the error potential where the learning rule
performs (stochastic) gradient descent. The noise is related to
the fluctuations in the learning rule, which is a function of the
weights.

B. Batch Training

In this method, all of the input pattern or training data are
presented lo the neural network one after the other and then
the weights are updated based on a cumulative error function.
The process can be repeated over a number of
iterations/epochs. In batch mode learning, the network gets
struck in a local minimum, in where minimum only depends
on the initial network state, the noise is homogeneous, i.e.
same at each minimum. The neural network training

comparison with BP and PSO carried out in this paper is
based on the batch mode.

VI. RESULTS

In order to compare the training capabilities of BP and
PSO algorithms, a non-linear quadratic equation ,v = 2xz+1,
with data points (patterns) in range (- I , 1) presented in the
batch mode to the feedfonvard neural network in Fig. 1. The
flowchart procedure for implementing the PSO global
version (gbus,) is given in Fig. 3. The PSO parameters used in
this study are those mentioned in Section IV above. For
training a neural network using the PSO, the fitness value of
each particle (member) of the swarm is the value of the error
function evaluated at the current position of the particle and
position vector of the particle corresponds to the weight
matrix of the network. The vector e(particle) in Fig. 3 stores
the minimum error encountered by the particles for the input
patterns

-t ,
I .I

"pdule 'el"cl,y. pYr,,i"n

J.
m,nerror=min(e,,

update %best with values
Corres~ondme 10 ,","error

Fig. 3 Flowchan for training a fccdfonvard NN using PSO

Table I shows the numerical values of total number of
computations required for reaching an error goal of 0.001,
The value of bias is taken in this case to be I . The values
shown were determined after averaging the values of 10
different trainings. Fig. 4 shows the mean square error
(MSE) vemus the number of iterations with BP and PSO

113

during training with bias value I . Fig. 5 shows an expanded
view of Fig. 4. I t is clear that with the PSO the MSE drops to
under 0.01 in few iterations unlike with BP. Fig. 6 shows the
test plots after the neitral network is trained with BP and PSO
and subjected to the input vectors between - I and I . Fig. 7
shows an expanded view of Fig. 6 and i t is clear that the
neural network trained with the PSO algorithm approximates
the nonlinear function better than the one trained with BP.
This means that PSO yields a better global convergence than a
conventional BP. Fig 8 shows the mean square error (MSE)
versus the number of iterations with BP and PSO during
training for the feedforward neural network with bias of 2.
The bias has helped the BP algorithm performance but the
PSO results are now obtained with 8 particles. It is observed
from Table 11 that still PSO out performs the BP despite a
change in bias.

For training a feedforward neural network similar to Fig. 1
of size n x m x r, where n is the number of the inputs, m is the
number of hidden layer neurons and r is the number of the
outputs, Tables 111 and IV show the number of computations
(multiplications and additions) required with the BP and PSO
training algorithms respectively for the batch mode learning.
These tables give an idea on expectations of the computational
demands.

o 8 ,

0.4;

0.3; I--.. I C , BP

0.2;

.............. OL ̂ ^" __-,
0 yl ,m 150 2w 2% 3w 3yl 4w 1yI

Fig. 4 Mean squarc error CUNCS of neural ncrworks during mining with
BP and PSO for bias I

0 35

0 3

025

0 2

0 15

0 1

0.5
-1 .O.B -06 -0.1 -02 0 0.2 0 1 0.6 0.8 I

l"P"I "
Fig. 6 Test CUNCS for traincd ncural nctworks with fixcd weights oblaincd

from BP and PSO training algonrhmr with bias I

1.015: '>,,

W I .

11

0.9951

Fig. 7 Magniticd vicw o f the abovc test curycs

E m *

BP and PSO for bias 2
Fig. 8 Mcan square cmor CUNCS of ncural ncrworks during mining with

0 20 40 W 80 (00 120 140

Fig 5 Expanded view of Fig 4

114

TABLE I
COMPARISION OF NUMBER OF COMPUTATIONS (MULTIPLICATIONS AND ADDITIONS) INVOLVED IN TRAINING A FEEDFORWARD

NEURAL NETWORK OF SIZE 2 x 4 x I FOR BP AND PSO (WITH BIAS I)

Error=O.OOl

ltcrations,

Forward pslh
(addilionst
multiplications)
Backward path
(additionst
multiplicaliona)
Total (Forward +
Backward)

Ratio of computations

Pattrms (inpul I)

