
Comparison of Physical and Software-
Implemented Fault Injection Techniques

Jean Arlat, Member, IEEE, Yves Crouzet, Johan Karlsson, Member, IEEE,

Peter Folkesson, Member, IEEE, Emmerich Fuchs, Member, IEEE Computer Society, and

Günther H. Leber, Member, IEEE

Abstract—This paper addresses the issue of characterizing the respective impact of fault injection techniques. Three physical

techniques and one software-implemented technique that have been used to assess the fault tolerance features of the MARS fault-

tolerant distributed real-time system are compared and analyzed. After a short summary of the fault tolerance features of the MARS

architecture and especially of the error detection mechanisms that were used to compare the erroneous behaviors induced by the fault

injection techniques considered, we describe the common distributed testbed and test scenario implemented to perform a coherent set

of fault injection campaigns. The main features of the four fault injection techniques considered are then briefly described and the

results obtained are finally presented and discussed. Emphasis is put on the analysis of the specific impact and merit of each injection

technique.

Index Terms—Fault injection techniques, experimental assessment, fault-tolerant computing, error detection coverage.

�

1 INTRODUCTION

THE dependability assessment of a fault-tolerant compu-
ter system is a complex task that requires the use of

different levels of evaluation approaches and related tools. In
complement to other possible approaches such as proving or
analytical modeling whose applicability and accuracy are
significantly restricted in the case of complex systems, fault
injectionhas long been recognized to be particularly attractive
and useful. Indeed, by speeding up the occurrence of errors
and failures, fault injection is, in fact, a method for testing the
fault tolerance mechanisms with respect to a specific set of
inputs they are meant to cope with: the faults. Fault injection
canbeapplied either ona simulationmodel of the target fault-
tolerant system or on a hardware-and-software implementa-
tion (e.g., see [1], [2], [3], [4]).

Clearly, simulation-based fault injection is desirable as it
can provide early checks in the design process of fault
tolerance mechanisms (e.g., see [5]). Nevertheless, it is
worth noting that fault injection on a prototype featuring
the actual interactions between the hardware and software
dimensions of the fault tolerance mechanisms supplies a
more realistic and necessary complement to validate their
implementation in a fault-tolerant system.

Initially, most studies related to the application of fault
injection on a prototype of a fault-tolerant system relied on
physical fault injection (�FI, for short), i.e., the introduction
of faults through the hardware layer of the target system
(e.g., see [6]). A trend favoring the injection of errors
through the software layer for simulating physical faults
(i.e., software-implemented fault injection—SWIFI for
short) has emerged (e.g., see [7], [8], [9], [10], [11]). Such
an approach facilitates the application of fault injection by
overcoming several problems associated with �FI techni-
ques (such as controllability, repeatability, etc.). Moreover,
recent studies have shown that SWIFI was also able to
emulate some types of software faults (e.g., see [12]).

Nevertheless, in spite of the difficulties in developing
support environments and conducting experiments, �FI
techniques enable real faults to be injected in a very close
representation of the target system especially without any
alteration to the software being executed. The large body of
works concerning �FI used widely different techniques
and/or were applied to distinct target systems. This
significantly hampers the possibility to identify the diffi-
culties/benefits associated with each fault injection techni-
que and to analyze the results obtained.

Thus, more experimental work is needed to better
establish the relationship and differences between the fault
injection techniques that are available to help the designers
in assessing the dependability and fault tolerance properties
of a computer system. In particular, one key concern that is
often related to fault injection-based experiments is usually
termed fault representativeness, i.e., the plausibility of the
supported fault model with respect to actual faults. In this
paper, we advocate that the study of the impact and
consequences of an injected fault (i.e., the error propagated)
offers a more pragmatic and sensible means to address the
representativeness issue. Accordingly, we distinguish be-
tween two categories of approaches, depending on whether
the analysis concerns the erroneous behaviors provoked by

IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 9, SEPTEMBER 2003 1115

. J. Arlat and Y. Crouzet are with LAAS-CNRS, 7, Avenue du Colonel
Roche, 31077 Toulouse Cedex 4, France.
E-mail: {Jean.Arlat, Yves.Crouzet}@laas.fr.

. J. Karlsson and P. Folkesson are with the Department of Computer
Engineering, Chalmers University of Technology, SE-412 96 Goteborg,
Sweden. E-mail: {johan, peterf}@ce.chalmers.se.

. E. Fuchs was with the Vienna University of Technology. He is now with
DECOMSYS-Dependable Computer Systems, Stumpergasse 48/14, A-
1060 Wien, Austria. E-mail: fuchs@decomsys.com.

. G.H. Leber was with the Vienna University of Technology. He is now with
Adcon Telemetry AG, Inkustraße 24, A-3400 Klosterneuburg, Austria.
E-mail: guenther.leber@ieee.org.

Manuscript received 14 Feb. 2000; revised 12 Feb. 2002; accepted 24 Feb.
2003.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 111469.

0018-9340/03/$17.00 � 2003 IEEE Published by the IEEE Computer Society

1) some specific fault injection technique with respect to a
set of real faults or 2) the application of several fault
injection techniques (most of the time in previous studies
only two techniques were considered).

Clearly, in principle, the first approach is more desirable
and convincing for assessing the accuracy of the behaviors
induced by the fault injection techniques. However, it is not
always easy to gather a large amount of objective data on
behaviors caused by real faults to support such an analysis.
Typical examples of related studies include the comparison
of the impact of real faults with respect to 1) extensive data
and code corruptions [13], 2) elementary source code
mutations [14], or 3) application of the SWIFI technique [12].

For what concerns the second approach, the comparison
of several fault injection techniques provides only an
indirect means for assessing their representativeness;
nevertheless, such an approach is well suited to obtaining
extensive error data sets from which useful insights can be
derived. Should the experiments using different fault
injection techniques lead to similar behaviors, then the
techniques can be considered as “equivalent” and, thus, the
one that exhibits the most suitable practical properties (e.g.,
reachability, controllability, reproducibility, intrusiveness,
etc.) should be preferred. However, if different behaviors
are observed, then the techniques are rather complemen-
tary. Such an insight is very much helpful in light of the
work devoted to developing dependability benchmarks
(e.g., see [11], [15], [16]),1 in particular to substantiate which
kind of relevant “faultload” should be considered for such
benchmarks. Among the related studies, we would like to
refer to the works reported in [10], [17], [18], [19], [20], [21],
[22] that addressed most of the currently available fault
injection techniques, including simulation-based techni-
ques, �FI techniques, SWIFI techniques, and, also, the
recently introduced scan chain-implemented fault injection
technique, e.g., see [23], that builds upon the testability-
support capabilities featured by many modern VLSI
devices.

These studies showed that some fault injection techni-
ques matched some real faults rather well and also that
some were found to be quite equivalent, while others were
identified as rather complementary. Accordingly, more
experimental work and related analyses are needed to
better understand the underlying error creation and
propagation mechanisms.

This paper is intended to contribute to this effort along
the lines of the second approach described earlier, by
studying whether the application of four distinct fault
injection techniques had the same impact on a specific
prototype of a fault-tolerant real-time system. Three �FI
techniques, namely, heavy-ion radiation, pin-level injection,
and electromagnetic interferences, as well as a preruntime
SWIFI technique (at the machine code level) were con-
sidered. In each case, the target fault-tolerant system was a
prototype of the MARS (MAintainable Real-time System)
distributed architecture developed at the Vienna University

of Technology [24]. It is worth noting that this conceptual
prototype architecture has evolved to become the Time
Triggered Protocol and Architecture (also known as TTP
and TTA), e.g., see [25].

The initial motivation for our work was to assess the
coverage of the “fail-silent” assumption [26] and also to
evaluate the respective efficiency (i.e., the detection cover-
age) of the various built-in error detection mechanisms
(EDMs) aimed at supporting the fail silence property for the
distributed computing nodes of the MARS architecture. The
results obtained were previously reported in [27], for what
concerns the experiments related to the three �FI techni-
ques, and in [28] for the SWIFI experiments.

It is worth noting that, in order to carry out all the fault
injection experiments on a consistent basis, we used the
same distributed testbed architecture featuring five MARS
nodes and a common test scenario. Accordingly, it was easy
to extend our analyses toward the comparison of the
erroneous behaviors provoked by the considered fault
injection techniques. A preliminary comparative study of
the coverage provided by the EDMs and of fail silence
property achieved with respect to the �FI and SWIFI
techniques was reported in [29]. This paper significantly
extends these results and provides some insights to help
understand 1) the differences between the errors provoked
by the �FI techniques and 2) to what extent SWIFI can
simulate the consequences of faults injected by the physical
techniques.

To the best of our knowledge, this study is rather unique,
both in providing such a comprehensive comparison of
several fault injection techniques and in relying on a well-
controlled experimental context that allowed for drawing
meaningful comparisons. Indeed, the assessment of the
fault injection techniques is supported by using the EDMs
in a MARS node as “observers” to characterize the
erroneous behaviors induced by the faults injected by the
techniques considered. The remaining part of this paper is
composed of seven sections. Section 2 highlights the fault
tolerance features of MARS, focusing on the EDMs built in
each MARS node. Section 3 then presents the overall
framework supporting the experimental assessment. It
describes the common test scenario and testbed architecture
being used for carrying out the fault injection experiments,
as well as the failure predicates defined for characterizing
the behavior of the target system in the presence of injected
faults. Section 4 briefly describes the fault injection
techniques considered. Some major experimental results
concerning the target fault-tolerant system are presented
and discussed in Section 5. Section 6 focuses on the analysis
on the respective impact of the fault injection techniques
considered. Section 7 complements this analysis by con-
sidering additional properties that also characterize the
application of the fault injection techniques. Finally,
Section 8 concludes the paper.

2 THE MARS ARCHITECTURE AND ERROR

DETECTION MECHANISMS

This section summarizes the main fault tolerance features of
the MARS architecture [24]. Fault tolerance issues at

1116 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 9, SEPTEMBER 2003

1. Recent related efforts also include the SIG on Dependability
Benchmarking established by IFIP WG 10.4 (http://www.dependability.
org/wg10.4/SIGDeB) and the European Project on Dependability Bench-
marking—DBench-Project IST 2000-25425 (http://www.laas.fr/dbench).

system-level are discussed first, then the structure of a
special-purpose processing node designed to support these
features in an optimal way is briefly described. Finally,
special attention is paid to the identification and character-
ization of the error detection mechanisms (EDMs) built-in
into a MARS node.

2.1 Fault Tolerance

Fault tolerance in MARS is based on “fail-silent” nodes
operating in active redundancy and on sending duplicate
messages on two redundant real-time buses. Fail silence is
intended to describe the behavior of a computer that fails
“cleanly” by just stopping to send messages in case a failure
occurs [30]. Up to three processing nodes can execute
identical software, thus forming a Fault-Tolerant Unit (FTU).

