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Abstract: Hereditary breast cancer syndromes affect a small (10–15% of cases) but 
significant group of patients. BRCA1 and BRCA2 are the most familiar and well-studied 
genes associated with inherited breast cancer. However, mutations in the high-penetrance 
genes, TP53, PTEN, CDH1, MSH1, MLH1, MSH6, PMS2, PALB2, and STK11, and in the 
moderate-penetrance genes, CHEK2, ATM, and BRIP1, also correlate with high lifetime risks 
of breast cancer and other malignancies as well. Advances in breast cancer genetics have led 
to an improved perception of diagnosis and screening strategies. The specific considerations 
and challenges involved in treating this unique population have become a fertile ground for 
research. Indeed, these genes and downstream molecular pathways have now become 
potential therapeutic targets in breast cancer patients, including those with BRCA1 or 
BRCA2 mutations. This review describes the variety of hereditary breast cancer genes, 
from their molecular origins to the prognosis and multidisciplinary clinical decision- 
making processes. Key publications and other reported recent clinical trials and guidelines 
are provided. 
Keywords: breast cancer, BRCA, TP53, PTEN, CDH1, Lynch syndrome

Introduction
Breast cancer is the major cause of cancer death among women worldwide.1 Most 
breast cancer cases are sporadic rather than inherited. Approximately 10–15% of 
breast cancer cases are associated with hereditary syndromes, and the majority of 
them will carry a deleterious mutation in BRCA1/22,3 (Figure 1). Patients with 
pathogenic mutations other than BRCA can be detected by commercial multigene 
panel testing. These genes may be related to highly penetrant syndromes, such as 
Cowden (PTEN) and Li-Fraumeni (p53). Mutation carriers in one of these genes 
have a lifetime breast cancer risk above 50%.4–6 The relatively low cost of gene 
sequencing has allowed widespread use of panel testing that examines a variety of 
cancer-causing genes. When analyzing test results of more than 60,000 patients 
with breast cancer, and after excluding BRCA-positive patients and those with 
syndromic genes (PTEN, TP53), more than 6% of them were found to have 
a pathogenic mutation in other genes, including CHEK2, PALB2 and ATM. High 
or moderately increased risks were associated with pathogenic variants in PALB2 
(odd ratio [OR], 7.46), RAD51D (OR, 3.07), ATM (OR, 2.78), BARD1 (OR, 2.16), 
and CHEK2 (OR, 1.48).7 The increased use of panel testing is directly associated 
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with escalation in the diagnosis of patients with mutations 
in moderate- and low-penetrance genes. While extensive 
data are available for BRCA1/2 mutation carriers, informa-
tion on less common genes and their management is 
limited.

In this review, we aim to describe clinical implications, 
management and prognosis of patients with known germline 
gene mutations, including those in moderate-penetrance 
genes.

High-Penetrance Genes in Breast Cancer
BRCA
BRCA1/2 pathogenic mutations are associated with ele-
vated risk for breast, ovarian8 and peritoneal cancer in 
women, with breast cancer and prostate cancer in men, 
and, to a lesser degree, with pancreatic cancer. BRCA1/2 
mutations exhibit an autosomal dominant pattern of trans-
mission, and they are rare in the general population (1 to 
500), but they account for more than 5% of all breast 
cancer cases.9 The frequency of BRCA1/2 approximates 
1 in 40 in the Ashkenazi Jewish population.10 Penetrance 
is variable, even within families with the same variant.11,12 

In general, the cumulative breast cancer risk up to age 80 
years is above 50% for BRCA1/2 carriers.3,13,14 Moreover, 
they also bear a significant increase in the risk of contral-
ateral breast cancers,3,15 which is greater with earlier age 
at diagnosis, and BRCA1 (rather than BRCA2) pathogenic 
mutation.16 A protective effect was reported in women 
undergoing bilateral salpingo-oophorectomy,3 however, 
a more recent publication suggested that this association 
is a result of bias and does not actually exist.17 BRCA 
mutation carriers commonly develop breast cancer at 
a young age18 and bilateral disease is more frequent than 

in non-carriers.19 BRCA1 breast cancer is often “triple 
negative” (TNBC).20 The prognosis of BRCA-associated 
breast cancers, however, is relatively similar to that of 
sporadic breast cancers,21 with inconsistent data from 
meta-analyses showing worse overall survival (OS) on 
the one hand22,23 and some suggesting better OS among 
triple negative breast cancer patients on the other hand.24 

