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Abstract Multi-model averaging is currently receiving a

surge of attention in the atmospheric, hydrologic, and sta-

tistical literature to explicitly handle conceptual model

uncertainty in the analysis of environmental systems and

derive predictive distributions of model output. Such den-

sity forecasts are necessary to help analyze which parts of

the model are well resolved, and which parts are subject to

considerable uncertainty. Yet, accurate point predictors are

still desired in many practical applications. In this paper,

we compare a suite of different model averaging tech-

niques by their ability to improve forecast accuracy of

environmental systems. We compare equal weights aver-

aging (EWA), Bates-Granger model averaging (BGA),

averaging using Akaike’s information criterion (AICA),

and Bayes’ Information Criterion (BICA), Bayesian model

averaging (BMA), Mallows model averaging (MMA), and

Granger-Ramanathan averaging (GRA) for two different

hydrologic systems involving water flow through a

1950 km2 watershed and 5 m deep vadose zone. Averaging

methods with weights restricted to the multi-dimensional

simplex (positive weights summing up to one) are shown to

have considerably larger forecast errors than approaches

with unconstrained weights. Whereas various sophisticated

model averaging approaches have recently emerged in the

literature, our results convincingly demonstrate the

advantages of GRA for hydrologic applications. This

method achieves similar performance as MMA and BMA,

but is much simpler to implement and use, and computa-

tionally much less demanding.

Keywords Bates-Granger weights �
Bayesian model averaging � Granger-Ramanathan weights �
Mallows model averaging � Streamflow forecasting �
Tensiometric pressure head

1 Introduction

The motivating idea behind model averaging is that, with

various competing models at hand, each having its own

strengths and weaknesses, it should be possible to combine

the individual model forecasts into a single new forecast

that, up to one’s favorite standard, is at least as good as any

of the individual forecasts. As usual in statistical model

building, the aim is to use the available information effi-

ciently, and to construct a predictive model with the right

balance between model flexibility and over-fitting. Viewed

as such, model averaging is a natural generalization of the

more traditional aim of model selection. Indeed, the model

averaging literature has its roots in the model selection

literature, which continues to be a very active research area
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with many applications in hydrology (see e.g., Wagener

and Gupta 2005 and Ye et al. 2008). As a result of the

steady increase in computer power, model averaging has

gradually gained popularity as an alternative to model

selection. For examples of recent applications of model

averaging in hydrology, see, for instance, the contributions

by Vrugt and Robinson (2007); Rojas et al. (2008) and

Wöhling and Vrugt (2008).

Some model averaging techniques, such as equal

weights averaging focus on point predictors, while others,

such as Bayesian model averaging, are concerned with

density forecasts. While the recent developments on den-

sity forecasts will undoubtedly prove extremely useful, and

will find many practical applications, there will always be

cases where accurate point predictors are desired. Since

any density forecast has an associated point predictor,

being the predictive mean of the density forecast, the

question arises naturally which of the point predictors of

the available averaging methods is most accurate. Because

the recently developed sophisticated density forecast

methods aim at obtaining accurate predictive densities,

their point forecasts do not necessarily have to perform

better than more traditional point forecast methods. For

instance, Stockdale (2000) notes that simple averaging

seems to have been the more successful approach, but also

argues that more research is required.

With this in mind, the aim of this paper is to investigate

the accuracy of a wide range of point predictors empiri-

cally, using hydrologic data from different case studies.

Unknown model parameters are estimated using data from

the calibration period, while the predictive performance is

assessed using data from the subsequent evaluation period.

The point predictors are obtained from a variety of model

averaging techniques, and evaluated in terms of out-of-

sample root mean squared prediction error (RMSE).

Although other measures of predictive accuracy exist, the

RMSE is natural in this context, since it is one of the

objective functions that is being minimized (via maximi-

zation of the likelihood) during the calibration period for

most of the density forecast methods in the literature.

Two hydrological case studies are considered. The first

case study considers a classical forecasting problem in

surface water hydrology, and involves rainfall-runoff

modeling of the Leaf River watershed in Mississippi, USA,

using a 36-year historical record of daily streamflow data.

A set of 8 commonly used conceptual hydrologic models is

used to predict and study streamflow dynamics. The second

case study involves soil hydrology, and focuses on pre-

diction of soil water flow through the vadose zone using

data from a layered vadose zone of volcanic origin in New

Zealand. A 7-member ensemble of soil hydraulic models is

used to predict tensiometric pressure heads at multiple

depths. The data sets, models, and ensembles used in the

two case studies have been described elsewhere (Vrugt and

Robinson 2007; Wöhling and Vrugt 2008), and details can

be found there.

The point forecasts considered are based on the follow-

ing model averaging techniques: equal weights averaging

(EWA) where each of the available models is weighted

equally, Bates-Granger averaging (BGA) (Bates and

Granger 1969), AIC and BIC-based model averaging

(AICA and BICA, respectively) (Buckland et al. 1997;

Burnham and Anderson 2002; Hansen 2008), Bayesian

model averaging (BMA) (Raftery et al. 1997; Hoeting et al.

1999; Raftery et al. 2005), Mallows model averaging

(MMA) (Hansen 2007; Hansen 2008) and weights equal to

the ordinary least squares (OLS) estimates of the coeffi-

cients of a multiple linear regression model, as first sug-

gested in the forecasting context by Granger and

Ramanathan (1984), and referred to here as Granger-

Ramanathan averaging (GRA). Note that some of these model

averaging techniques only allow positive weights, summing to

one (weights on the simplex). For comparison, whenever

feasible, models for which the weights are usually restricted to

the simplex were also estimated without this restriction.