To achieve a deterministic timing behavior even in the
presence of faults, the MARS system uses active redun-
dancy for all processing and communication activities: Each
process is executed simultaneously at all nodes of an FTU
and each message is transmitted quasi-simultaneously on
each of the broadcast channels. Due to the fail silence
property, the results of all three nodes of an FTU are
assumed to be correct and may be used interchangeably.
Since only two nodes are needed to tolerate a single failure
of a fail-silent node (i.e., the loss of a message), the optional
third node, the shadow node, does not transmit any
message on the real-time network as long as both active
nodes are operational. Only if an active node fails does the
shadow node immediately start to transmit its results, thus
restoring the initial degree of redundancy. A precise global
time is maintained by a distributed fault-tolerant clock
synchronization algorithm [24].

MARS uses a two-layered mechanism for fault tolerance.
Due to the fail silence assumption supporting the design of
the node, the top layer (system layer) need not care about
erroneous data; it only has to provide enough redundancy
to tolerate (silent) failures of parts of the system. Indeed, the
bottom layer (node layer) is responsible for error detection
and error confinement (i.e., it ensures the fail silence
property of the node: After the detection of an error, a
reset of the node is performed). In the context of this paper,
a MARS node is said to be fail-silent if it only sends:
1) correct messages, 2) no messages, or 3) detectably wrong
messages, which can be discarded by each nonfaulty
receiver. An additional feature in the MARS architecture
is that a node is only allowed to send a message at fixed
time intervals according to a TDMA media access strategy.

2.2 Structure of the Processing Node

This study uses a single-board implementation of the
MARS nodes. Each node consists of two independent
processing units: the application unit and the communica-
tion unit (Fig. 1). Each unit is based on a 68070 CPU [31],
that features a memory management unit (MMU). The
application unit also contains a dynamic RAM and two
bidirectional FIFOs, one of which serves as an interface to
external add-on hardware, the other one connecting the
application unit to the communication unit. Additional
hardware for the communication unit is comprised of a
Static RAM, two ethernet controllers (LANCEs), each
coupled to a Clock Synchronization Unit (CSU) for

maintaining a global time base, and a Time Slice Controller
(TSC) for controlling access to the system bus.

Whenever an error is detected, the subsequent error
processing activity of the node is to save the error
information into nonvolatile memory and then turn itself
off. Upon restart, the node writes its previously saved error
information to two serial ports (one for each unit), from
where it can be read for the purpose of diagnosis. This
feature was exploited in the context of this study to
precisely monitor and characterize the consequence of the
injected faults. More details on MARS features and on the
architecture of the processing nodes can be found in [24].

Three levels of error detection mechanisms (EDMs) are
implemented in the MARS nodes: 1) the hardware EDMs,
2) the system software EDMs implemented in the operating
system [24] and support software (i.e., the Modula/R
compiler) [32], and 3) the application-level (end-to-end)
EDMs at the highest level. They are respectively described
in the following paragraphs.

2.3 Hardware Error Detection Mechanisms

Whenever an error is detected by one of the hardware
EDMs, in general, an exception is raised and the two CPUs
will then wait for a reset issued by a watchdog timer. This
watchdog timer is the only device that may cause a reset of
all devices, including the CPUs.

Two main categories of hardware EDMs can be distin-
guished: the built-in mechanisms of the CPUs and those
provided by special hardware on the processing board. In
addition, faults can also trigger “unexpected” exceptions
(i.e., neither the EDMs built into the CPUs nor the
mechanisms provided by special hardware are mapped to
these exceptions).

TheEDMsbuilt into theCPUsare: bus error, address error,
illegal op-code, privilege violation, zero-divide, stack format
error, noninitialized vector interrupt, and spurious interrupt.
These errors cause the processor to jump to the appropriate
exception handling routines, which save the error state to the
nonvolatile memory and then reset the node.

The following errors are detected by mechanisms
implemented by special hardware on the node: silent
shutdown of the CPU of the communication unit, power
failure, parity error, FIFO over/underflow, access to
physically nonexisting memory, write access to the real-
time network at an illegal point in time (monitored by the
TSC), error of an external device, and error of the other unit.
We globally call these “NMI mechanisms” as they raise a

ARLAT ET AL.: COMPARISON OF PHYSICAL AND SOFTWARE-IMPLEMENTED FAULT INJECTION TECHNIQUES 1117

Fig. 1. Block diagram of the processor board.

Non-Maskable Interrupt (a specific exception number)

when an error is detected. An NMI leads to the same error

handling as EDMs built into the CPUs and can only be

cleared by resetting the node, which is carried out by the

watchdog timer.

2.4 System Software Error Detection Mechanisms

These mechanisms consist of EDMs implemented by the

operating system or special system tasks; they include:

. assertions built into the operating system (OS), such
as integrity checks on data or processing time
overflow,

. mechanisms inserted by the compiler (i.e., Compiler
Generated Run-Time Assertions—CGRTA) to im-
plement concurrent checks, such as value range
overflow of a variable and loop iteration bound
overflow.

When an error is detected by any of these mechanisms, a

“trap” instruction is executed that leads to a node reset.

2.5 End-to-End Error Detection Mechanisms

These mechanisms include end-to-end checksums for mes-

sage data andmultiple (basically, double) execution of tasks.
The end-to-end checksums are used to detect the

mutilation of message data exchanged between two nodes

of an FTU and are therefore used by the receiving task for

extending the fail silence property of the MARS nodes.
Double execution of tasks in time redundancy can detect

errors caused by transient faults that cause different output

data of the two instances of the task. Combined with the

concept of message checksums, task execution in time

redundancy forms the highest level in the hierarchy of the

error detection mechanisms. These mechanisms also trigger

the execution of a trap instruction, which causes a reset of

the node.

3 OVERVIEW OF THE EXPERIMENTAL FRAMEWORK

In this section, we first present the common testbed set-up

and workload implemented at all sites for carrying out the

experiments. Then, we precisely define the failure pre-

dicates considered during the fault injection experiments.

3.1 The Experimental Testbed and Workload

As depicted in Fig. 2, the common distributed testbed that is

supporting the fault injection experiments features five

MARS nodes.
The node under test (NUT, for short) is the node subject

to the injection of a fault during each experiment run.

Another node (golden node) serves as a reference and a third

node (comparator node) is used to compare the messages

sent by the two previous nodes. When a discrepancy is

observed by the comparator node (fail silence violation) or

the NUT detects an error, the NUT is declared to be failed

and then shut down by the comparator node to clear all

error conditions for the subsequent experiment run. After

some time, power is reinstalled and the NUT is reloaded for

the next experiment run. The data generation node simulates

the data corresponding to the real-time application that is

being used to activate the NUT and the golden node during
each fault injection experiment.

The application is taken from the rolling ball demonstra-
tion [33]: A ball is kept rolling along a circular path on a
tiltable plane by controlling the two horizontal axes of the
plane by servo motors and observing the position of the ball
with a video camera. However, the tiltable plane and the
camera are not present in the set-up used in the fault
injection experiments; instead, the data from the camera is
simulated by a data generation task running on the data
generation node. The task provides the nominal and actual
values of the position, speed, and acceleration of the ball.

A fifth node is included that serves as a gateway between
a local area network (LAN) and the MARS network. It is
required for loading the entire application and for reloading
the NUT. A host computer (Unix workstation) connected to
the LAN is used for supervising the experiments, i.e.,
reloading failed nodes and collecting data from each
experiment run for further analysis.

Fig. 2 also depicts the specific interactions with the �FI
devices. The experiments are managed by the workstation
and controlled by the comparator node. When the com-
parator node detects an error, it reports the error type to the
workstation and turns off the power to the NUT with the
signal P-NUT. Signal F-NUT is used to discontinue fault
injection.2 Then, the NUT is powered-up again and
restarted. Upon restart, the memorized error data is sent
to the workstation via two serial lines (one for each
processing unit).3 Once the NUT has been restarted, the
workstation immediately initiates the downloading of the
application via the gateway node. When the application has
been restarted, the comparator node enables fault injection
(signal F-NUT) and a new experiment run begins.

Finally, it is worth noting that the experimental set-up is
based on the assumption that the nodes are replica
determinate (both in value and in time domains), i.e., if
provided with the same input data, replicated nodes deliver
identical outputs in an identical order within a specified
time interval. In particular, extensive runs without fault
injection of the rolling-ball target application have demon-
strated that the MARS prototype architecture supported

1118 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 9, SEPTEMBER 2003

2. Such a direct control on the injected fault is not possible in the case of
the software-implemented fault injection technique used (see Section 4.4).

3. If the error was not detected by the NUT itself, then the node has no
error information available and sends only a status message.

Fig. 2. The testbed architecture featuring five MARS nodes.

this property. Besides its interest for handling replicated
entities in real-time fault-tolerant systems (e.g., see [34]),
such a feature proved very useful in the context of the fault
injection experiments so that the faulty behaviors between
the testbed instances used for supporting each fault
injection technique could be meaningfully compared.

3.2 The Failure Predicates

Four failure types can be distinguished for the NUT:

1. The EDMs detect an error and the node stops
sending messages on the MARS bus; then, the node
stores the error condition into a nonvolatile memory
and resets itself by means of the watchdog timer.

2. The node fails to deliver the expected application
message(s) for one or several application cycles, but
no error is detected by the EDMs.

3. The node delivers a syntactically correct message
with erroneous content. This is a fail silence violation
in the value domain, which is recognized as a
mismatch between the messages sent by the NUT
and the golden node.

4. The node sends a message at an illegal point in time
and thus disturbs the traffic on the MARS bus. This
is a fail silence violation in the time domain.

On every restart, the NUT writes its previously saved
error data, if available (i.e., if an error was detected by the
EDMs) and data about its state to two serial ports, where it
can be read and stored for further processing. From these
data, five predicates (events) can be derived (Table 1).

The Cold Start (CS) predicate characterizes the end of
each data set. The other four predicates characterize four
failure types. The assertion (occurrence) of the Warm Start
(WS) predicate in the data corresponds to the normal case
when the node under test detects the error (failure type 1).
The assertion of ML corresponds to a Message Loss (failure
type 2); this behavior is not a fail silence violation because
no erroneous data is sent, but it cannot be regarded as
normal operation. Irrespective of the other events, the
assertion of a Message Mismatch (MM) (failure type 3)
corresponds to a fail silence violation (in the data domain).
There are two ways in which a System Failure (SF) may
occur: 1) A fail silence violation in the time domain (failure
type 4) affects the operation of the other nodes, or 2) another
node than NUT experiences a real hardware failure during
the experiments. Although, no SF-type failures were
observed in the conducted experiments, this failure event
is described for the sake of completeness.