In addition, BRCA1/2 mutation carriers have an estimated 
8–62% lifetime risk for ovarian cancer.8

Therapeutic Outcomes
Surgery
A bilateral mastectomy reduces this risk of developing 
breast cancer in healthy carriers, but an overall survival 
effect in comparison to surveillance has not been clearly 
demonstrated.25 A recent report suggested a survival ben-
efit in BRCA1 carriers.26 Contralateral prophylactic mas-
tectomy is a risk-reducing procedure performed in patients 
diagnosed with a unilateral breast cancer. While there is no 
clear survival benefit for most BRCA1/2 breast cancer 
patients,25,27-29 some evidence suggests a diseases-free 
survival (DFS) and OS benefit in younger patients with 
early-stage disease.30,31 A meta-analysis including 4 stu-
dies (N=2555) reported an association between contralat-
eral prophylactic mastectomy and reduced mortality,30 

however those studies bear some bias since healthier 
women are selected for risk-reducing surgery. 
Interestingly, the rates of performing a contralateral pro-
phylactic mastectomy have increased over the past few 
years.31,32 The NCCN guidelines panel recommends con-
sidering risk-reducing mastectomy on a case-by-case 
basis. When counseling patients on contralateral risk- 
reducing mastectomy, one should consider the various 
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Figure 1 Breast cancer patients with genetic mutations. Approximately 10–15% of breast cancer cases are associated with hereditary syndromes, and the majority of them 
will carry a deleterious mutation in BRCA1 and BRCA2. Other rare highly penetrant syndromes are Cowden (PTEN) and Li-Fraumeni (p53). After excluding BRCA-positive 
and syndromic genes, there are pathogenic mutation in other genes.
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risks relevant to the specific patient, such as the prognosis 
of the present breast cancer and the likelihood of develop-
ing a contralateral breast cancer, as well as the risks 
associated with the surgery itself. A risk-reducing sal-
pingo-oophorectomy (BSO) is recommended after com-
pletion of childbearing.33

Radiation
The risk of recurrent cancer in ipsilateral breast is roughly 
15% in 10 years in BRCA1/2 mutation carriers who had 
undergone breast lumpectomy. This risk is relatively lower 
than that of the contralateral breast34 as a result of irradiation 
of the affected breast.34,35 Therefore, ipsilateral whole breast 
radiation is strongly recommended to all BRCA1/2 mutation 
carriers undergoing breast-conserving surgery. This reduc-
tion in risk also raised the hypothesis that radiation to the 
contralateral breast may have a risk-reducing role in BRCA1/ 
2 carriers wishing to refrain from undergoing a prophylactic 
mastectomy. A non-randomized Phase II trial that evaluated 
prophylactic breast irradiation for the contralateral breast in 
BRCA mutation carriers showed reduction in the incidence of 
breast cancer (P= 0.011).36

Treatment in the Neoadjuvant Setting
The contribution of platinum-based therapy to pathologic 
complete (pCR) response was explored in women with 
BRCA1/2 mutations and TNBC. All patients with TNBC 
were more likely to achieve a pCR with the addition of 
carboplatin to neoadjuvant chemotherapy. However, 
patients without a germline BRCA mutation exhibited 
a much larger increase in pCR rate than BRCA-mutated 
patients.37,38 For example, in the BrighTNess trial, the 
addition of carboplatin increased the pCR rate among 
BRCA-wild type patients from 29% to 59% compared to 
an increase from 41% to 50% in BRCA carriers.39 

Moreover, in the outcomes analysis from the GeparSixto 
trial, the absolute improvement in DFS with the addition 
of carboplatin was greater among BRCA-wildtype patients 
compared to BRCA-mutated patients.40 A systematic 
review of TNBC patients undergoing neoadjuvant treat-
ment reported that platinum is associated with significantly 
increased pCR in BRCA1/2 wild type patients, but not 
n BRCA1/2-mutation carriers.41 This phenomenon may 
be attributed to the higher sensitivity of tumors with 
BRCA1/2 mutation to other alkylating chemotherapies, 
such as cyclophosphamide. Therefore, decisions regarding 
the addition of platinum agents in the neo-adjuvant setting 
should be individualized regardless of BRCA status and 

with consideration of clinical response to chemotherapy 
and initial stage.