The paper is organized as follows. Section 2 introduces

the concept of model averaging, considers bias removal

and provides a concise description of the various model

averaging strategies considered here. Some statistical

properties of these methods, in particular convergence to

the optimal predictor, are considered briefly in Sect. 3. In

Sect. 4 we describe the two hydrologic case studies, as well

as the data and models used, and summarize the results for

the different averaging procedures. The RMSE and opti-

mized weights of the individual models of the ensemble are

the primary focus of that section. Section 5 provides a

discussion of our results against the background of the

statistical properties of the model averaging methods.

2 Model averaging

Let us denote by {Yt} a sequence of measurements of a

hydrological quantity of interest, such as a sequence of

daily discharge data. Further assume that there is an

ensemble of k competing forecasts available, which con-

stitutes the predictions of k competing models, with asso-

ciated point forecasts Xi,t, i ¼ 1; . . .; k; for each variable Yt,

in terms of the information available (i.e., all variables

available to construct a forecast of Yt). We focus on pre-

dicting Yt (e.g., streamflow (case study 1) or soil water

pressure head (case study 2) at time t) based on the

information available at the start of that period.

For hydrologic applications, the models that make up

the ensemble could range from simple water balance

models to parsimonious conceptual watershed models, and
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increasingly complex fully integrated three-dimensional

physically based models. Prior to our analysis, the various

hydrologic models of the ensemble were calibrated through

global optimization using a least squares objective function

containing the error residuals between measured and pre-

dicted daily streamflow (case study 1), and tensiometric

pressure head (case study 2). These variables are also

subject of interest in all our averaging studies herein. The

predictions of the various ensemble members can therefore

be considered optimal in the least squares sense, and no

further reductions in RMSE are possible by parameter

tuning.

A bias correction step of the individual forecasts is

performed prior to the construction of the weights, as fol-

lows. Each of the individual forecasts is adjusted by

applying a linear transformation of the form X0i;t ¼ ai þ
biXi;t: The coefficients ai and bi; i ¼ 1; . . .; k; for each of the

models are found by OLS estimation using only the

observations in the calibration set. Typically this bias

correction leads to a small improvement of the predictive

performance of the individual models, with ai close to zero

and bi close to 1. Only when the calibration set is very

small, the OLS estimates underlying GRA becomes noisy,

and bias correction may destabilize the ensemble. This has

been demonstrated in the context of streamflow forecasting

in Vrugt and Robinson (2007). In the case studies we used

a bias correction, although for comparison we also provide

RMSE values obtained without bias correction. Subse-

quently, for notational simplicity, the symbol Xi,t is used to

indicate either an uncorrected or a bias-corrected predictor

of Yt, based on model i.

A popular way to combine point forecasts is to consider

the following linear model combining the individual

predictions:

Yt ¼ XT
t bþ et ¼

Xk

i¼1

biXi;t þ et; ð1Þ

where {et} is a white noise sequence, which will be

assumed to have a normal distribution with zero mean and

unknown variance. In hydrological case studies one typi-

cally uses a split sample test to divide the available data in

a calibration and evaluation time series. The parameter

vector b is estimated from the calibration set, and the

evaluation data set is used to determine the consistency and

robustness of the calibrated model. We will follow the

same approach in this paper, and use the RMSE during the

evaluation period as a measure of out-of-sample predictive

performance.

As indicated above, this paper focuses on comparing

point predictors in terms of the out-of-sample prediction

error. The point forecasts associated with model (1) are

~Yb
t ¼ XT

t b ¼
Xk

i¼1

biXi;t: ð2Þ

We will compare a wide range of competing model aver-

aging techniques proposed in the literature so far. These

include simple methods such as equal weights averages and

BGA weights, as well as more complex methods such as

AICA, BICA, GRA, BMA, and MMA. We next describe

each of these methods in some detail, and give expressions

for the value of b used by the methods. These are denoted

by b̂�; where the subscript indicates the averaging method

used. Table 1 summarizes the main properties of each of

the model averaging techniques considered.

2.1 Equal weights averaging

Under equal weights averaging, the combined forecast is

simply obtained by giving each of the models equal weight,

i.e., b̂EWA ¼ 1
k ; . . .; . . .; 1

k

� �
; which has associated predictor

~Y
b̂EWA
t ¼ 1

k

Pk
i¼1 Xi;t: Note that if no bias correction is used,

this predictor does not even depend on the data in the

calibration set (the bias correction does depend on the data

in the calibration set).

2.2 Bates-Granger averaging

A well-known choice, proposed by Bates and Granger

(1969), is to weight each model by 1=r2
i , where r2

i is its

forecast variance. If the models’ forecasts are unbiased and

their errors uncorrelated, these weights are optimal in the

sense that they produce predictors with the smallest pos-

sible RMSE. In practice the forecast variance is unknown

and needs to be estimated. This leads to the choice

b̂BGA;i ¼
1=r̂2

iPk
j¼1 1=r̂2

j

;

where r̂2
i denotes the forecast variance of model i, which

we estimated as the sample variance of the forecast error

ei,t = Xi,t - Yt within the calibration period.