Given these failure types, the number of fail silence (FS)
violations can be counted as:

#FS Viol: ¼ #Exp: MMþ#Exp: SF;

where # Exp. X counts the number of experiments where an
X-type failure was diagnosed (i.e., predicate X was
asserted).

4 THE FAULT INJECTION TECHNIQUES

In this section, we briefly present the main features of the
four fault injection techniques applied for the experimental
assessment of the MARS system.

4.1 Heavy-Ion Radiation

The fault injection experiments with heavy-ion radiation
(HI, for short) were carried out at Chalmers University of
Technology in Göteborg, Sweden. Heavy-ion radiation from
a Californium-252 source can be used to inject single event
upsets, i.e., bit-flips at internal locations in integrated
circuits (ICs) using a miniature vacuum chamber. Fig. 3
depicts the cross-sectional view of the miniature vacuum
chamber. The pins of the target IC are extended through the
bottom plate of the vacuum chamber so that the chamber
with the circuit can be directly plugged into the socket of
the circuit under test. The vacuum chamber contains an
electrically controlled shutter, which is used to shield the
circuit under test from radiation during bootstrapping.

A major feature of the heavy-ion fault injection technique
is that faults can be injected into VLSI circuits at locations
which are difficult (and mostly impossible) to reach by
other techniques. The transient faults produced are also
reasonably well spread at random locations within an IC as
there are many sensitive memory elements in most VLSI
circuits. As device feature sizes of integrated circuits are
shrinking, radiation induced bit-flips, also known as soft
errors, are becoming an increasingly important source of

ARLAT ET AL.: COMPARISON OF PHYSICAL AND SOFTWARE-IMPLEMENTED FAULT INJECTION TECHNIQUES 1119

TABLE 1
The Basic Predicates

Fig. 3. Cross-sectional view of the miniature vacuum chamber.

failures in computer systems, e.g., see [36], [37]. While soft
errors are caused mainly by heavy ions in space, at ground
level and airplane flight altitudes, they are instead caused
by atmospheric neutrons [38].

Although the heavy-ions emitted from Cf-252 do not
provide a perfect imitation of the impact of either heavy
ions in space or neutron radiation on earth (e.g., with
respect to the ratio between multiple and single bit upsets),
the method provides a practical approach to evaluating the
effectiveness of error detection and recovery mechanisms
with respect to soft errors. Exposing circuits to neutron
radiation is less practical since it involves placing the tested
system in a room with concrete shielding [39].

For the 68070 CPU, the heavy-ions from Cf-252 mainly
provoke single bit upsets; the percentage of multiple bit
errors induced in the main registers was found to be less
than 1 percent in the experiments reported in [40]. The
heavy-ion method has been previously used to evaluate
several hardware and software-implemented error detec-
tion mechanisms for the MC6809E microprocessor. A
comprehensive description of these experiments using the
heavy-ion fault injection technique is given in [2].

4.2 Pin-Level Injection

Pin-level fault injection, i.e., the injection of faults directly
on the pins of the ICs of a prototype, probably was the most
widely applied physical fault injection technique. Some
flexible tools supporting general features have been devel-
oped (e.g., see the test facility used on the MAFT system
[41], MESSALINE [1], RIFLE [42], or AFIT [43]).

The experiments with the pin-level fault injection
technique were conducted at LAAS-CNRS, in Toulouse,
France, using MESSALINE. Fig. 4 depicts the principle of
the pin-forcing technique (PF, for short) that was used. In
the case of pin-forcing, the injected fault is directly applied
on the pin(s) of the target IC.

It is noteworthy that the pins of the ICs connected, by
means of an equipotential line, to an injected pin are faulted
as well. Accordingly, to simplify the accessibility to the pins
of the microprocessor, the target ICs were mainly the buffer
ICs directly connected to it. The supported fault models
include temporary stuck-at faults affecting single or multi-
ple pins. Indeed, temporary faults injected on the pins of the
ICs can simulate the consequences of internal faults on the
pins of the faulted IC(s).

The tool already contributed to the experimental assess-
ment of two fault-tolerant systems: 1) for testing the
diagnosis features of a computerized railway interlocking
system and 2) for evaluating the fail silence property of the
Delta-4 fault-tolerant architecture [1], [30].

4.3 Electromagnetic Interferences

Electromagnetic interferences (EI) are common distur-

bances in automotive vehicles, trains, airplanes, or indus-

trial plants. Such a technique is widely used to stress digital

equipment.
The EI experiments were carried out at the Technical

University of Vienna, Austria. Thanks to the use of a

commercial burst generator, this technique is easy to

implement. Two different forms of application of this

technique were considered (Fig. 5).
In the first form, the single computer boardof theNUTwas

mounted between two metal plates connected to the burst

generator. In this way, the entire node was affected by the

generated bursts. Because the Ethernet transceivers turned

out to bemore sensitive to the bursts than the node under test

itself, a second configurationwas set upwhich used a special

probe that was directly placed on top of the target circuit. In

this way, the generated bursts affected only the target circuit

(and some other circuits located near the probe).

4.4 Software-Implemented Fault Injection

Software-implemented fault injection (SWIFI) provides a

low cost and easy-to-control alternative to the three physical

fault injection techniques previously described that require

special hardware instrumentation and interfaces to the

target system. SWIFI is usually achieved by changing the

contents of memory or registers based on specified fault

models to emulate the consequences of hardware faults or

to inject software faults (e.g., see [9]).
For these experiments, an alternative approach was

selected that injected the faults at preruntime at the machine

code level and loaded the mutilated application (code

segment or data segment) to the target system afterward.

Three main reasons led us to select such an approach [28]:

1. The intrusiveness is reduced to a minimum since
faults are injected only into the application software
(no additional code, which could probably alter the
behavior of the application software, is needed, i.e.,
fault injection is transparent to the application),

2. Fault injection at the machine code level is capable
of injecting faults which cannot be injected at
higher levels by using source code mutations (e.g.,
see [44], [45]).

3. Preruntime injection smoothly integrates with the
application development process because applica-
tions are developed, configured, allocated, and
scheduled offline on a host computer and loaded
onto the target system afterward.

SWIFI experiments started at the Vienna University of

Technology, Austria, and continued at the Research and

1120 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 9, SEPTEMBER 2003

Fig. 4. Principle of pin-forcing fault injection.

Fig. 5. Application of electromagnetic interferences.

Technology Institute of Daimler Benz AG (now Daimler-

Chrysler) in Berlin, Germany [46].
The way the fault injection experiments are conducted

differs slightly from the �FI experiments for which faults

are injected until the injected node (NUT) fails. Indeed, this

is not a feasible solution for SWIFI: Faults are likely to be

overwritten before being activated or to be injected at

locations that are not executed. In such cases, the NUT

would continue operation infinitely. Accordingly, a time-

out mechanism has been implemented in order to shut

down the NUT after a prespecified time interval.

5 RESULTS OBTAINED WITH EACH FAULT

INJECTION TECHNIQUE

Three combinations of the end-to-end EDMs were used for

the four fault injection techniques considered, which led to

the following three experimental configurations (see also

Table 2):

. NOAM: no application level mechanisms, i.e., single
execution and no checksums,

. SEMC: single execution, message checksums,

. DEMC: double execution, message checksums.

In addition, a fourth configuration TEMC (triple execution,

message checksums) was used in the heavy-ion experi-

ments (see Section 5.1).
In the following paragraphs, we present in sequence the

results obtained by the application of each technique. Then,

these results are discussed in a subsequent paragraph.

These results are further analyzed in the next section to

support the analysis of the fault injection techniques. For

the sake of readability of the results, Table 3 provides an

overview of the acronyms and entries found in the
subsequent result tables.

5.1 Heavy-Ion Radiation

Two circuits in the NUT were irradiated in separate
experiments: the CPU of the application unit and the CPU
of the communication unit. Because the irradiated ICs were
CMOS circuits, they had to be protected from heavy-ion
induced latch-up.4 The triggering of a latch-up is indicated
by a drastic increase in the current drawn by the circuit. To
prevent latch-ups from causing permanent damage to the
ICs, a special device was used to turn off the power to the
ICs when the current exceeded a threshold value.

Table 4 shows the distribution of error detections among
the various EDMs for each of the irradiated CPUs, and the
four combinations given in Table 2 (see also for the
explanations of the entries). Table 4a gathers the results for
the unit that contained the fault injected circuit. Table 4b
complements these resultswith the error data reportedby the
other (fault free) unit of the NUT; these data detail the
percentage reported by the “Other unit” category of Table 4a.

The hardware EDMs, in particular the CPU mechanisms,
detected most of the errors. This is not surprising since the
faults were injected into the CPU. The proportion of errors
detected by the hardware EDMs is larger for faults injected
into the communication CPU than for faults injected into
the application CPU. In particular, the coverage of the NMI
EDMs is higher in the former case. Unexpected exceptions
occur with a frequency of about 15 percent in all
combinations.

ARLAT ET AL.: COMPARISON OF PHYSICAL AND SOFTWARE-IMPLEMENTED FAULT INJECTION TECHNIQUES 1121

TABLE 2
Experimental Configurations

TABLE 3
Explanation of the Acronyms Used to Describe the Results

4. A latch-up is the triggering of a parasitic four layer switch (npnp or
pnpn) acting as a silicon controlled rectifer (SCR), which may destroy the
circuit due to excessive heat dissipation.

Errorsdetectedby theOperating System (OS)mechanisms
dominate the “System software” EDMs, while detection by
the message checksums dominate the “End-to-end” EDMs.

Percentages for fail silence violations were between
2.4 percent and 0.5 percent for the NOAM, SEMC, and
DEMC combinations when faults were injected into the
application CPU. As expected, the number of fail silence
violations is lower for SEMC than for NOAM and even
lower for DEMC. Moreover, when faults were injected into
the communication CPU, one single fail silence violation
was observed (for NOAM).

The percentage of fail silence violations (0.5 percent)
observed for the DEMC combination was unexpected. In
principle, all effects of transient faults should be masked by
the double execution of tasks. One hypothesis for explain-
ing these violations is that, despite the specific protection
device used, an undetected latch-up caused the same
incorrect result to be produced by both executions of the
control task. To further investigate this hypothesis, experi-
ments were carried out with the TEMC combination that
used a third time-redundant execution of the control task
which was provided with fixed input data for which the
results were known. This made it possible to detect errors
by comparing the produced results with the correct results.
This mechanism, which can be viewed as an online test
program, would detect any semipermanent fault such as the

one suggested by the latch-up hypothesis. The results show
that no fail silence violations occurred for the TEMC
combination. As Table 4a shows, 0.8 percent of the errors
were detected by the third execution of the control task.
This result comes in support of the latch-up hypothesis.
However, our experimental set-up does not provide
sufficient observability to fully prove the latch-up hypoth-
esis. In principle, the absence of fail silence violations could
also be an effect of the change of the software configuration
caused by the switch from DEMC to TEMC and the errors
detected by the third execution may have been caused by
regular transients. Verification of the latch-up hypothesis
would require the use of a logic analyzer so that the
program flow and behavior of the microprocessor could be
studied in detail.