In cells with a BRCA1/2 mutation, inhibition of poly 
(ADP-ribose) polymerase (PARP) causes irreversible 
DNA damage.42 In the neoadjuvant setting, the use of 
single-agent oral talazoparib for 6 months resulted in 
53% of the participants achieving pCR.43 This strategy 
may be more widely adopted in the future, pending the 
results of larger trials. Since there are different resistance 
mechanisms to PARP inhibitors and chemotherapy 
(including platinum),44 future strategies may incorporate 
sequential use of PARP inhibitors in the neoadjuvant set-
ting, with the addition of chemotherapy to patients not 
achieving pCR.

Treatment in Metastatic Disease
The use of the PARP inhibitor Olaparib in BRCA1/2-meta-
static patients with triple-negative breast cancer was assessed 
in the OlympiAD trial. Patients randomly assigned to 
Olaparib experienced an improved PFS compared to those 
assigned to chemotherapy.45 A recent update of that trial 
suggested an OS benefit for olaparib in patients who had 
not received chemotherapy for metastatic disease, with 
longer OS compared with chemotherapy-treated patients.46 

Similarly, talazoparib improved PFS compared to single- 
agent chemotherapy in the TNBC subgroup of the 
EMBRACA trial.47 Interestingly, the EMBRACA trial 
showed improvement in PFS in HR positive patients as 
well. In the BROCADE trial, patients with metastatic HER2- 
negative and a germline BRCA mutation demonstrated 
improved PFS with the addition of the PARP inhibitor 
Veliparib to chemotherapy (comprised of carboplatin/ 
paclitaxel).48 The TNT randomized trial compared docetaxel 
with carboplatin as a first-line treatment in women with 
metastatic TNBC. The overall response rates were similar, 
but carboplatin resulted in a higher response rate (68% versus 
33%) and improved PFS (6.8 versus 4.4 months) among 
BRCA1/2-mutation carriers.49

Overall, these studies clearly demonstrate the role of 
PARP inhibitors and platinum agents in the treatment of 
metastatic BRCA1/2 carriers.

TP53 – Li Fraumeni Syndrome
Li Fraumeni syndrome (LFS) is a rare, highly penetrant, 
autosomal dominant syndrome associated with a germline 
mutation in the tumor protein p53 gene.50 It constitutes 
approximately 1% of all hereditary breast cancer cases.51 

p53 mutation carriers are at increased risk of developing 
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various cancers, including soft tissue sarcomas, premeno-
pausal breast cancers, tumors of the brain, lung, skin, 
pancreas, adrenal cortex, and leukemia in childhood or 
early adulthood,52 with a lifetime cancer incidence of 
nearly 100%.53 The lifetime risk of breast cancer in female 
mutation carriers approaches 50% by age 60 years. The 
mean age at onset is approximately 35 years, and a first 
diagnosis of breast cancer is rare after 50.54

There are no data on the benefit of risk-reduction 
mastectomies, although they seem like a reasonable option 
when extrapolating data from BRCA1/2 carriers. The 
NCCN guidelines panel recommends a case-by-case dis-
cussion that considers family history, life expectancy and 
reconstructive options.

Therapeutic Outcomes
Radiation
Carriers are at increased risk of developing secondary malig-
nancies in radiation fields.55,56 Women with LFS who 
develop breast cancer are generally recommended to undergo 
mastectomy rather than lumpectomy and radiation, given the 
risks of radiation-induced malignancies in this syndrome.

Systemic Treatment
HER2 is positive in 64% to 83% of breast cancers among 
TP53 carriers.57 Patients with TP53 mutations have lim-
ited response to chemotherapy in both the neoadjuvant and 
adjuvant settings.58,59 Clinical decisions regarding che-
motherapy in this patient population should be made on 
a case-by-case basis while considering the limited 
response and the secondary malignancy risk.

PTEN (Cowden Syndrome)
The germline PTEN mutations detected in Cowden syn-
drome clinically present as multiple hamartomas and con-
tain an increased risk for breast, thyroid, endometrium, 
kidney and colorectal malignancies.60 The PTEN gene is 
a negative regulator of the phosphoinositide-3-kinase 
(PI3K), and a mammalian target of rapamycin (mTOR) 
signaling pathways, which are known to be involved in 
cell proliferation, cell cycle progression, and apoptosis.61

A decrease in PTEN expression may be associated with 
poor outcomes in BC.62,63 There are no data on the benefit 
of risk-reducing mastectomies although they seem to be 
a reasonable option when extrapolating data from BRCA1/ 
2 carriers. The NCCN guidelines panel recommends 
a case-by-case discussion that considers family history, 
life expectancy and reconstructive options.