2.3 Information criterion averaging

Buckland et al. (1997) and Burnham and Anderson (2002)

proposed using weights of the form

b̂i ¼
exp �Ii=2ð Þ

Pk
j¼1 exp �Ij=2

� � ; ð3Þ

where Ii is an information criterion describing the fit of the

model, of the form Ii ¼ �2 logðLiÞ þ qðpiÞ, where Li is the

(maximized) likelihood of model i, and q(pi) is a penalty

increasing in the number of parameters, pi, that need to be
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estimated for model i. The cases considered here are Ak-

aike’s information criterion (AIC), with penalty q(p) = 2p,

and the Bayes information criterion (BIC), with penalty

qðpÞ ¼ p logðnÞ, where n is the calibration sample size. We

refer to the model averaging scheme (3) based on AIC and

BIC as AICA and BICA, respectively, and to their

respective b-values as b̂AICA and b̂BICA. In the literature

these methods are sometimes referred to as smooth AIC

and smooth BIC, respectively. To evaluate the information

criteria numerically, it is convenient to assume, as we do

here, that the errors of the individual models are normally

distributed. In that case the likelihood for model i is related

to its estimated forecast error r̂2
i , via �2 logðLiÞ ¼

n log r̂2
i þ n.

2.4 Granger-Ramanathan averaging

The weighting schemes described above do not exploit

covariance structure that may be present in the forecast

errors. The predictors described above are weighted aver-

ages of the individual forecasts, with weights determined

by a measure of fit for the individual models. A natural way

to exploit the presence of covariances is by using OLS

estimators within the linear regression model.

This OLS approach to forecast combination was sug-

gested by Granger and Ramanathan (1984). They sug-

gested using OLS to estimate the unknown parameters in

the linear regression model. The OLS estimator of the

parameter vector b of the linear regression model (1) is

b̂GRA ¼ XTX
� ��1

XTY ; ð4Þ

where X and Y stand for the matrix of X-values, and the

vector of Y-values in the calibration set, respectively.

Under the standard assumptions underlying the classical

linear regression model the OLS estimator can be shown to

be the best linear unbiased estimator of b: Even if some of

these assumptions do not hold (e.g., if there are missing

X-variables) the OLS estimates may still be shown to

converge to the pseudo-true parameter b�; corresponding to

the best linear model of Yt (in the RMSE sense) in terms of

X1;t; . . .;Xk;t: Since GRA is based on these OLS weights, it

should be expected to be a serious competitor for the other

model averaging techniques considered here.

2.5 Bayesian model averaging

Hoeting et al. (1999) provide an excellent overview of the

various BMA techniques that have been proposed in the

literature. Applications of BMA in hydrology and meteo-

rology have been described by Neuman (2003); Ye et al.

(2004); Raftery et al. (2005); Gneiting et al. (2005); Vrugt

and Robinson (2007); and Vrugt et al. (2008). See Bishop

and Shanley (2008) for a recent contribution towards

improving BMA’s performance when confronted with data

coming from extreme weather conditions.

Depending on the type of application one has in mind,

different flavors of BMA are more suitable. For instance, it

makes a crucial difference whether one would like to

combine point forecasts (in which case some forecasts may

be assigned negative weights) or density forecasts (in

which case allowing for negative weights could lead to the

undesired effect of negative density forecasts). The dif-

ferent BMA methods considered in this paper, being BMA

in the finite mixture model and BMA in the linear regres-

sion model, correspond to averaging density forecasts and

making linear combinations of forecasts, respectively.

2.5.1 BMA in the finite mixture model

In case one wishes to combine density forecasts fi,t(y), i ¼
1; . . .; k; for Yt, it is common to consider the combined

forecast density gtðyÞ ¼
Pk

i¼1 bifi;tðyÞ, known as a finite

mixture model. To ensure that gt(y) represents a density,

the BMA weights bi are assumed to be non-negative and to

add up to one: i.e., the weights are constrained to the

simplex Dk�1 ¼ fbjbi� 0; i ¼ 1; . . .; k and
Pk

i¼1 bi ¼ 1g:

Table 1 Main characteristics of

the model averaging methods

considered

Method Model type Associated density

forecast

b restricted to D Estimation

procedure

BMAmix Finite mixture Yes Yes DREAM

BMAD
lin Linear regression Yes Yes DREAM

BMAlin Linear regression Yes No DREAM

MMAD Linear regression No Yes DREAM

MMA Linear regression Yes No DREAM

AICA Combined point forecast No Yes Analytic

BICA Combined point forecast No Yes Analytic

GRA Combined point forecast No No Analytic

BGA Combined point forecast No Yes Analytic

EWA Combined point forecast No Yes Data independent
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The BMA predictive density of Yt thus consists of a mix-

ture of normals, located at the individual point forecasts

Xi,t, with weight bi and variance ri
2. The point predictors

associated with this forecast are again given by (2), where

Xi,t coincides with the predictive mean
R1
�1 fi;tðxÞdx:

For this finite mixture model, Raftery et al. (2005)

define the BMA weights to be those weights which maxi-

mize the likelihood based on the data available for esti-

mation (the calibration data). Here, as is often done in the

literature, the mixture densities are assumed to be centered

around Xi,t with a normally distributed noise with a fixed

unknown variance ri
2, i ¼ 1; . . .; k; i.e., fi;tðYtÞ ¼ ð2pr2

i Þ
�1

2

expð�ðYt � Xi;tÞ2=ð2r2
i ÞÞ:

We use the short-hand notation BMAmix to indicate the

BMA method in the context of the finite mixture model.