The OS and NMI EDMs dominate the detections made
by the other unit of the NUT. The communication between
the two units is done via two FIFO buffers (see Fig. 1) and
nearly all of these detections are made by EDMs signaling
empty FIFO. (An empty FIFO can be detected both by the
executive software and the special NMI mechanism.)

5.2 Pin-Level Injection

The forcing technique was used for the experiments carried
out on the MARS system. The main characteristics of the
injected faults are listed hereafter:

1122 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 9, SEPTEMBER 2003

TABLE 4
Results for Heavy-Ion Radiation: (a) Detection by the EDMs of the Unit to Which the Faulted ICs Belong;

(b) Detection by the EDMs of the Other Unit (Detail of “Other Unit” in (a))

. One single IC was fault injected at a time (the
maximum number of pins faulted simultaneously—
i.e., the multiplicity of the fault—being limited to
mx ¼ 3),

. Uniform distribution over all combinations of mx
pins out of the n functional pins of the target IC was
used to select the mx faulted pins,

. Stuck-at-0 and -1 fault models (all 0-1 combinations
of mx pins were considered equally probable),

. To facilitate the comparison with the other techni-
ques, both transient and intermittent (series of
transients) faults were injected.

As a consequence of the application of the pin-forcing

technique, it can be confidently considered that all pins of

the ICs connected to an actually injected pin are equally

faulted. Accordingly, to simplify the accessibility to the pins

of the CPUs of the application and communication units,

the target ICs were mainly buffer ICs connected to them. As

a result, seven ICs (five on the application unit and two on

the communication unit) were tested. These tests resulted in

3,266 error reports.
Table 5 shows the distribution of the errors detected by

the various EDMs, together with their percentage of the

total number of errors observed in each experimental

configuration.

The results in Table 5a indicate a dominant proportion of

detections by the hardware EDMs (more than 90 percent on

the application unit side and 75 percent on the commu-

nication unit side). NMIs clearly dominate; however, in

addition to CPU exceptions, a significant number of UEEs

were also triggered. The difference between UEE and NMI

for the application and communication units can be

explained by the fact that not all ICs tested on the

application unit are directly connected to the processor. In

the “System software” category, the OS EDMs significantly

dominate. Concerning the “End-to-end” level, the “Check-

sum” detections significantly dominate: No detections were

triggered by the “Double execution” when this option was

enabled. Only a limited number of fail silence violations

were observed: two occurrences for the SEMC combination

when injecting on the application unit and one occurrence

for the NOAM combination when injection targeted the

communication unit.
Table 5b shows that NMI EDMs also dominate the

supplementary detections observed on the other unit. A

significant difference is observed between the results of

whether the injection affects the application unit or the

communication unit; this may indicate that a larger

proportion of errors was propagated to the application unit.

ARLAT ET AL.: COMPARISON OF PHYSICAL AND SOFTWARE-IMPLEMENTED FAULT INJECTION TECHNIQUES 1123

TABLE 5
Results for Pin-Forcing Injection: (a) Detection by the EDMs of the Unit to Which the Faulted ICs Belong;

(b) Detection by the EDMs of the Other Unit (Detail of “Other Unit” Entry in (a))

5.3 Electromagnetic Interferences

Various fault injection campaigns were carried out with a
variety of voltage levels, with negative or positive polarity
of the bursts, and with a burst-frequency of 2.5 kHz and
10 kHz. A total number of more than 17,000 errors were
observed during all campaigns conducted with the first
method, i.e., when the computer board of the node under
test was mounted between two plates, and more than 30,000
errors were observed using the special probe (see
Section 4.3). Most of the campaigns were conducted with
all application level EDMs enabled.

In the first campaign of Table 6 (identified as NOAM(1)),
faults were injected into the communication unit using the
two plates. Antenna wires were attached to the so-called
LO-EPROM in order to disturb the address bus and the
eight low order bits of the data bus. Bursts characterized by
a frequency of 2.5 kHz, negative polarity, and a voltage of
230 V were injected. The second campaign (SEMC(2)) used
the special probe, with antenna wires connected to the
LO-EPROM in the application unit. In this case, the bursts
were characterized by a frequency of 10 kHz, negative
polarity and a voltage of 300 V. Campaign number three
(DEMC(3)) used the two plates, the bursts had a frequency
of 2.5 kHz, negative polarity, and voltage of 230 V. The
wires were attached to the LO-EPROM of the application
unit. Campaigns 4 to 6 were only using the special probe for

coupling faults into the CPU of the application unit, i.e., the
probe was mounted on top of the CPU and no wires were
attached to any chip. The chosen frequency for the bursts
was 10 kHz and negative polarity was used for all these
experiments. We used a voltage of 290 V for campaigns 4
and 6, while a slightly higher voltage, 300 V, was used for
campaign 5.

Due to the large number of campaigns made, only
selected campaigns are presented in Table 6, which shows
the distribution of the errors detected by the various EDMs
as total numbers and as percentage. Table 6a shows the
errors detected by the unit where fault injection was
focused to; errors detected by the other unit of the NUT
are detailed in Table 6b.

Campaigns 1 and 2 show similar results, although focus
of fault injection was on different units of the NUT, the
communication unit for the first and the application unit for
the second. Most of the errors were detected by the
hardware EDMs, where the CPU EDMs clearly dominate.
For the “system software” EDMs, which only detected a
small fraction of the errors, the OS category dominates. The
relatively high amount of occurrences of the “No error
info.” category for campaign 1 partly results from the fact
that, for this campaign, no information about the errors
detected by the application unit is available because this is a
result from early experiments, where only the outputs of the

1124 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 9, SEPTEMBER 2003

TABLE 6
Results for Electromagnetic Interferences: (a) Detection by the EDMs of the Unit to Which the Faulted ICs Belong;

(b) Detection by the EDMs of the Other Unit (Detail of “Other Unit” Entry in (a))

unit under test were recorded and, therefore, all errors that
were detected by the application unit are counted as “No
error info.”.

A singular distribution of error reports was observed for
campaign 3. There, the system software EDMs (especially
OS) detected most of the errors. Most reports pointed out
that a message which was required by the application was
lost. Although both campaigns 1 and 3 used the “two metal
plates” technique, the observed results are quite different.
Conversely, while campaigns 1 and 2 had different EI
conditions, the results observed are very similar. This
observation and the unique feature of the results obtained
during campaign 3 led us to consider them suspiciously.
More generally, significantly different results were ob-
served for similar conditions, e.g., slight changes in voltage
levels. Thus, reproducibility appears to be problematic for
EI experiments.

For campaigns 4 to 6, almost all of the errors were
detected by the CPU EDMs. Only campaign 5 shows a small
amount of errors detected by other EDMs than hardware
EDMs. When looking at the results of campaigns 4 to 6 in
more detail, we discovered that almost all of the detected
errors were spurious interrupts detected by the CPU.
Spurious interrupts are interrupts signaled to the processor,
but the processor cannot find the source of the interrupt,
i.e., the device having raised the interrupt. This shows that
the interrupt lines of a processor are highly sensitive to EI.

For all campaigns, errors detected by the “Other unit”
were only detected by the NMI EDMs and by the OS EDMs.

5.4 Software-Implemented Fault Injection

Both the code and data segments of the rolling-ball applica-
tion software were targeted by the SWIFI technique.5 Within
each segment, the bit to be faulted was selected randomly to
achieve a uniform distribution over the whole segment. To
facilitate the comparison with the �FI techniques, we only
consider here the single bit-flip experiments because they

constitute a reasonable fault scenario for the comparisonwith
these techniques (e.g., heavy-ion radiation generates, to a
large extent, single bit-flips).

Table 7 shows the distribution of the errors detected by
the various EDMs, together with their percentage of the
total number of experiments observed in each experimental
configuration.

Three comments need to be made prior to analyzing
these results in detail:

1. The bit-flips affect the code and data segments that
are processed by the application unit, so the injection
implicitly focuses on the application unit. The fact
that the percentages observed for the “Other unit”
category (i.e., the error reports returned by the
communication unit) are almost negligible indicates
a limited propagation of the errors.

2. As opposed to �FI experiments, where the experi-
mental protocol prevented such occurrences,6 a
significant ratio of SWIFI experiments (up to
42 percent in the case of data segment injection)
led to nonsignificant experiments where no effect
could be observed (these are categorized as
“NoReply” in Table 7). Such a significant proportion
is a common finding in other reported work on SWIFI
(e.g., see [8], [9], [11], [16], [47]). While this proportion
is decreased in the case data segment injection when
application-level EDMs are enabled, the opposite
observation is made in the case of injection into the
code segment: This can be explained by the fact that
application-level EDMS are introducing additional
code for implementing the checks that result in an
increase in the number of potential unused areas.
Nevertheless, these results exemplify the real benefits
that one can expect from applying such EDMs to
protect with respect to data errors.

ARLAT ET AL.: COMPARISON OF PHYSICAL AND SOFTWARE-IMPLEMENTED FAULT INJECTION TECHNIQUES 1125

TABLE 7
Results for Software-Implemented Fault Injection

5. To carry out a fair comparison with the �FI experiments, only the
results obtained while executing the rolling ball application are considered
here (see [28] for more results on the SWIFI experiments).

6. Remember that the �FI fault injection experiments were carried out
until the NUT failed. This is not a feasible solution for SWIFI (e.g., faults can
be injected at locations that are not reached by the execution process or
errors can be overwritten before being propagated).

3. Another singular behavior was the intermittent
omission of application messages (“IM Loss” cate-
gory). Such a singular behavior was quite significant
in the case of data segment injection (14 percent)!
Analysis of the cause was traced to the mutilation of
the time-stamp information incorporated into the
end-to-end CRC (see [29] for more details).

The first observation is that the behaviors highly depend
on the type of segment targeted by fault injection. While the
proportion of hardware error detections dominates in the
case of code segment injection, this is no longer the case for
data segment injection experiments: On the contrary, end-
to-end EDMs significantly dominate. Moreover, especially
in the NOAM configuration, the type of hardware EDMs
exercised highly depend on the type of segment targeted by
fault injection: While CPU EDMs were exercised frequently
in the case of code segment injection, only UEEs have been
observed for data segment injection.

Another interesting difference between the target seg-
ments concerns the system software EDMs: Indeed, as
could be expected, these do not contribute (nearly at all) to
the detection in the case of data segment injection. Also,
occurrences of fail silence violations were significantly
higher for code segment injection. However, in both cases,
the utilization of end-to-end EDMs (especially, double
execution7) in addition to hardware and system software
EDMs proved useful to eliminate this risk.