Therapeutic Outcomes
Systemic Therapy
Trials that evaluated the addition of Everolimus to che-
motherapy and trastuzumab reported a potential benefit in 
women with PTEN mutations.64 Studies that evaluated the 
addition of AKT inhibitor treatment to chemotherapy in 
TNBC reported an association between PTEN alterations 
and response to AKT inhibitor treatment, both in the early 
and advanced settings.65,66 It was recently suggested that 
the PTEN gene has a role in maintaining genomic 
stability67,68 and PARP inhibitor sensitization.69–71 

A phase II trial that evaluated Talazoparib (PARPi) for 
BRCA1/2 wild type HER2- breast cancer patients with 
PTEN gene mutations exhibited response or stability.72

CDH1 (Hereditary Diffuse Gastric 
Cancer Syndrome)
Hereditary diffuse gastric cancer syndrome is associated 
with germline pathogenic variants in the cadherin 1 gene 
(CDH1).73,74 The lifetime cumulative risk for advanced 
diffuse-type gastric cancer is 70% for males and 56% for 
females by the age of 80 years.75 Germline CDH1 muta-
tions are associated with the development of lobular breast 
cancer in women, with a cumulative lifetime risk esti-
mated to be as high as 50% to 60%.73,76,77 CDH1 somatic 
mutations do not impact prognosis of lobular breast cancer 
patients, however, the presence of CDH1 plus ERBB2 
mutations leads to worse prognosis.78

Therapeutic Outcomes
Systemic Therapy
Invasive lobular carcinoma (ILC) is relatively resistant to 
chemotherapy compared to invasive ductal carcinoma. The 
cause might be the luminal A phenotype. Indeed, adjuvant 
endocrine therapy is preferred for this patient population.79 

Since the PI3K pathway is activated upon E-cadherin loss, 
lobular cancer cells were hypothesized to be sensitive to AKT 
inhibitors.80 Therefore, it is reasonable to consider the use of 
AKT inhibitors in the metastatic setting. More clinical trials 
are warranted, perhaps with combinations of effective hormo-
nal treatments.

PALB2
Partner and localizer of BRCA2 (PALB2) is a breast cancer 
susceptibility gene that encodes the BRCA2-interacting 
protein.81,83 PALB2 bi-allelic mutations cause Fanconi ane-
mia and predispose to pediatric malignancies, including 
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medulloblastoma, Wilm’s tumor and acute myeloid 
leukemia.82 Mono-allelic mutations of PALB2 cause familial 
breast and pancreatic cancer,83,84 prostate cancer in men, and 
ovarian cancer in women.85 Mutation carriers have 
a cumulative risk of breast cancer ranging between 33% to 
58% by age 70 years.86,88 PALB2 is considered to be 
a moderate- to high-risk gene associated with hereditary 
breast cancer.85–87 Breast cancer risk associated with 
a PALB2 pathogenic variant appears to be influenced by 
a family history of breast cancer and other environmental 
factors. Women with no family history of breast cancer have 
a cumulative risk of 33%, compared to 58% in women with 
two or more family members with breast cancer. Breast 
cancers in patients with PALB2 mutations have phenotypic 
characteristics relatively similar to BRCA1/2 mutant tumors: 
50% are grade III, 40% are triple-negative phenotype, 58% 
are estrogen receptor-negative and 93% are HER2- 
negative.88

Systemic Therapy
Increased sensitivity to PARP inhibitors in PALB2- 
deficient cells demonstrates the synthetic lethal interaction 
between PALB2 loss and DNA-damaging agents.89 

Furthermore, one preclinical study demonstrated response 
in PLAB2-mutated cells to other DNA-damaging agents, 
such as platinum.90 These preliminary findings warrant 
validation in clinical studies.