The joint estimators of b and r ¼ ðr1; . . .; rkÞ0 are given by

b̂BMAmix
; r̂

� �
¼ arg max

b2Dk�1;r2Rk
þ

Xn

t¼1

log gtðYtÞ

¼ arg max
b2Dk�1;r2Rk

þ

Xn

t¼1

log
Xk

i¼1

fi;tðYtÞ
 !

;

where n denotes the calibration sample size.

The estimation of the model weights and model vari-

ances r2
i is a moderately complex nonlinear optimization

problem. One way to approach this is by using the

expectation-maximization algorithm, as suggested by

Raftery et al. (2005). In fact, any other reliable optimiza-

tion routine can be used for the purpose of the present

paper. We follow Vrugt et al. (2008) and use the DiffeR-

ential Evolution Adaptive Metropolis (DREAM) adaptive

Markov chain Monte Carlo (MCMC) algorithm, proposed

in Vrugt et al. (2009), for obtaining the model weights and

the individual model variances. For a given calibration data

set, the likelihood function was optimized numerically by

sampling from the Bayesian posterior distribution with a

flat prior (i.e., from a density in parameter space which is a

normalized version of the likelihood function), and iden-

tifying the point in the MCMC sample for which the

likelihood of the finite mixture model was maximized. We

used the standard algorithmic settings of DREAM, sam-

pling a total of 2 9 105 values of b for each case, since we

found that the solutions obtained with this number of

iterations were sufficiently accurate as judged from com-

paring independent runs of the algorithm.

2.5.2 BMA in the linear regression model

Bayesian model averaging in the context of the linear

regression model (1) has been discussed by Raftery et al.

(1997). This particular BMA approach does allow for the

model weights to become negative. The associated point

predictor in the case of a flat prior reduces to the point

predictor of the maximum likelihood estimator, which

happens to be the OLS estimator (4). Although this theo-

retical argument shows that formally the BMA version of

the linear model is redundant in our set of model averaging

approaches, we have included it nevertheless, to provide an

extra check on our numerical procedures. We refer to the

BMA method in the context of the linear regression model

by using the subscript ‘lin’ (for ‘linear’), and an additional

superscript ‘D’ in case the weights are restricted to the

simplex Dk-1. For instance, BMAD
lin refers to BMA in the

linear regression model (1), with b on the simplex.

The BMA weights in the linear regression model are

obtained by maximizing the Bayesian posterior density for

a flat prior, that is

b̂BMA
sH
lin
; r

� �
¼ arg max

b2H;r2Rþ

Xn

t¼1

log htðYtÞ;

where htðYtÞ¼ ð2pr2Þ�
k
2 exp �ðYt �

Pk
i¼1 biXi;tÞ2=ð2r2Þ

� �
,

and H is the set of b-values under consideration, which is

either Rk (empty superscript sH) or Dk-1 (sH ¼ ‘D’) in this

paper. The maximization was again performed using the

DREAM algorithm.

2.6 Mallows model averaging

On the other side of the spectrum considerable effort has

been made to come up with a frequentist solution to the

problem of model averaging. Hjort and Claeskens (2003);

Claeskens and Hjort (2003) made noticeable contributions

in this direction. The general tendency in this literature is

that there is no unique best model, but that the best model

is a subjective notion that depends on one’s objective. For

each objective, a different model may be optimal. Hansen

(2007, 2008) has continued this line of research with his

proof that model combination based on Mallows criterion,

asymptotically leads to forecasts with the smallest possible

mean squared error. For a more generally valid proof,

which covers the context of the linear regression model (1)

considered here, see Wan et al. (2010).

The MMA criterion is the penalized sum of squared

residuals (across the calibration data)

CnðbÞ ¼
Xn

t¼1

Yt � b0Xtð Þ2þ2
Xk

j¼1

bjpjS
2 ð5Þ

where, as before, pj is the number of parameters of model j

(i.e., a measure of the complexity of model j), and S2 is an

estimate of the variance r2 of et in (1) based on the most

complex model considered. In this study S2 was taken to be

the smallest observed RMSE for any individual model,

among the set of models.
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The Mallows criterion is

b̂MMAsH ¼ arg min
b2H

CnðbÞ;

whereH is the set of parameters under consideration (Rk or

Dk-1). The value of b̂MMA, i.e., the value of b for which (5)

is minimized, is found again using the DREAM algorithm.

With the DREAM algorithm we generate a sample of size

2 9 105, as in the case of the BMA algorithm, from the

probability density function hðbÞ in b-space, where

hðbÞ / e�
1
2
CnðbÞ:

Like in the BMA implementation, the maximum of this

function is found by identifying the point bi in the MCMC

sample for which hðbiÞ was largest.

3 Consistency and asymptotic RMSE optimality

This section briefly summarizes some of the statistical

properties of the model averaging methods described

above. The proofs are omitted as they are standard results

in statistics. The aim of this section is to anticipate the

types of results to expect in the case studies presented in

the next section, and to facilitate their discussion

afterwards.

In Sect. 3.1 we consider asymptotics with a fixed

number, k, of ensemble members, and an increasing cali-

bration size n. Asymptotics where the number of compet-

ing models increases with the calibration sample size are

discussed in Sect. 3.2.