5.5 Discussion

We synthesize here the results related to the evaluation of
the efficiency of the various EDMs implemented in the
MARS architecture. In particular, these results provide
objective insights to the designers in getting confidence in
the way the fail silence property of the computing nodes
has been achieved. The analysis focuses on the comple-
mentarity of the EDMs in contributing to the fail silence
property. The detailed analysis of the different erroneous
behaviors provoked by the fault injection techniques
considered is presented in Section 6.

Most �FI fault injection campaigns show that the
hardware EDMs significantly detect most of the errors.8

Conversely, the impact of hardware EDMs is much less
important in the case of the SWIFI experiments. Further-
more, the target segment (code or data) has a dramatic
impact on the type of mechanisms exercised (and thus on
the type of errors generated). Accordingly, these two
techniques will be considered separately in the analyses
carried out in Section 6.

A closer examination of the errors detected by the
hardware EDMs revealed that 5.0 percent, 11.6 percent, and
1.9 percent of the errors were detected by the time-slice
controller (TSC)—that is, triggering an NMI—for heavy-ion,
pin-forcing, and EI, respectively. Although no NMIs were
observed during the SWIFI experiments reported here, a

small number of NMIs generated by the time-slice con-
troller were observed during other experiments. No fail
silence violations in the time domain (see Section 5.4) were
observed during these experiments, thus demonstrating the
usefulness of this error detection mechanism.

The system software EDMs detected the second largest
amount of errors for all the �FI techniques. The imbalance
observed in the case of heavy-ion radiation between the OS
and CGRTA EDMs is amplified when using pin-forcing and
EI: Almost no detections by the CGRTAs were observed for
the two latter techniques. For SWIFI, on the contrary, the
CGRTA EDMs dominate, but the overall impact of the
system software EDMs is significantly reduced.

The application-level (end-to-end) EDMs detected the
smallest amount of errors for all �FI techniques. This is
opposite for the SWIFI technique. However, when these
were disabled, the fail silence coverage was significantly
reduced (particularly for heavy-ion radiation and SWIFI on
code segment), which shows the necessity of using these
mechanisms as well.

Another important outcome of the study concerned the
analysis of the impact of the various EDMs on the fail silence
property of a MARS node. The results shown for each
technique in the previous tables, where three configurations
involving, respectively, both (DEMC), only one (SEMC), or
none (NOAM) of the end-to-end EDMs are presented,
sustain the conviction that the end-to-end EDMs play a
dominant role (with respect to the other EDMs) in achieving
the fail silence property. To further check this view, a
specific series of experiments was carried out for HI and PF
for which the NMI EDMs were disabled. These experiments
focused essentially on the application unit processor. The
results can be summarized as follows: In both cases, almost
no fail silence violations were observed for the DEMC
configuration (with NMI disabled), while, as shown in
Tables 5 and 6, the NOAM configuration (with NMI
enabled) exhibited a significant number of fail silence
violations.

6 ANALYSIS OF THE FAULT INJECTION TECHNIQUES

This section provides a detailed study of the actual impact
of the fault injection techniques considered. Indeed, each set
of experiments carried out using a specific fault injection
technique can be considered as a kind of “benchmark” to
assess the relative effectiveness of the various EDMs. On
those grounds, the distribution of the sensitization among
the various EDMs and failure modes, as well as among the
error data observed for each experiment, constitute suitable
—albeit, indirect—means to identify the similarities and
differences of the error sets induced by the four injection
techniques considered.

If, when applying two techniques, the observed error sets
are nearly the same, then the technique that is the most
expensive or the most difficult to control may be substituted
by the other one. Conversely, if the error sets differ to a
large extent, the fault injection techniques may instead be
used to complement each other. Some insights on the
additional properties characterizing the fault injection
techniques considered are provided in Section 7.

1126 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 9, SEPTEMBER 2003

7. Note that each of the two task instances executed has its own code and
data segment. Therefore, injection of a single error in one of the task
instances is very likely to be detected (this was also confirmed by the
experiments consisting of multiple bit-flips [28]).

8. This is true for all �FI campaigns, except for EI campaign DEMC(3) in
Table 5. As already pointed out, this campaign exhibited results which were
drastically different from the other EI campaigns. Accordingly, this led us to
suspect it, so we prefer to exclude these results from subsequent analyses.

In the sequel, we revisit the results from Section 5 by

comparing the impact of the variation of the experimental

configuration (combining the end-to-end EDMs) on the

observation of fail silence violations, as well as of the three

levels of EDMs included in the NUT—namely, hardware,

system software, and end-to-end—for each injection tech-

nique. For the �FI techniques—heavy-ion (HI), pin forcing

(PF), and electromagnetic interferences (EI)—the error

reports concerning both the application unit and commu-

nication unit experiments have been merged. For SWIFI,

due to the notably different impact observed, we explicitly

distinguish the experiments targeting the segments of code

(SC) and data (SD). Furthermore, in the sequel, we focus the

analysis by considering only the actual error reports, i.e., the

“No Reply” category will be disregarded and the other

percentages are normalized accordingly. Also, the inter-

mittent “IMLoss” outcomes have been transferred to the

“Checksum” category (although some message losses were

observed, this misbehavior was eventually caught by this

error detection mechanism). More details on the results that

support this analysis can be found in [48] and [33], for the

�FI and SWIFI experiments, respectively.

6.1 Fail Silence Violations

Fig. 6 compares the impact of the fault injection techniques

for the different configurations of the end-to-end EDMs on

the observation of fail silence violations. As already pointed

out, the impact of the SWIFI technique depends strongly on

where the faults were injected in the rolling ball application

software: code (SC) or data (SD) segments. Injection in the

code segment generates significantly more fail silence

violations. Summarizing, SC appears to be more malicious

than the physical techniques both for the NOAM and SEMC

configurations, but HI is more stressful for the DEMC

configuration.

6.2 Hardware Error Detection Mechanisms

Fig. 7 compares the impact of the fault injection techniques on

the percentages of errors that activated the hardware EDMs.
In the NOAM case, all techniques provide a large ratio of

hardware error detection (more than 70 percent). Although

an important percentage of hardware detections is main-

tained for the �FI techniques (and, to some extent, for

SWIFI on the code segment), when the application-level

EDMs are enabled, the percentages observed are signifi-
cantly reduced for SD.

The significant difference observed for the two types of
faults injected by the software technique is worth noting.
For SC, this percentage is maintained above 60 percent,
while, for SD, it is reduced to less than 5 percent. This
suggests that the faults injected in the code segment
provoke, rather control flow errors that (to a large extent)
better simulate the consequences of hardware faults. The
SD experiments generate mainly data flow errors that are
different from the ones created by the other techniques.
Nevertheless, it is interesting to note that SD can provide a
rather high level of activation of the hardware EDMs in the
NOAM configuration, i.e., when the end-to-end mechan-
isms are inhibited. A closer examination of the results was
carried out. Table 8 summarizes some of the main
differences observed.

Concerning CPU EDMs, although, out of the eight
mechanisms supported, a different number of mechanisms
were activated, the same three mechanisms dominated (bus
error, address error, and illegal opcode) for all the fault
injection techniques. The number of NMI types and of their
combinations (i.e., the simultaneous occurrences of several
triggering events) vary significantly for the �FI techniques.9

The results indicate that PF may be more effective than the
other techniques in exercising hardware EDMs located
outside of the CPU chip. Moreover, the most frequent NMIs
observed differ: While “unavailable memory” significantly
dominates for HI (more than 60 percent), “memory parity”
dominates for PF and EI (more than 50 percent). Both PF
and EI also exhibited a significant proportion of NMIs
triggered by the TSC (more than 15 percent). The differ-
ences observed are further exemplified by the variations in
the number of different types of exceptions (including CPU-
related and NMI) activated during the various experiments,
out of the 255 possible exceptions. This is illustrated by
Fig. 8, which shows the distribution of the exceptions
observed for the three �FI techniques considered.

However, it is worth noting that, for EI, most of the
experiments exercised CPU EDMs (especially when using
the probe without antennas), which reveals the very
restricted spectrum of the type of errors generated by this
technique. However, the variation in the error set was

ARLAT ET AL.: COMPARISON OF PHYSICAL AND SOFTWARE-IMPLEMENTED FAULT INJECTION TECHNIQUES 1127

Fig. 6. Fail silence violations provoked. Fig. 7. Activation of the hardware EDMs.

9. As shown in Table 7, no NMIs were observed for the SWIFI
experiments reported here.

somewhat enhanced when the antennas were used (see
Table 6).

6.3 System Software Error Detection Mechanisms

Fig. 9 gathers the activations of the system software EDMs
induced by the injection techniques. First, it is worth noting
that whether the end-to-end EDMs are enabled or not has
no significant impact on these results. Besides, the results
show some differences ranging from 0.4 percent for EI
(SEMC)10 to 7.6 percent for HI (NOAM), the system
software mechanisms were the second largest EDM
activated by the �FI techniques.

For SWIFI, here again, the results observed for SC and
SD vary significantly: The percentages of activations
observed for SC (ranging from 4.6 to 6.5 percent) are
comparable with those corresponding to the �FI techni-
ques, while the percentages observed for SD are always less
than 0.1 percent. As already pointed out, another notable
difference is the fact that OS occurrences dominate for all
the �FI techniques while CGRTAs dominate for SC. A
closer look at these results identified the “internal FIFO
empty” as the far more frequently activated OS EDM for the
�FI experiments (more than 23 percent for HI and 8 percent
for PF and EI of OS occurrences). The assertions most often
violated during the SWIFI experiments are 1) the failure of
the range check for a variable (about 60 percent of CGRTA
occurrences) and 2) 32-bit multiplication overflow (more
than 30 percent).

6.4 End-to-End Error Detection Mechanisms

Fig. 10 depicts the results concerning the end-to-end EDMs.
The figure exhibits a very important difference between the
results obtained from �FI and SWIFI experiments. It is
highly likely that this difference can be attached to the
distinct fault/error models injected by the physical and
software injection techniques considered.

These results show and confirm that errors induced by
the �FI techniques are more prone to activate the hardware
and system software EDMs and, thus, a very limited
number of errors was perceived by the end-to-end EDMs
(less than 3.6 percent for HI, 0.5 percent for EI, and
0.2 percent for PF).

Conversely, the end-to-end mechanisms are actually
significant EDMs for SWIFI. Nevertheless, some interesting
differences could be observed between SC and SD:11

. SD provides the highest percentage (more than
95 percent), while SC features less than 25 percent,

. double execution significantly increases the detection
percentage for SC (from 12 percent to 24.3 percent).

The notable difference between SC and SD concerns the

percentage of error detections obtained either by the message

checksum or by the double execution check in the case of the

DEMC configuration (see also Table 7, for details). For SC,

double execution detects most errors (60 percent of end-to-

end detections), while, for SD, message checksum EDM

dominates (more than 70 percent). The explanation of this

last observation is that the message check is done at the start

of an application task, while the double execution check is

carried out only after the completion of the second task

instance and, thus, is likely to be dominated by message

checksum.