STK11 (LKB1, Peutz-Jeghers Syndrome)
Peutz-Jeghers syndrome (PJS) is a rare disorder associated 
with pathogenic variants in the serine/threonine kinase 
11 gene (STK11, also called LKB1).91 Mucocutaneous 
pigmented lesions occur in about 95% of affected patients. 
Additionally, hamartomatous polyps in the gastrointestinal 
tract are hallmark features.92 This syndrome is associated 
with an elevated risk for breast cancer.92 The cumulative 
risk of breast cancer is approximately 55%, and the diag-
nosis tends to occur at a younger age (mean 37 years).5

MSH1, MLH1, MSH6, PMS2, and EPCAM 
(Lynch Syndrome)
Lynch syndrome, also known as hereditary nonpolyposis 
colon cancer (HNPCC), is associated with pathogenic 
variants in mismatch repair genes. The primary cancers 
associated with Lynch syndrome involve the colon, endo-
metrium, ovaries and stomach.93–96 No statistical increase 
in breast cancer risk was found in 13 out of 21 studies, an 

increased risk was reported in 8 and 1 prospective study 
identified a fourfold increased risk for breast cancer.96–98 

Subsequent studies have found that the breast cancer risk 
may vary based on genotype. For example, in a study on 
MLH1 and MSH2 families in the United Kingdom, the 
cumulative breast cancer risk until age 70 years in MLH1 
carriers was 18.6%, whereas the comparable risk in MSH2 
carriers was 11.2%.99 In another study on pathogenic 
variants among women with Lynch syndrome, breast can-
cer risks were elevated in MSH6 and PMS2 carriers but not 
in MLH1 or MSH2 carriers.100,102

Systemic Therapy
Mismatch repair errors characteristic of the MSI pheno-
type are rare in breast cancer,101 being found in fewer than 
2% of cases.102 High numbers of MSI tumors have been 
recently found to be susceptible to immunotherapy,103 

leading to the use of pembrolizumab (an anti-PD-1 
agent) for high MSI metastatic solid tumors.104

Moderate Penetrance Genes for Breast 
Cancer
CHEK2
The checkpoint kinase 2 (CHEK2) gene is associated with 
a DNA damage repair response.105 Several CHEK2 var-
iants have been identified, including single polymorphism 
(1100delC) which has emerged as being associated with 
low-to-moderate penetrance breast cancer sensitivity.106 

The 1100delC variant is also linked to increased risk for 
colorectal cancer, especially with a family history of colon 
cancer.107 Other common malignancies associated with 
CHEK2 include male breast cancer,108 stomach, prostate, 
kidney and thyroid cancer, and also sarcoma.109,110 The 
1100delC variant is associated with a two- to threefold 
increased risk of breast cancer, predominantly among cau-
casian women of northern or eastern european 
descent.46,111-115 The cumulative risk of breast cancer to 
age 80 years in women with this variant is about 32%, 
whereas the cumulative risk to age 49 years is about 6%.85

Therapeutic Outcomes
Systemic Treatment
Mutations in the CHEK2 gene have been associated with 
a lack of benefit from anthracycline in breast cancer.116,117 

The H371Y variant was associated with better response.118 

In clinical studies of women with the CHEK2 1100delC 
mutation, no differences in response to chemotherapy were 
observed when compared to non-carriers.118,119

Dovepress                                                                                                                                                  Peleg Hasson et al

Pharmacogenomics and Personalized Medicine 2020:13                                                                submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                         
231

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


Radiation
Patients with a CHEK2 mutation are not characterized by 
any distinct radiosensitivity.120 Therefore, planning mod-
ifying radiotherapy for women with breast cancer who 
have this mutation is unwarranted.121

ATM
The ataxia-telangiectasia mutated (ATM) gene encodes 
a protein kinase involved in DNA repair. Heterozygotic 
carriers are at a twofold increased risk of developing 
breast cancer than non-carriers, with a cumulative lifetime 
breast cancer risk of about 30%.85,122-124 ATM pathogenic 
variants have also been associated with increased risks for 
pancreatic and ovarian cancer.93,125

Rare pathogenic variants in the ATM gene may be asso-
ciated with a substantially higher risk of breast cancer.123,126 