3.1 Asymptotics with k finite and fixed

We assume the vector-valued time series fZt �
ðYt;X

0
tÞ
0g; t 2 Z to be strictly stationary, with finite vari-

ances. The best linear predictor of Yt is then defined as

b� ¼ arg min
b2Rk

E ðYt � X0tbÞ
2

h i
;

where E denotes the mathematical expectation operator.

An estimator b̂n of b� is consistent if it converges to b�

in probability as the calibration sample size n increases:

Pðkb� � b̂n\eÞ �!
n!1

1; for any e [ 0, where k � k denotes

the Euclidean norm (or an equivalent norm) in R
k: A model

averaging method based on a consistent estimator of b� is

asymptotically RMSE optimal in that the expected out-of-

sample RMSE converges to the lowest possible value, r2;

the variance of the part of Yt that cannot be explained by

any linear combination of the X-es.

Three of the model averaging methods described above

are asymptotically RMSE optimal: GRA, BMAlin, and

MMA. GRA is exploiting a consistent (OLS) estimator and

hence is asymptotically RMSE optimal. Because the OLS

estimators coincide with maximum likelihood estimators in

linear models with normal errors, BMAlin with a flat prior

is formally equivalent to GRA. This means that apart from

numerical inaccuracy associated with the optimization

routine used, BMAlin as we implemented it, with a flat

prior, is equivalent to GRA. The consistency of Bayesian

point estimators guarantees that BMAlin with a prior dis-

tribution with b� in its support is asymptotically RMSE

optimal. Finally, the objective function of MMA and GRA

differ only by a model dependent finite penalty, indepen-

dent of sample size. Since the penalty plays no role

asymptotically, MMA is asymptotically equivalent to

GRA, and therefore also asymptotically RMSE optimal.

Equal weights averaging is only asymptotically RMSE

optimal in the very special case that the optimal weight

vector happens to be ð1k ; . . .; 1
kÞ: Likewise, methods that are

confined to the simplex Dk–1 are by definition not asymp-

totically RMSE optimal if b� lies outside the simplex.

BMAD
lin and MMAD inherit the asymptotic RMSE opti-

mality from BMAlin and MMA, respectively, if b� 2 Dk�1:

BMAmix, AICA, and BICA are not asymptotically

RMSE optimal, even if b� 2 Dk�1: Because the likelihood

functions of the finite mixture model and in the linear

regression model are different, the weights underlying

BMAmix converge in probability to a value which is gen-

erally different from b�: AICA and BICA are not asymp-

totically RMSE optimal, because the penalties q(pi) are

fixed while logðLÞ grows, on average, linearly with sample

size. Assuming that no two ensemble members have

exactly the same average likelihood, the weight vector w

converges (in probability) to the single model in the

ensemble that exhibits the highest average log likelihood

per sample point (the best performing individual model).

3.2 Asymptotics with k depending on n

The result that GRA and BMAlin were found to be

asymptotically RMSE optimal in Sect. 3.1, depends cru-

cially on the assumption that k was fixed as the sample size

increases. Hansen (2007, 2008) introduced MMA in a

context where the number of competing models, k = k(n),

is allowed to grow with the sample size, and showed that

MMA converges to the optimal model asymptotically.

Under these asymptotics, GRA and BMAlin would typi-

cally fail to converge to the optimal model, due to the lack

of a penalty for model complexity.

For the case studies one can envisage three possible

scenarios a priori: either the fixed k asymptotic theory

applies, or Hansen’s asymptotics, or neither. If the number

of model parameters k is sufficiently small, and the cali-

bration sample size large, one should expect fixed k

asymptotics to apply. If k is too large compared to the
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sample size Hansen’s asymptotics apply. If the calibration

sample set is too small neither asymptotics will work.

Unfortunately, theory alone does not dictate which

asymptotic theory applies in practice. This also depends on

the type of data at hand, and the sample sizes used for

determination of the weights of the individual models.

Note that fixed k asymptotic theory predicts that MMA,

GRA, and BMAlin perform comparably well for large

calibration samples, while Hansen’s asymptotic theory

predicts that MMA is superior for large calibration sam-

ples. The main purpose of the case studies presented in the

next section is to find out, by analyzing of out-of-sample

prediction error, whether fixed k asymptotics, Hansen’s

asymptotics, or neither, apply in practice.

4 Case studies

In this section we compare the different model averaging

strategies in terms of their ability to improve the forecast

error of two hydrologic systems. The first case study con-

siders daily streamflow forecasting of the Leaf River

watershed in Mississippi using an 8-member ensemble of

conceptual watershed models. This study deals with a

variable that is highly skewed and perhaps not well

described by a normal distribution. In the second case study

we use seven different soil hydraulic models for forecast-

ing of tensiometric pressure heads in a layered vadose zone

in New Zealand.

4.1 Streamflow data

In this study, we apply the different model averaging

approaches to probabilistic ensemble streamflow forecast-

ing using historical data form the Leaf River watershed

(1950 km2) located north of Collins, Mississippi. In a

previous study Vrugt and Robinson (2007) generated a 36-

year ensemble of daily streamflow forecasts using eight

different conceptual watershed models involving the ABC

(3) (Fiering 1967; Kuczera and Parent 1998), GR4J (4)

(Perrin et al. 2003), HYMOD (5) (Boyle et al. 2001; Vrugt

et al. 2002; Vrugt et al. 2005), TOPMO (8) (Oudin et al.