7 CHARACTERIZATION OF THE FAULT INJECTION

TECHNIQUES

We briefly comment in this section on some additional

important issues that also have to be taken into account

when selecting a fault injection technique. In addition to

fault representativeness (i.e., the plausibility of the supported

fault model with respect to actual faults) that is one concern

that is often raised in conjunction with fault injection

experiments and for which we provided some objective

insights in the previous section, a wide range of criteria can

be considered to assess the merits of the fault injection

techniques (e.g., see [3], [6], [9]). Without any claim of an

exhaustive analysis, we have considered the following eight

basic properties: reachability, controllability, with respect to

space and time, repeatability (with respect to experiments),

reproducibility (with respect to results), nonintrusiveness, the

possibility for time measurement (e.g., error detection

latency), and the efficacy to generate significant experiments.

1128 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 9, SEPTEMBER 2003

TABLE 8
Detailed Analysis of the Hardware EDMs Activated by the Injection Techniques

10. The 0 percent value shown in Table 6 for EI in the DEMC
configuration should preferably be ignored (see Section 5.5 and the
comment in footnote 8).

11. Remember that the figures considered in this section for SWIFI were
normalized after discarding the “No Reply” category shown in Table 7.

Fig. 8. Distribution of exceptions provoked by the HI, PF, and EI

techniques.

A characterization of the considered fault injection
techniques based on these eight basic properties is shown
in Table 9 and explained hereafter. For each property, the
techniques are graded on the scale none, low, medium, and
high. It is worth noting that, although it is quite generic in
scope, this analysis also builds upon insights gained during
the experiments carried out on the MARS system. Note
again that this characterization is meant to complement the
analysis of the impact of the injected faults, i.e., the errors
that are produced. Finally, it is worth pointing out that such
a study is mainly a relative issue; accordingly, grading is
very dependent of the set of techniques being assessed;
indeed, different grading could be obtained should other
techniques be considered.

7.1 Reachability

We consider the reachability property attached to a fault
injection technique to be defined as the ability to reach
possible fault locations in the ICs that implement the target
system.

From that perspective, heavy-ion radiation definitely
surpasses the other techniques as faults are actually injected
directly at the level of the physical devices that constitute
the irradiated circuit.

In the experiments conducted, pin-level fault injection
was focused on the digital input/output signals. Accord-
ingly, the corruption of data at the level of internal devices
is only indirect. This is why pin-level injection has been
rated with medium reachability (IC pins are targeted, but
injection cannot be focused on internal devices). Never-
theless, varying reachability is obtained depending on the

level of integration for the target system: It is definitely
much lower for highly integrated systems.

When using antennas, EI has similar physical reach-
ability as pin-level injection as most faults probably are
injected via the digital input/output signals. However,
faults may also impact internally the ICs as a result of
disturbances propagated through the power supply lines.

SWIFI at preruntime directly corrupts the information
(code or data) that will be stored in memory devices. Still, as
opposed to runtime techniques (e.g., see [9]), this technique
cannot specifically target the lower hardware layers (e.g.,
processor registers). Also, the injection targets are limited to
information explicitly processed by the software layers of
the computing system. Also, it provides low reachability
with respect to peripheral ICs. This is why the technique
was graded “low to medium” with respect to this property.

7.2 Controllability

In this section, we consider controllability with respect to
both the space and time domains. The space domain relates
to the ability to control which of the reachable fault
locations are actually injected. The time domain corre-
sponds to controlling the instant when faults are injected.

Heavy-ion radiation has low controllability for the space
domain. In practice, faults could be confined to specific
blocks of a circuit if the rest of the circuit is shielded.
However, shielding was not used in this study. The time of
the injection of a fault cannot be controlled as the decay of
the Cf-252 source is governed by a random process.

Pin-level fault injection features good controllability in the
space domain. Indeed, selected ICs and pins can be targeted.
Basically, some extent of time domain controllability can be
achieved. Nevertheless, it may be hampered by the
problem of synchronizing the fault injection with the

ARLAT ET AL.: COMPARISON OF PHYSICAL AND SOFTWARE-IMPLEMENTED FAULT INJECTION TECHNIQUES 1129

Fig. 9. Activation of the system software EDMs.

Fig. 10. Activation of the end-to-end EDMs.

TABLE 9
Properties of the Fault Injection Techniques Used

activity of the system, especially when the clock frequency
of the target system is high. Actually, controllability is
very much dependent upon the level of integration and
clock speed of the target system. For the MARS system,
which uses a mix of VLSI, LSI, MSI, and SSI circuits and
moderate clock speeds, controllability was, in fact, high.
Nevertheless, high integration levels and high clock speed
are the major limitations for the use of such a technique in
modern digital system designs.

Electromagnetic interferences feature low controllability
in the space domain because faults may be injected in
circuits surrounding the target circuit. The time of injection
can (to some extent) be synchronized with system activity,
but it is difficult to determine exactly when a fault is
injected.

SWIFI at preruntime procures a very high level of
controllability as it can focus selectively on specific code
and data segments. However, injection is limited to
information processed by the software layers of the
computing system. It is also worth pointing out that it
procures less time-domain controllability than runtime
techniques; accordingly, it was graded “medium to high”
with respect to this property.

7.3 Repeatability

Repeatability refers to the ability to repeat experiments
exactly or with a very high degree of accuracy. This
property is highly desirable, particularly when the aim of
the experiments is to remove potential design/implementa-
tions faults in the fault tolerance mechanisms (e.g., see [5]).
Repeatability requires a high degree of controllability in
both the space and the time domains.

Preruntime SWIFI achieves a very high level of repeat-
ability. Basically, the time-triggered architecture of MARS
made it possible to carry out a deterministic series of
experiments.

For pin-level injection, it is possible to accurately repro-
duce the injection of a selected fault with MESSALINE. Still,
due to limited synchronization capabilities, this does not
necessarily imply that the errors being provoked are the
same. Such a difficulty in reproducing an experiment is even
more stringent in the case of a distributed architecture
because of the problem associated with controlling and
synchronizing the activities inmultiple computers.However,
the time-triggered architecture of the MARS system greatly
facilitated such a synchronization.

Repeatability is very low, or nonexistent, for electro-
magnetic interferences and heavy-ion injection due to low
controllability.

7.4 Reproducibility

Reproducibility refers to the ability to reproduce results
statistically for a given set-up. Reproducibility of results is
an absolute requirement to ensure the credibility of fault
injection experiments. Repeatability normally implies re-
producibility; if we can control an experiment exactly, then
it is always possible to also reproduce the results. However,
reproducibility can be achieved without repeatability.

The experiments conducted in this study showed that
heavy-ion radiation produces results that are statistically
reproducible amongdifferent specimensof the target circuits.

However, the lessons learned from this study also show that
statistical reproducibility is difficult to obtain for the
electromagnetic interferences experiments (see Section 5.3).

7.5 Nonintrusiveness

This relates to the property of avoiding or minimizing any
undesired impact of fault injection on the behavior of the
target system. The heavy-ion radiation technique has low
nonintrusiveness since the target IC has to be removed from
the main board and inserted into a vacuum chamber. This
may cause unexpected delays in the data paths of the
associated logical signals.

This problem is significantly lower when using the pin-
forcing technique.12Nevertheless, even in the case of forcing,
the extra load capacitances on the targeted logical signals that
are introduced by the connection of the injection probes may
also alter the timing characteristics. The nonintrusiveness is
therefore graded a medium for pin-forcing.

The EI technique with the probe features high nonintru-
siveness since no physical connection is required between
the probe and target IC, although there may be difficulties
attached to actually focusing the injection to a specific IC.

As opposed to most runtime SWIFI techniques (e.g., see
[8], [9], [11]), the preruntime SWIFI technique used here
features minimal intrusiveness.

7.6 Time Measurement

The acquisition of timing information associated to the
monitored events (e.g., measurement of error detection
latency) is an important outcome from fault injection
experiments (e.g., see [49]).

For heavy-ion radiation, such measurements rely on the
use of the golden chip technique [2]. This requires the target
IC to be operated synchronously with a reference IC.
However, this may not be possible for ICs with nondeter-
ministic external behavior (caused, for example, by a
varying number of wait states cycles inserted during
memory accesses). This technique could not be used in
the experiments reported earlier.

For pin-level injection, the time of the injection of a fault
(and activation of this fault as an error) can be explicitly
known, thus, latency measurements does not pose a
problem [1].

For EI, latency measurements are difficult. In principle,
the golden chip technique could also be used in this case,
but it may be difficult to confine the disturbances to the
target IC only.

Basically, in preruntime SWIFI, the fault is being
activated when the flipped (code or data) word is accessed.
Accordingly, trace analysis can be used to relate this event
with the error detections in order to make timing measure-
ments such as error detection latency. However, this
requires an extensive data log and, possibly, a tedious
analysis. This was not considered in the experiments
carried out on the MARS system.

Due to the inherent difficulties described above for all
techniques (pin-level injection, excepted), no timing

1130 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 9, SEPTEMBER 2003

12. One should note that the same form of intrusiveness would apply to
pin-level injection when the insertion technique is used (in that case, the IC
under test is removed from the target system and solid-state switches
ensure its proper isolation from the rest of the system).

measurements were made for the experiments conducted
on the MARS system.

7.7 Efficacy

The type of efficacy considered here concerns the testing
power offered by the techniques, i.e., their ability to
produce a limited number of nonsignificant experiments.
A nonsignificant experiment occurs, for example, when a
fault is injected into a hardware or software component
which is not accessed or used by the workload executed
during the experiment.

As shown in several previous studies, (e.g., see [1], [2],
[43]), high efficacy is rather easy to achieve by �FI
techniques. The key issue is to adjust the amplitude,
duration, or intensity of the physical interferences to an
appropriate level. This was also confirmed by the experi-
ments carried out on the MARS system. Indeed, it was easy
to devise an experimental protocol ensuring that all �FI
experiments result in significant experiments leading to
actual, albeit possibly empty, error reports.

Conversely, as it focuses on specific information stored
in the memory, the SWIFI technique is very prone to
generating nonsignificant experiments. The reason for this
is that random injections into the code or data segment
generate many errors that either become overwritten or
remain latent throughout the experiment. As already
pointed out in Section 5.4, this concern is reported in many
other related studies and was observed also in the
experiments conducted on MARS. Furthermore, as one
could anticipate, the efficacy of the preruntime technique
used here highly depends on the memory segment targeted
(either code or data) and also varies according to the type of
EDMs that are actually enabled.

The efficacy of SWIFI techniques could be improved by
conducting preinjection analysis that determine which parts
of the software (variables, constants, subroutines, etc.) are
sensitive to fault injection. Examples of research in this
direction can be found in [17] and [50].