The risk of second primary breast cancer is not clear.127

Therapeutic Outcomes
Radiation
Radiation toxicity in ATM mutation carriers is a subject of 
controversy. Upon activation by ionizing radiation, ATM 
phosphorylates the proteins that control the pathways 
involved in DNA repair, including BRCA.128 Studies 
have suggested that radiation exposure may cause contral-
ateral breast cancer in women who carry deleterious ATM 
missense variants.129 However, the rarity of these variants 
implies that ATM mutations could explain only a small 
fraction of second primary breast cancers.129 Contrarily, 
no evidence of breast radiation toxicity in ATM mutation 
carriers has been reported, suggesting that breast- 
conserving therapy can be safely considered in this patient 
population.130 Moreover, a meta-analysis including 5 stu-
dies showed that radiation therapy is safe in ATM mutation 
carriers diagnosed with cancer.131 Currently, NCCN and 

Table 1 Common Genes and Clinical Recommendations

Gene Surgery Recommendations Radiation Recommendations Systemic Treatment 
Recommendations

BRCA1/2 Discuss bilateral risk-reduction 

mastectomy.

Radiation post-lumpectomy per indication. 

Consider radiation to contralateral breast.

Consider PARPi/platinum in the presence 

of metastases.

TP53 Discuss bilateral risk-reduction 

mastectomy.

Consider avoiding radiation due to high risk of 

secondary malignancies. Risk-benefit ratio 

should be discussed.

Limited response to chemotherapy. 

Check HER2 status. Consider risk for 

secondary malignancy.

CDH1 Insufficient evidence for risk- 
reduction mastectomy, manage 

by family history.

Adjuvant endocrine therapy is preferred. 
Consider Akt inhibitors in a clinical trial 

setting.

PTEN Insufficient evidence for risk- 

reduction mastectomy, manage 

by family history.

Consider Akt inhibitors and PARP 

inhibitors in a clinical trial setting.

MSH1, MLH1, 

MSH6, PMS2, 
and EPCAM

Insufficient evidence for risk- 

reduction mastectomy, manage 
by family history.

Consider risk for secondary malignancy. Consider immunotherapy in the 

presence of metastases.

PALB2 Discuss bilateral risk-reduction 
mastectomy.

Offer recruitment to a clinical trial with 
PARPi.

CHEK2 Insufficient evidence for risk- 
reduction mastectomy, manage 

by family history.

ATM Insufficient evidence for risk- 

reduction mastectomy, manage 

by family history.

Avoid radiation in deleterious ATM missense 

variants. Risk-benefit ratio should be discussed 

in other variants.

BRIP1 Insufficient evidence for risk- 

reduction mastectomy, manage 
by family history.

Offer recruitment to a clinical trial with 

PARPi.
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ESMO guidelines do not recommend against radiation in 
this patient population.132

Systemic Treatment
ATM mutations may potentially have increased sensitivity 
for platinum chemotherapy. However, in vitro killing of 
tumor cells by platinum drugs has not been 
demonstrated.133 Checkpoint kinase 1 (Chk1) is down-
stream of ATM in the DNA damage–induced cell-cycle 
arrest. Therefore, inhibitors of Chk1 may act as chemo-
sensitizers in ATM-mutated cancers.134

BRIP1
BRIP1 (BRCA1 interacting protein C-terminal helicase 1) 
is a DNA repair gene that interacts with BRCA1.137 BRIP1 
is a protein that supports BRCA1 to repair damaged DNA. 
BRIP1 inactivating mutations are hypothesized to be asso-
ciated with a marginal increased risk of breast cancer, and 
have more frequently been linked with a moderately 
increased risk of ovarian cancer.136–139 It has been postu-
lated that BRIP1 is a potential target for PARP inhibitors 
and platinum agents.135

Conclusion
In this review, we summarized common breast cancer 
hereditary syndromes, including BRCA1/2, as well as the 
less common culpable genes, TP53, PTEN, CDH1, MSH1, 
MLH1, MSH6, PMS2, PALB2, STK11, CHEK2, ATM, and 
BRIP1, that are frequently diagnosed in accessible multi-
gene panels. We presented an overview of gene carrier 

prognosis, and indicated our recommendations for clinical 
decision-making with regard to surgery, radiation and sys-
temic treatment (Table 1 and Figure 2). In this unique 
population of breast cancer patients, clinicians must 
strongly consider the patient’s family history, life expec-
tancy and any risk for other secondary malignancies. 
Participation in clinical trials should be encouraged. 
Moreover, patients are strongly advised to attend multi-
disciplinary clinics for surveillance, risk reduction and 
primary prevention.
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