2005), AWBM (8) (Boughton 1993; Marshall et al. 2005),

NAM (9) (Nielsen and Hansen 1973), HBV (9) (Bergström

1995), and SAC-SMA (13) (Burnash et al. 1973). These

eight models are listed in order of increasing complexity,

and the number of user-specified parameters is indicated in

parentheses. Inputs to the models include mean areal pre-

cipitation (MAP), and potential evapotranspiration (PET).

The output is estimated channel streamflow. In this study,

the first 3000 data points on record (roughly corresponding

to the first 8 years of data, WY 1953–1960) are used for

calibration of the parameters in the various hydrologic

models.

The Y-variable, Yt, is taken to be the observed river

discharge, while the vector of X-variables comprises an

ensemble of one-day-ahead predictors for Yt constructed

with eight different models, with respective number of

parameters 3, 4, 5, 8, 8, 9, 9, and 13. Previous studies have

indicated that a calibration data set of approximately

8–11 years of data, representing a range of hydrologic

phenomena (wet, medium, and dry years), is desirable to

achieve deterministic model calibrations that are consistent

and generate good verification and forecasting perfor-

mance, see e.g., Yapo et al. (1996) and Vrugt et al.

(2006b). In this study we systematically vary the length of

the calibration data set by using an increasing number of

data before the end of the full calibration data set of 3000

observations. The remaining 28 years on record (WY

1961–1988, 10,500 observations) are subsequently used to

evaluate the forecast performance.

Table 2 shows the estimates of the weights, as well as

the RMSE measured across the evaluation period for each

of the forecast methods, based on the full calibration data

set (3000 data points). Using OLS for the evaluation per-

iod, it is possible to find the weights of the linear regression

model that are, ex post, optimal for the specific evaluation

data at hand. The corresponding model weights for this best

model are given in the row indicated by ‘bopt’. For com-

parison, the performance of the forecasts of the individual

ensemble members is shown in the last eight rows.

By comparing the RMSE values displayed in the before-

last column of Table 2, it can be seen that not all model

averaging methods produce forecasts that are more accu-

rate than the best performing individual model of the

ensemble. Specifically, the predictive performance of

BMAmix, MMAD, BGA, and EWA is worse than that of the

best ensemble member, SAC-SMA, indicated in the table

by X8. AICA and BICA, on the contrary, put all their

weight on the best ensemble member, and therefore exhibit

similar predictive capabilities as this best member. BMAD
lin

with weights restricted to the simplex beats the best indi-

vidual ensemble member, but performs worse than its

unrestricted counterpart BMAlin. Unrestricted BMAlin and

MMA, and GRA each perform very well, with practically

identical values of the weights. Note that these three best

performing methods all have unrestricted weights, the

estimations of which have the same signs as the optimal

weights, given in row ‘bopt’. The last column, denoted

‘RMSE*’, shows the RMSE values obtained without per-

forming the bias correction step prior to model averaging.

The RMSE values are slightly larger without a bias cor-

rection, but the pattern is very similar.

To assess the effect of the length of the calibration data

set, the length of the calibration data set was progressively
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increased to include more past data in the calibration per-

iod, while keeping the evaluation period fixed. To obtain a

convenient scale for plotting the results, we focus on the

difference between the out-of-sample RMSE and the

minimal RMSE (achieved for bopt), denoted by DRMSE.

We refer to DRMSE as the ‘excess prediction error’.

Figure 1 displays DRMSE for increasing lengths of the

calibration data set. The graph clearly indicates that EWA

and BGA are performing poorly relative to the other

methods, regardless of the length of the calibration period.

The performance of AICA and BICA in this case study is

equal for all calibration sample sizes; a result of the fact

that these methods essentially selected the same weight

vector throughout, putting all weight on the model that

performed best in the calibration period. For smaller cali-

bration sample sizes it is particularly difficult to find a

single method that is consistently superior to the other

averaging strategies. However, for larger calibration data

sets (n = 3,000) BMAlin, MMA, and GRA perform best,

exactly as predicted by fixed-k asymptotic theory.

4.2 Soil water pressure head data

The second case study concerns tensiometric pressure head

data in a layered vadose zone of volcanic origin. These

field data from the Spydia experimental site in the northern

Lake Taup catchment, New Zealand, consist of water

pressure measurements taken at various depths. These data

have been described in detail by Wöhling et al. (2008). The

dataset originally contained tensiometric pressure mea-

surements at five different depths. In this case study we

focus on the pressure data at the smallest depth (0.4 m), for

which the data are the most dynamic.