8 CONCLUSION

This paper summarized the study concerning the analysis
of the impact of four fault injection techniques that was
deduced from the controlled experiments carried out on
the MARS architecture. Three physical fault injection
techniques—heavy-ion radiation, pin-forcing, and electro-
magnetic interferences—and preruntime software-imple-
mented fault injection (SWIFI) were applied using the
same hardware/software set-up.

First, it is worth pointing out that these extensive sets of
experiments significantly contributed to getting confidence
in the ability of the MARS nodes to implement the “fail
silence” property. It was shown that, beyond the hardware
and system software error detection mechanisms (EDMs),
the application-level (end-o-end) EDMs are necessary for
achieving a very high coverage on the fail silence assump-
tion. Indeed, although the time-slice controller effectively
prevents fail silence violations in the time domain, fail
silence violations in the value domain were observed for all
four injection techniques when double execution of tasks
was not used.

The other major outcome from the work that is reported
in this paper concerns the comparative analysis of the fault

injection techniques considered. We proposed a detailed
study of the impact of the fault injection techniques on the
basis of the way they activated the various EDMs of the
MARS architecture and also of the failure modes observed.
This analysis showed that the four injection techniques are
rather complementary, i.e., they generate, to a large extent,
different types of errors.

In addition to this analysis, we also identified some basic
properties (e.g., reachability, repeatability, controllability,
etc.) that characterize the application of the fault injection
techniques as a complement to support the decision to
select a technique. Pin-forcing and software injection offer
the highest degree of controllability and repeatability, while
heavy-ion radiation features better reachability.

The results also showed that software injection using a
simple bit-flip fault model is able to generate a similar error
set as the physical techniques. In particular, injection in the
code segment of the executed task was able to create a
similar ratio of errors activating the hardware mechanisms.
However, it was found that software injection in the data
segment did not provoke the same type of errors as those
induced by physical techniques.

As the errors provoked are seldom detected by the
hardware mechanisms—in particular, no Non-Maskable
Interrupts (NMIs) were reported—and by the message
checksum, the errors resulting from the software injections
in the code segment generate a significantly higher number of
fail silence violations for the single execution configurations.
Although double execution contributed to procuring a
perfect coverage of the fail silence assumption for the other
techniques, heavy-ion was still found stressful in the case of
double execution. One likely explanation could be traced to
the singular type of failure (latch-up) caused by heavy-ion.
Still, this might also suggest that, although it proved to be
actually virulent, the single bit-flip fault model is not fully
adequate for the simulation of internal faults generated by
heavy-ions and, hence, software injection could require the
utilization of a more malicious fault model. More controlled
experiments would be needed to get further insights.

Another issue worth commenting on is how the results
of the heavy-ion method scale with the shrinking feature
sizes of VLSI technology. As demonstrated in [40],
approximately 99 percent of the upsets induced by heavy-
ions in the 68070 CPU affect only a single bit. More recent
processors are expected to be more sensitive to ionizing
particles due to the reduction of the feature sizes. As
indicated earlier in the paper, neutron radiation is the main
cause of soft errors at ground level. Recent research (e.g.,
see [51]) indicates that neutrons primarily induce single bit
upsets in contemporary VLSI technologies. We therefore
believe that the results presented in this paper provide an
interesting point of reference also for time-triggered real-
time systems implemented with the most recent circuit
technology (e.g., see [52]). However, more research is
needed to investigate the representativeness of the Cf-252
method with respect to neutron induced soft errors for
different circuit technologies.

Due to its attractive features (including high controll-
ability and repeatability, as well as cost-effectiveness),
software-implemented fault injection appears today as the
preferred (and, most of the time, only) approach chosen to
support a pragmatic analysis of fault-tolerant computing
systems and designs. Still, as was clearly shown in our
analysis, preruntime SWIFI can be ill suited to exercising
error detection mechanisms implemented at the hardware

ARLAT ET AL.: COMPARISON OF PHYSICAL AND SOFTWARE-IMPLEMENTED FAULT INJECTION TECHNIQUES 1131

layer (e.g., none of the “NMI mechanisms” were activated
by the SWIFI technique). Accordingly, from the results we
have obtained that revealed the positive impact of the end-
to-end mechanisms, one could be tempted to question the
usefulness of including hardware error detection mechan-
isms at all. Such an assessment cannot be totally inferred
from the results we obtained: This would necessitate
running more experiments with hardware EDMs inhibited
(besides those already conducted with NMI EDMs dis-
abled) to be in position to assert such a statement. Another
useful dimension that we could not explore in this study
concerns the dynamic behavior of the system in the
presence of faults. Indeed, as was shown in several studies
(e.g., see [49]), fault tolerance coverage is actually a time-
dependent distribution: Besides static coverage figures (the
so-called coverage factor), the dependability of computer
systems relies heavily on the response time (e.g., error
detection latency). Besides providing valuable entries for
supporting the dependability evaluation of the target fault-
tolerant computer system (MARS in this case), the avail-
ability of timing measurements would have significantly
enhanced the assessment of the considered fault injection
techniques. In particular, it is highly likely that the errors
activating the hardware error detection mechanism would
exhibit much lower latencies than those being observed at
the level of the software-implemented mechanisms.

ACKNOWLEDGMENTS

This work was partially supported by ESPRIT Project no.
6362: PredictablyDependableComputing Systems (PDCS-2).
The authors would like to thank Professor Hermann Kopetz,
the leading architect of the MARS system, for his continuing
support and many valuable suggestions during this study.
They also thank Dr. Jean-Claude Laprie for his inspiring
comments concerning the analysis of the fault injection
techniques. The anonymous reviewers are also gratefully
acknowledged for the constructive comments made on an
earlier version of the manuscript that greatly contributed to
improving this paper.

REFERENCES

[1] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie,
E. Martins, and D. Powell, “Fault Injection for Dependability
Validation—A Methodology and Some Applications,” IEEE Trans.
Software Eng., vol. 16, no. 2, pp. 166-182, Feb. 1990.

[2] J. Karlsson, P. Lidén, P. Dahlgren, R. Johansson, and U. Gunneflo,
“Using Heavy-Ion Radiation to Validate Fault-Handling Mechan-
isms,” IEEE Micro, vol. 14, no. 1, pp. 8-23, Feb. 1994.

[3] M.-C. Hsueh, T.K. Tsai, and R.K. Iyer, “Fault Injection Techniques
and Tools,” Computer, vol. 30, no. 4, pp. 75-82, Apr. 1997.

[4] J.V. Carreira, D. Costa, and J.G. Silva, “Fault Injection Spot-Checks
Computer System Dependability,” IEEE Spectrum, vol. 36, pp. 50-
55, Aug. 1999.

[5] J. Arlat, J. Boué, and Y. Crouzet, “Validation-Based Development
of Dependable Systems,” IEEE Micro, vol. 19, no. 4, pp. 66-79,
July/Aug. 1999.

[6] J. Arlat, “Fault Injection for the Experimental Validation of Fault-
Tolerant Systems,” Proc. Workshop Fault-Tolerant Systems, pp. 33-
40, 1992.

[7] J.H. Barton, E.W. Czeck, Z.Z. Segall, and D.P. Siewiorek, “Fault
Injection Experiments Using FIAT,” IEEE Trans. Computers, vol. 39,
no. 4, pp. 575-582, Apr. 1990.

[8] G.A. Kanawati, N.A. Kanawati, and J.A. Abraham, “FERRARI: A
Flexible Software-Based Fault and Error Injection System,” IEEE
Trans. Computers, vol. 44, no. 2, pp. 248-260, Feb. 1995.

[9] J. Carreira, H. Madeira, and J.G. Silva, “Xception: A Technique for
the Experimental Evaluation of Dependability in Modern Com-
puters,” IEEE Trans. Software Eng., vol. 24, no. 2, pp. 125-136, Feb.
1998.

[10] D.T. Stott, G. Ries, M.-C. Hsueh, and R.K. Iyer, “Dependability
Analysis of a High-Speed Network Using Software-Implemented
Fault Injection and Simulated Fault Injection,” IEEE Trans.
Computers, vol. 47, no. 1, pp. 108-119, Jan. 1998.

[11] J. Arlat, J.-C. Fabre, M. Rodrı́guez, and F. Salles, “Dependability of
COTSMicrokernel-Based Systems,” IEEE Trans. Computers, vol. 51,
no. 2, pp. 138-163, Feb. 2002.

[12] H. Madeira, D. Costa, and M. Vieira, “On the Emulation of
Software Faults by Software Fault Injection,” Proc. Int’l Conf.
Dependable Systems and Networks (DSN-2000), pp. 417-426, 2000.

[13] R. Chillarege and N.S. Bowen, “Understanding Large System
Failures—A Fault Injection Experiment,” Proc. 19th Int’l Symp.
Fault-Tolerant Computing (FTCS-19), pp. 356-363, 1989.

[14] M. Daran and P. Thévenod-Fosse, “Software Error Analysis: A
Real Case Study Involving Real Faults and Mutations,” Proc. Int’l
Symp. Software Testing and Analysis (ISSTA ’96), pp. 158-171, 1996.

[15] A. Mukherjee and D.P. Siewiorek, “Measuring Software Depend-
ability by Robustness Benchmarking,” IEEE Trans. Software Eng.,
vol. 23, no. 6, pp. 366-378, June 1997.

[16] P. Koopman and J. DeVale, “Comparing the Robustness of POSIX
Operating Systems,” Proc. 29th Int’l Symp. Fault-Tolerant Comput-
ing (FTCS-29), pp. 30-37, 1999.

[17] J. Güthoff and V. Sieh, “Combining Software-Implemented and
Simulation-Based Fault Injection into a Single Fault Injection
Method,” Proc. 25th Int’l Symp. Fault-Tolerant Computing (FTCS-
25), pp. 196-206, 1995.

[18] C.R. Yount and D.P. Siewiorek, “A Methodology for the Rapid
Injection of Transient Hardware Errors,” IEEE Trans. Computers,
vol. 45, no. 8, pp. 881-891, Aug. 1996.

[19] J. Christmansson, M. Hiller, and M. Rimén, “An Experimental
Comparison of Fault and Error Injection,” Proc. Ninth Int’l Symp.
Software Reliability Eng., (ISSRE ’98), pp. 369-378, 1998.

[20] P. Folkesson, S. Svensson, and J. Karlsson, “A Comparison of
Simulation Based and Scan Chain Implemented Fault Injection,”
Proc. 28th Int’l Symp. Fault-Tolerant Computing (FTCS-28), pp. 284-
293, 1998.

[21] Z. Kalbarczyk, G. Ries, M.S. Lee, Y. Xiao, J. Patel, and R.K. Iyer,
“Hierarchical Approach to Accurate Fault Modeling for System
Evaluation,” Proc. Int’l Computer Performance and Dependability
Symp. (IPDS ’98), pp. 249-258, 1998.