PSO I UP PSO 1 BP
~ 1 : o . O l : I

I94 9836 116 962

2546250 4750788 14572500 4447326

- 1 :O. I : I

523800 14045808 835200 13148616

3070050 18796596 I5407700 17595942

6.1226 1.1420

TABLE II
COMPARlSlON OF NUMBER OF COMPUTATIONS (MULTIPLICATIONS AND ADDITIONS) INVOLVED IN TRAINING A FEEDFORWARD

NEURALNETWORKOFSlZE2x4xl FORBPANDPSO(WITHBlAS2)

I Erro~0 .001 I psn I RP I

Backward path
(additions+

Patterns (inputx) I -I :0.1 :I
Iterations I 194(83 I 9836(307

Forward oath I I

71712 438396

I (addition;+ I 348600 I 148281 I

Total (Forward +
Backward) 420312 586617

Ratio ofcompulations 1.3958

Equation No.

I (activation)

2 (sigmoid)

3 (output)

Forward path

4 (0"tp"t CrrOC)

5 (decision mor)

6 (activation m o r)

7a (A")

7b (Aw)
8

Training

Total computations

OF SIZE n x m x r WITH BP

115

TABLE IV
NUMBER OF COMPUTATIONS (MULTIPLICATIONS AND ADDITIONS) INVOLVED I N TRAINING A FEEDFORWARD NEURAL NETWORK

OF SIZE 17 X In X I ' WITH PSO

V11. CONCLUSIONS

A feedforward neural network leaming a nonlinear function
with the backpropagation and particle swarm optimization
algorithms have been presented in this paper. The number of
computations required by each algorithm has shown that PSO
requires less to achieve the same error goal as with the BP.
Thus, PSO is a better one for applications that require fast
learning algorithms. An important observation made is that
when the training points are fewer, the neural network learns
the nonlinear function with six times lesser number of
computations with PSO than that required by the BP and in
other cases, comparable performance is observed. Moreover,
the success of BP depends on choosing a bias value unlike
with PSO. The use of PSO as a training algorithm for
recurrent neural networks has been studied and similar results
are also found. Further work is to investigate using PSO to
optimize PSO parameters for neural network training and
other tasks. The concept of the PSO can be incorporated into
BP algorithm to improve its global convergence rate. This is
currently being studied for online learning which is critical for
adaptive real time identification and control functions.

REFERENCES

I l l P.J. Wcrhos. "Backpropagation through limc: what it docs and how to
d o it". Proceedings " / d e IEEE, Vol: 7010. Pagc(s): I550 -1560, Oct.
1990
P.J. Wcrhos. Thc Roou of Backpropagation. Ncw York: Wilcy, 1994 121

Sigmoids

0

particlcs'pattcms'm

0

0

paniclcr*pattcms*m

D.E.Rumclhart. G.E. Hinton, and R.J. Williams, "Lcaming lntcmal
Rcprcscnlalions by Enor Propagation," m Porollel Diswibuwd
Prucers;ng, vol. I, cahp.8. cds. D.E.Rumclharl and J.L. McClclland,
Cambridge. MA:M.I.T Press, pp.318-62, 1986
D.E.Rumclhan, G.E. Hinlon and R.J. Williams, "Lcaming
rcprcscntalions by Back-propagating errors", Nolure, Vo1.323,
pp.533-6, 1986
M.T. Hagan. H.B. Demulh and M. Bcale, Ncural Network Dcsign,
Boston, MA: PWS Publishing Company. 1996
R . Batlit, "First and sccond ordcr mcthods of leaming: bctwecn thc
stccpcst desecnt and N~wton's method", Neurol Compvrorirm, Vo1.4:2.
pp.141-66, 1991
C.H. Chcn and H. Lai. "An Empirical study of thc Gradicnt dcsccnl
and thc Conjugalc gradicnt hackpropagation neural networks"
Procccdings OCEANS '92. Mastcring L c Oceans Through
Tcrhnology. Vol: I pp. 132-135. 1992
M.F. Mollcr, A Scalcd eonjugatc gradicnl algorilhm for fast
supervised lcaming PB-339 Rcprint, Computcr Seicnce Dcpartmcl,
University of Aaurhus, Dcnmark, 1990
R. Rosa&. A Conjugalc-gradient bascd algorithm for training of she
fccd-forward neural nctworks. Ph.D. Disscrlation, Mclhoumc: Florida
InsIiIutc ofTcchnology, Scptcmbcr 1989
M.T. Hagar and M.B. Menhaj, "Training fccdfoward nctworks with
the Marquardl algoilhm" IEEE 'Tronsoc~ion.~ on Neural Nmwrks.
Vol: 5 : 6, pp. 989 -993, Nov. I994
J. Salemo, "Using thc parliclc swam oplimizalion tcchnique to lrain a
rccurrenl mural modcl", IEEE lntcmational Canfcrcnce on Tools with
Artificial Inlelligcncc, pp.4549, 1997
C. Zhang, Y. Li. and H. Shao, "A ncw cvolvcd artificial neural
nctwork and its application", Procccdings of thc 3rd World Congrcss
on lntelligcnl Control and Automation, Hefci. China, Vol. 2. pp.1065-
1068, Junc 2000
C. Zhang, H. Shao. and Y. Li. "Panick swarm oplimisalion for
evolving artificial neural nchuork", Procccdings of thc IEEE