Ensemble forecast combinations for these data have

been studied by Wöhling and Vrugt (2008). They consid-

ered hourly ensemble forecasts based on seven different

soil hydraulic models, listed here with their respective

number of parameters in brackets: modified Mualem-van

Genuchten (MVG), nonhysteric (15), MVG, hysteric (24),

Brooks and Corey (21), Kosugi (24), Durner (15), Šimùnek

et al. (15), and non-hysteric MVG model with four soil

Table 2 Streamflow data results

Method D b̂1 b̂2 b̂3 b̂4 b̂5 b̂6 b̂7 b̂8 RMSE RMSE*

Finite mixture model

BMAmix 1 0.018 0.193 0.098 0.069 0.033 0.050 0.043 0.495 21.89 22.36

Linear regression model

BMAD
lin 1 0.000 0.164 0.001 0.316 0.000 0.000 0.007 0.536 21.62 21.98

BMAlin 0 -0.072 0.092 0.094 0.590 -0.109 -0.230 -0.045 0.653 21.41 21.45

MMAD 1 0.000 0.144 0.002 0.333 0.000 0.000 0.002 0.540 21.88 21.94

MMA 0 -0.109 0.088 0.128 0.603 -0.139 -0.214 -0.062 0.671 21.43 21.48

Combined point forecasts

AICA 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 21.73 21.96

BICA 1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 21.73 21.96

GRA 0 -0.074 0.090 0.094 0.582 -0.104 -0.237 -0.046 0.667 21.38 21.44

BGA 1 0.051 0.137 0.139 0.159 0.072 0.122 0.135 0.185 24.72 24.97

EWA 1 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 26.38 26.79

Best forecast

bopt 0 -0.066 0.254 0.115 0.212 -0.122 -0.170 -0.021 0.731 20.29 20.33

Individual forecasts

X1 – 1 0 0 0 0 0 0 0 49.00 50.39

X2 – 0 1 0 0 0 0 0 0 25.03 25.26

X3 – 0 0 1 0 0 0 0 0 28.78 28.72

X4 – 0 0 0 1 0 0 0 0 27.55 27.48

X5 – 0 0 0 0 1 0 0 0 41.65 42.18

X6 – 0 0 0 0 0 1 0 0 32.84 32.87

X7 – 0 0 0 0 0 0 1 0 30.36 31.01

X8 – 0 0 0 0 0 0 0 1 21.73 21.96

The first column indicates the averaging method used. The second column, labeled D, has an entry ‘1’ in case the weights were restricted to the

simplex, and ‘0’ otherwise. Columns 3–10 show the weights found for each method. The column labeled RMSE provides the RMSE obtained in

the evaluation data for the weights given. For comparison the column labeled RMSE* gives the RMSE obtained without bias correction step
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horizons (20). This latter model is an extension of the first

MVG soil hydraulic model used in this study, but uses four

instead of three soil horizons to further improve the vertical

description of moisture flow and uptake in the unsatured

zone. This model contains five additional parameters that

define the hydraulic functions for this fourth horizon. These

seven soil hydraulic models encompass not only different

formulations of the same physical relationships but also

different conceptual models.

A detailed description of each of these seven models has

been given in Wöhling and Vrugt (2008) and so will not be

repeated here. Here, the same evaluation period as in

Wöhling and Vrugt (2008) is used (the last 2,301 obser-

vations). The length of the calibration data set is varied by

using calibration data sets of various lengths at the end of

the period of the first 6,769 observations, which were used

as the calibration data set by Wöhling and Vrugt (2008).

Table 3 displays the estimated weights, as well as the

RMSE measured across the evaluation period for each of

the forecast methods, based on the full calibration set

(6,769 observations). The layout is similar to that of

Table 2, with the main difference that there are now seven

ensemble members instead of eight.

Inspection of the RMSE values shows that EWA and

BGA again perform worse than the best performing indi-

vidual model (MVG, hysteric, denoted by X2 in Table 2).

However, unlike for the streamflow data, now BMAmix and

  1 
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 1000  200

Δ R
M

S
E

 

Calibration sample size 

streamflow data 

BMA mix BMA Δ 
lin BMA lin MMA Δ MMA 

AICA BICA GRA BGA EWA 

Fig. 1 Streamflow data. Excess prediction error DRMSE for increas-

ing calibration sample size (logarithmic scales)

Table 3 Tensiometric pressure head data, depth 0.4 m

Method D b̂1 b̂2 b̂3 b̂4 b̂5 b̂6 b̂7 RMSE RMSE*

Finite mixture model

BMAmix 1 0.000 0.294 0.009 0.065 0.001 0.000 0.632 0.104 0.106

Linear regression model

BMAD
lin 1 0.000 0.152 0.000 0.256 0.000 0.000 0.595 0.106 0.104

BMAlin 0 -0.189 0.481 -0.363 0.551 -0.633 0.369 0.785 0.103 0.103

MMAD 1 0.000 0.148 0.000 0.259 0.000 0.000 0.597 0.106 0.104

MMA 0 -0.187 0.484 -0.367 0.548 -0.633 0.369 0.786 0.103 0.103

Combined point forecasts

AICA 1 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.107 0.112

BICA 1 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.107 0.112

GRA 0 -0.194 0.483 -0.364 0.550 -0.635 0.373 0.786 0.103 0.103

BGA 1 0.086 0.155 0.099 0.183 0.132 0.097 0.247 0.110 0.110

EWA 1 0.143 0.143 0.143 0.143 0.143 0.143 0.143 0.115 0.113

Best forecast

bopt 0 1.230 0.437 0.218 0.338 0.967 -2.142 -0.047 0.058 0.069

Individual forecasts

X1 – 1 0 0 0 0 0 0 0.137 0.124

X2 – 0 1 0 0 0 0 0 0.111 0.110

X3 – 0 0 1 0 0 0 0 0.139 0.175

X4 – 0 0 0 1 0 0 0 0.114 0.116

X5 – 0 0 0 0 1 0 0 0.119 0.144

X6 – 0 0 0 0 0 1 0 0.131 0.110

X7 – 0 0 0 0 0 0 1 0.107 0.112

The entries are as described for Table 2, with the difference that there are now 7 competing models instead of 8
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MMAD perform slightly better than this simple benchmark.