[22] C. Constantinescu, “Assessing Error Detection Coverage by
Simulated Fault Injection,” Proc. Third European Dependable
Computing Conf. (EDCC-3), pp. 161-170, 1999.

[23] J.L. Aidemark, J.P. Vinter, P. Folkesson, and J. Karlsson, “GOOFI:
A Generic Fault Injection Tool,” Proc. 2001 Int’l Conf. Dependable
Systems and Networks (DSN-2001), pp. 83-88, 2001.

[24] J. Reisinger, A. Steininger, and G. Leber, “The PDCS Implementa-
tion of MARS Hardware and Software,” Predictably Dependable
Computing Systems, B. Randell, J.-C. Laprie, H. Kopetz and
B. Littlewood, eds., pp. 209-224, Berlin: Springer, 1995.

[25] H. Kopetz and G. Bauer, “The Time-Triggered Architecture,” Proc.
IEEE, vol. 91, no. 1, pp. 112-126, Jan. 2003.

[26] D. Powell, “Failure Mode Assumptions and Assumption Cover-
age,” Proc. 22nd Int’l Symp. Fault-Tolerant Computing (FTCS-22),
pp. 386-395, 1992.

[27] J. Karlsson, P. Folkesson, J. Arlat, Y. Crouzet, G. Leber, and J.
Reisinger, “Application of Three Physical Fault Injection Techni-
ques to the Experimental Assessment of the MARS Architecture,”
Dependable Computing for Critical Applications (Proc. Fifth IFIP
Working Conf. Dependable Computing for Critical Applications:
DCCA-5), R.K. Iyer, M. Morganti, W.K. Fuchs and V. Gligor,
eds., pp. 267-287, 1998.

[28] E. Fuchs, “An Evaluation of the Error Detection Mechanisms in
MARS Using Software-Implemented Fault Injection,” Proc. Second
European Dependable Computing Conf. (EDCC-2), pp. 73-90, 1996.

[29] E. Fuchs, “Validating the Fail-Silence of the MARS Architecture,”
Dependable Computing for Critical Applications (Proc. Sixth IFIP Int’l
Working Confer. Dependable Computing for Critical Applications:
DCCA-6), M. Dal Cin, C. Meadows and W.H. Sanders, eds.,
pp. 225-247, 1998.

[30] D. Powell, “Distributed Fault-Tolerance—Lessons from Delta-4,”
IEEE Micro, vol. 14, no. 1, pp. 36-47, Feb. 1994.

1132 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 9, SEPTEMBER 2003

[31] Philips Semiconductors, SCC68070 User Manual 1991, Part 1—
Hardware, 1992.

[32] A. Vrchoticky, “Modula/R Language Definition,” Technical
Report no. 2/92, Institut für Technische Informatik, Technische
Universität Wien, 1992.

[33] H. Kopetz, P. Holzer, G. Leber, and M. Schindler, “The Rolling
Ball on MARS,” Research Report no. 13/91, Vienna Univ. of
Technology, 1991.

[34] S. Poledna, A. Burns, A. Wellings, and P. Barrett, “Replica
Determinism and Flexible Scheduling in Hard Real-Time Depend-
able Systems,” IEEE Trans. Computers, vol. 49, no. 2, pp. 100-111,
Feb. 2000.

[35] H. Kopetz, G. Grünsteidl, and J. Reisinger, “Fault-Tolerant
Membership in a Synchronous Distributed Real-Time System,”
Dependable Computing for Critical Applications, A. Avizienis and
J.-C. Laprie, eds., pp. 411-429, Vienna: Springer-Verlag, 1991.

[36] C. Constantinescu, “Impact of Deep Submicron Technology on
Dependability of VLSI Circuits,” Proc. Int’l Conf. Dependable
Systems and Networks (DSN-2002), pp. 205-209, 2002.

[37] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, and L. Alvisi,
“Modeling the Effect of Technology Trends on the Soft Error Rate
of Combinatorial Logic,” Proc. Int’l Conf. Dependable Systems and
Networks (DSN-2002), pp. 389-398, 2002.

[38] E. Normand, “Single Event Upset at Ground Level,” IEEE Trans.
Nuclear Science, vol. 43, no. 6, pp. 2742-2750, Feb. 1996.

[39] P. Hazucha, “Background Radiation and Soft Errors in CMOS
Circuits,” doctoral dissertation, no. 638, Linköping Univ., Sweden,
2000.

[40] R. Johansson, “On Single Event Upset Error Manifestation,” Proc.
First European Dependable Computing Conf. (EDCC-1), pp. 217-231,
1994.

[41] C.J. Walter, “Evaluation and Design of an Ultra-Reliable Dis-
tributed Architecture for Fault Tolerance,” IEEE Trans. Reliability,
vol. 39, no. 4, pp. 492-499, Oct. 1990.

[42] H. Madeira, M. Rela, F. Moreira, and J.G. Silva, “RIFLE: A General
Purpose Pin-Level Fault Injector,” Proc. First European Dependable
Computing Conf. (EDCC-1), pp. 199-216, 1994.

[43] R.J. Martı́nez, P.J. Gil, G. Martı́n, C. Pérez, and J.J. Serrano,
“Experimental Validation of High-Speed Fault-Tolerant Systems
Using Physical Fault Injection,” Dependable Computing for Critical
Applications (Proc. Seventh IFIP Working Conf. Dependable Computing
for Critical Applications: DCCA-7), C.B. Weinstock and J. Rushby,
eds., pp. 249-265, Jan. 1999.

[44] Y. Crouzet, P. Thévenod-Fosse, and H. Waeselynck, “Validation of
Software Testing by Fault Injection: The SESAME Tool,” Proc. 11th
Conf. Reliability and Maintainability, pp. 551-559, 1998.

[45] J.M. Voas and G. McGraw, Software Fault Injection. New York:
Wiley Computer Publishing, 1998.

[46] E. Fuchs, “Sofware Implemented Fault Injection,” PhD disserta-
tion, Vienna Univ. of Technology, Austria, 1996.

[47] W.-L. Kao, R.K. Iyer, and D. Tang, “FINE: A Fault Injection and
Monitoring Environment for Tracing the UNIX System Behavior
under Faults,” IEEE Trans. Software Eng., vol. 19, no. 11, pp. 1105-
1118, Nov. 1993.

[48] P. Folkesson, “Experimental Validation of a Fault-Tolerant System
Using Physical Fault Injection,” Licenciate of Eng. thesis,
Chalmers Univ. of Technology, Göteborg, Sweden, 1996.

[49] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, and D. Powell, “Fault
Injection and Dependability Evaluation of Fault-Tolerant Sys-
tems,” IEEE Trans. Computers, vol. 42, no. 8, pp. 913-923, Aug.
1993.

[50] A. Benso, M. Rebaudengo, I. Impagliazzo, and P. Marmo, “Fault-
List Collapsing for Fault Injection Experiments,” Proc. Ann.
Reliability & Maintainability Symp. (RAMS ’98), pp. 383-388, 1998.

[51] S. Satoh, Y. Tosaka, and S.A. Wender, “Geometric Effect of
Multiple-Bit Soft Errors Induced by Cosmic Ray Neutrons on
DRAM’s,” IEEE Electron Device Letters, vol. 21, no. 6, pp. 310-312,
2000.

[52] H. Kopetz, “Time-Triggered Real-Time Computing,” Proc. IFAC
World Congress, 2002, http://manuals.elo.utfsm.cl/conferences/
15-IFAC/data/content/05006/5006.pdf.

Jean Arlat (M’80) received the Engineer degree
from the National Institute of Applied Sciences of
Toulouse in 1976, and the PhD and Docteur ès-
Sciences degrees from the National Polytechnic
Institute of Toulouse in 1979 and 1990, respec-
tively. He isDirecteur deRecherche of CNRS, the
French National Organization of Scientific Re-
search and currently leads the research group on
Dependable Computing and Fault Tolerance at
LAAS-CNRS. His research interests focus on the
dependability of hardware-and-software fault-

tolerant systems and of software executives, including both analytical
modelingandexperimentalapproaches.Hechairs the IFIPWorkingGroup
10.4 on Dependable Computing and Fault Tolerance. He is a member of
the ACM, IEEE, and SEEWorking Group on Dependable Computing.

YvesCrouzet received theEngineer degree from
the Higher National School of Electronics, Elec-
trical Engineering, Computer Science, and Hy-
draulics, Toulouse, in 1975 and the Docteur-
Ingénieur degree from the National Polytechnic
Institute, Toulouse, in 1978. He is currently
Chargé de Recherche of CNRS in the Depend-
ableComputingandFault Tolerancegroup. Since
1982, hismain research interests have concerned
the experimental validation of dependable sys-
tems by fault injection and the experimental

validation of software testing methods by mutation analysis.

Johan Karlsson received the MS degree in
electrical engineering in1982and thePhDdegree
in computer engineering in 1990, both from
Chalmers University of Technology. He is an
associate professor in the Department of Com-
puter Engineering at Chalmers. His current
research interests include low-cost fault tolerance
techniques for embedded systems, robust real-
time kernels, and the use of fault injection for
validation of fault tolerance.He is amember of the

IEEE and the IEEE Computer Society.

Peter Folkesson received the MS degree in
computer science and engineering in 1993 and
the PhD degree in computer engineering in
1999, both from Chalmers University of Tech-
nology. He is currently an assistant professor in
the Department of Computer Engineering at
Chalmers. His research activities involve asses-
sing and developing techniques for experimental
dependability validation of computer systems
and investigating cost-effective techniques for
improving the dependability of computer sys-

tems. He is a member of the IEEE.

Emmerich Fuchs received the MSc and PhD
degrees in computer science from the Vienna
University of Technology, where his research
focused on worst-case execution time analysis
and software-implemented fault injection for
distributed real-time systems. He was one of
the three founding members of DECOMSYS-
Dependable Computer Systems GmbH, a Vien-
na University of Technology spin-off which is one
of the key development members of the FlexRay
Consortium. Besides his role as a managing

partner in DECOMSYS, he currently works as an administrator for the
FlexRay Consortium. He is a member of the IEEE Computer Society.

Günther H. Leber received the Dipl-Ing (MSc)
degree in computer science in 1992 from the
Technical University of Vienna. There he worked
in the Department of Real-Time Systems on
physical fault-injection experiments. Since Au-
gust 1997, he has been affiliated with Adcon
Telemetry AG—a supplier of wireless telemetry
and data transmission technology—where he
works as an embedded systems software en-
gineer. He is a member of the ACM, IEEE, and
IEEE Computer Society.

ARLAT ET AL.: COMPARISON OF PHYSICAL AND SOFTWARE-IMPLEMENTED FAULT INJECTION TECHNIQUES 1133