116

1171

1231

1241

1251

1261

lntcrnational Confcrcnce 011 Systcmr. Man. and Cybcmctics . Vol. 4.

M. Selllcs and B. Rylander, "Ncural network lcarning using parlirlu
w a r m oplimizcrs", Advenccs i n Information Sciencc and Sofl
Computing. pp.224-226.2002
I;. Van dcn Bergli. and A.P. Engclhrcchl.. "Coopcralivc lcarning in
mum1 iiclworkr using particlc swarm oplimizcrs." South A~Xcon
C o n p m ~ Journal, Vol. 26 pp. 84~90. 2000
S. Lawrcncc. A. C. Tsoi and A. U. Back, "Funclion approx. imslion
with neural nctworks and local methods: bias. vsrianec and
smoothncss", Prucecdings of the Aurlralinn Confcrcncc on Ncural
Networks A C N N 96,Canbena, Aurlralia. pp. 16-21, 1996
Mcng Jinli and Sun Zhiyi. "Applieatmn ofcombincd mural nctworks in
nunlincar function approximation." Procccdings of thc 3rd World
Congrcss on lnlelligcnt Control and Automation. Vol.2. pp. 839 ~841,
2000
M.H. Ham and I. Koslanic, Principlcs of Ncurocompuling for Scicncc
and Enginccring, McGraw-Hill, INC. NY, ISBN: 0070259666,200l
B. Bunon and R . F. Harlcy, "Rcducing the computational dcmands of
continually online trained artificial ncural ncrworks for syslcm
idcntification and control o f fast proccsscs", in Conf. Rcc. IEEE IAS
Annual Meeting. Ucnver, CO, pp. 18361843,Ocl. 1994
Jamcs Kennedy and R. Eberhan. "Paniclc swarm oplimizalion".
Procccdings, IEEE lntemational Conf. on Ncural Networks, Pcrth,
Australia. Vol. IV, pp. 1942-1948
Y. Shi and R. Eberhan, "Empirical study o f panielc swarm
optimization". Procccdingr of thc 1999 Congrcsr on Evolulionary
Computation. CEC 99.. Vol. 3
Y Shi and R. Ebcrhan, '"A modificd parlielc swarm aptimizcer". IEEE
lnlcmational Conf. an Evolutionary Computation, Anchorage, Alaska.
USA, pp. 69-73. May 1998
R. Ebcrhart and Y. Shi. "Particle swarm optimization: dcvclopmcnrs.
applications and ~CSOU~CES*'. Pracecdings of the 2001 Congress on
Evolutionary Computation, Vol: I, pp. 81 -86.20Ol
Y. Shi and R. Ebcrhart, "Paramctcr Sclcction in Panicle Swarm
Optimization". Proe. Scvcnth Annual Conf. on Evolutionary
Programming. pp.591-601, March 1998
Jamcs Kcnncdy, Russcll C. Ebcrhan, Yuhui Shi, Swarm intclligcnce,
Morgan Kaufmann Publishcrs, 2001
H. Yoshida, Y. Fuknyama, S . Takayama. and Y. Nakanishi., "A particle
swarm optimization far rcactivc power and voltagc control in ~lcclrie
powcr syrlcms considcring vollagc sccurity assessment." IEEE SMC
'99 Conf. Prcxcedings. Vol: 6, pp. 497 -502, I999

pp.24x7-249~, 2nnn

117

	Comparison of Particle Swarm Optimization and Backpropagation as Training Algorithms for Neural Networks
	Recommended Citation

	Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks Swarm Intelligence Symposium