AICA and BICA are borderline cases, effectively putting

all weight on the best performing individual model. Within

the groups BMAlin and MMA, the versions with unre-

stricted weights again perform better than the restricted

version. Unrestricted BMAlin and MMA, and GRA all

perform best, with practically identical weight vectors. An

important difference with the previous case study is that

these three best performing methods now do not have

weights with the same signs as the optimal weights (row

‘bopt’). This indicates that the estimated weights are not

optimal, which suggests that there is a structural difference

between the calibration and the evaluation periods. This

can easily happen, even for stationary time series data, if

the calibration sample is too small. This is not unlikely to

occur in hydrological applications. Note however that the

excess prediction errors for BMAlin, MMA and GRA are

smaller than that of the best performing single model, and

hence model averaging still is able to reduce forecast errors

in such a case. Judging from the RMSE*-values reported in

the last column, similar results would have been obtained if

no bias correction would have been used.

The effect of the length of the calibration data set was

again assessed by progressively increasing the length of the

calibration data set, while keeping the evaluation period

fixed. Figure 2 displays the excess prediction error

(DRMSE) for increasing lengths of the calibration data set.

The results are in line with the previous case study. It can

be observed that EWA and BGA perform poorly, particu-

larly for larger calibration period. Except for the smaller

calibration sample sizes, the performances of AICA and

BICA are equal (beyond n = 2,000). Again, for the smaller

calibration sample sizes no obvious winning method can be

distinguished, while for the largest calibration sample size

considered (n = 6,769) BMAlin, MMA and GRA perform

best, and almost identically, as predicted by fixed k

asymptotic theory.

5 Discussion

Our case studies clearly indicate a couple of important

conclusions for model averaging. Perhaps the most striking

observation is that the methods that imposed the restriction

that the model weights should be positive were performing

worst. None of the three best methods had this restriction.

We conclude that not only there are theoretical arguments

for allowing negative weights in general, but the empirical

results suggest that in surface and subsurface hydrologic

case studies the best forecasts may have weights outside

the simplex.

Another main conclusion is that, for the particular data

sets considered, a relatively simple model averaging

method, GRA, based on OLS regression, is shown to per-

form just as well as very sophisticated competing model

averaging methods, such as BMA and MMA. The gain

obtained from using GRA rather than BMA or MMA can

be significant; analytical solutions exist to determine the

weights for GRA, whereas computationally more

demanding, iterative procedures, such as expectation-

maximization or MCMC sampling with DREAM are

required to find the optimal values of the weights for BMA

and MMA.

The result that these methods were found to perform

well here arguably depends on choosing the RMSE as a

measure of performance. As indicated in the introduction

the RMSE is a widely used measure for evaluating the

accuracy of point forecasts. Moreover, the various model

averaging strategies used herein are developed within the

context of minimizing the squared prediction error. The

only exception is BMAmix, whose weights are calibrated by

posing the calibration problem in a maximum likelihood

context. One might use different evaluation criteria, such as

mean absolute error, yet to make a fair comparison of the

different model averaging methods would then require the

explicit use of these criteria within the calibration set. In

that case we would be introducing new model averaging

methods altogether, which is beyond the scope of this

paper. Another possibility might be to use various cali-

bration criteria simultaneously and interpret the Pareto

solution set using multi-criteria optimization methods.

Such an approach within the context of BMAmix has pre-

viously been presented in Vrugt et al. (2006a).

For increasing calibration sample size, it could be

observed that the three asymptotically RMSE optimal

model averaging methods, BMA, MMA, and GRA, quickly

 0.1

 100  1000

ΔR
M

S
E

Calibration sample size

pressure head data

BMAmix BMAΔ
lin BMAlin MMAΔ MMA

AICA BICA GRA BGA EWA

Fig. 2 Tensiometric pressure head data. Excess prediction error

DRMSE for increasing calibration sample size (logarithmic scales)
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dominated the other methods, while converging towards

the same common small forecast error, just as asymptotic

theory with fixed finite k predicts. That this would be the

case could not be known a priori because the finite sample

size n for which asymptotics work well depends on the type

of data under consideration. We can therefore conclude

that the calibration sample sizes used typically in hydrol-

ogy, are large enough, relative to k, to justify the use of

predictions from asymptotic theory with a fixed number of

ensemble members, k, and large sample size, n.

By using the ex post optimal model parameter bopt for

the evaluation sample it could be observed that the errors

were not evenly distributed across the data. For the

streamflow data, for instance, larger flows had larger pre-

diction errors. Although we have not performed a quanti-

tative study since we have focused on batch-optimization

in the case studies, from graphical inspection of the data

and the predictors it appeared that the best performing

GRA method was specifically outperforming the other

models during the high-flow periods. For the pressure head

data similar observations could be made.

A final conclusion that can be drawn from our results is

that BMAmix, which is increasingly being used in hydrol-

ogy for obtaining density forecasts while taking into

account model uncertainty, has point predictors that are not

asymptotically optimal. Unfortunately, the asymptotically

optimal GRA weights do not easily allow for the con-

struction of a density forecast, because the weights are

allowed to be negative. It therefore seems desirable to

develop density forecasts that represent model uncertainty

accurately, while at the same time having associated point

predictors achieving a close to minimal prediction error.

We leave the development of such a model averaging

method for future research.
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