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ABSTRACT

We present and compare methods for pre-detection (feature-level) and post-detection (decision-level) fusion of multi-
sensor data. This study emphasises methods suitable for data that are non-commensurate and sampled at non-
coincident points. Decision-level fusion is most convenient for such data, but this approach is sub-optimal in principle,
since targets not detected by all sensors will not achieve the maximum beneÞts of fusion. A novel feature-level fusion
algorithm for these conditions is described. The optimal forms of both decision-level and feature-level fusion are
described, and some approximations are reviewed. Preliminary results for these two fusion techniques are presented
for experimental data acquired by a metal detector, a ground-penetrating radar, and an infrared camera.
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1. INTRODUCTION

Fusion of multi-sensor data for mine detection is complicated by several factors. The sensors used are diverse and
produce non-commensurate data. The need for essentially perfect detection leads to high false alarm rates, and the
clutter-rich environment in which these sensors operate leads to additional false alarms. Finally, the sensors may
reside on different platforms, leading to problems with data registration.

One approach to these problems is to perform detection at the sensor level and to then combine the detections
from individual sensors. This process, also known as �decision-level� fusion, is convenient since it reduces diverse
sensor data to a common format (binary decisions or detection probabilities) that are readily combined using a
variety of techniques developed for this purpose.1,2 In principle, decision level fusion is suboptimal, since if a target
is not detected by more than one sensor, it will not experience the beneÞts of fusion.

In this paper we discuss a feature-level fusion approach to non-coincident sensor sampling. The data are repre-
sented by a model with unknown parameters (features) and random additive clutter. Optimization techniques are
used to determine the features from the available data, and classiÞcation is performed on the basis of the features. A
technique for dealing with position uncertainty is also described. This approach is capable of detecting targets even
when the features derived from any single sensor are insufficient for detection.

The work is organized in four major sections. In Section 2 we describe the theoretical basis for feature-level
fusion. The basis for decision-level fusion is presented in Section 3. Descriptions of our sensors and techniques for
sensor data processing and feature estimation are described in Section 4. Experimental data and examples of fusion
are given in Section 5. Finally, concluding remarks appear in Section 6.

2. FEATURE-LEVEL FUSION OF RANDOMLY SAMPLED MULTI-SENSOR DATA

2.1. Problem DeÞnition

Suppose that NS countermine sensors are used to acquire data in a region. Sensor i acquires Ji data samples at
locations Rij which we denote by the row vector di(Rij). Detection and/or classiÞcation is to be performed using
the data set

D = {di(Rij), i = 1, . . . , Ns; j = 1, . . . , Ji} (1)

We assume that different sensors produce samples that differ in number Ji, sample positions Rij , and the format
and dimensionality of their data (i.e., they are non-commensurate).
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Let R be any point at which we wish to determine the presence (or identify) of a mine. We refer to R as the
�interrogation point.� We form the K hypotheses Hk(R), k = 1, 2, . . . ,K regarding the presence or absence of
various types of mines at R. We may also include in the set {Hk} discrete clutter objects, e.g., buried rocks, metallic
clutter, etc., that might be false alarms.

At each point R we wish to determine the hypothesis Hk(R) that minimizes the Bayes risk conditioned on the
data D

k = arg min
j

KX
`=1

Cj` Pr(H`(R)|D) (2)

where Cj` is the cost of deciding hypothesis Hj when H` is true. In the special case of K = 2 (binary detection) or
when all the cost functions are equal, it is sufficient to compute likelihood ratios and to compare them to a common
threshold value. In this work, however, we will use the more general criterion noted above, since multiple hypotheses
may be involved and equal costs are inappropriate for the mine-detection problem.

We now suppose that data acquired by sensor i at a point Rij over a target of type Hk at R can be modeled as
a signal Gi(Rij ;Θik) and additive noise Ni(Rij)

di(Rij)|Hk(R) =Gi(Rij ;Θik) +Ni(Rij) (3)

where Θik is a (column) vector parameter that describes the size, shape, amplitude, and position of targets of type
k for sensor i. Since the discrete clutter objects have been assigned hypotheses Hk, the phenomena modeled by
Ni(R) consist of instrument noise and large-scale clutter. We assume that the clutter N(R) is independent of the
parameter Θ.

Since for each sensor a mine signature has a Þnite spatial extent, only a portion of the samples in D are relevant
to interrogation in the region around R. Let the relevant data be given by subsequences j1, j2, . . . , jMi of each sensor
data set where Mi is the number of relevant samples for sensor i. It is convenient to assemble this reduced data set
into the column vectors

D =
h
d1(R1j1) · · · d1(R1jM1

) d2(R2j1) · · · dNs(RNsjMNs
)
iT

(4)

Gk =
h
G1k(R1j1 ;Θ1k) · · · G1k(R1jM1

;Θ1k) G2k(R2j1 ;Θ2k) · · · ,GNsk(RNsjMNs
;ΘNsk)

iT
(5)

N =
h
N1(R1j1) · · · N1(R1jM1

) N2(R2j1) · · · . . .NNs(RNsjMNs
)
iT

(6)

If di(R) has length NDi, then the length of these vectors is ND =
P
iNDiMi. Using this notation, we have for the

vector signal model
D|Hk(R) =Gk(Θk) +N (7)

To support decision-level fusion and feature-level fusion with uncertain sample locations we can include in Θik a
position offset R0 that describes the nominal �center� of the mine signature with respect to R. We write

Θik = [θik R0,ik]
T (8)

In general, we will take θ and R0 to be independent in what follows.

2.2. General Formulation

Feature-level fusion can be formulated in two ways. First consider the direct approach using the a posteriori densities.
To minimize the risk given by equation (2) we are led to consider

Pr(Hk(R)|D) =
Z
dΘPr(Hk(R)|Θ)fΘ|D(Θ) =

Z
dθ

Z
dR0 Pr(Hk(R)|θ,R0)fΘ|D(Θ) (9)

The expression in equation (9) is exact, but it requires the densities Pr(Hk|Θ) (a classiÞer), fΘ|D(Θ) (related to
an estimator of Θ|D) and an integral over a feature space of possibly high dimensions. In many applications it is



attractive to employ approximations to this result. If the data D strongly imply the value �Θ, then fΘ|D will be

strongly peaked about �Θ and we have a maximum a posteriori approximation

Pr(Hk(R)|D) ≈ Pr(Hk(R)| �Θ) (10)

Conversely, if D provides no information about Θ then fΘ|D(Θ) = fΘ(Θ) and we recover the a priori probabilities.

A further approximation will permit us to separate the effects of features and position offsets. If we take the
features θ and the position R0 to be independent when conditioned on Hk(R), then we obtain

Pr(Hk(R)| �Θ) = Pr(Hk(R)|�θ)
fR0|Hk(R)(R0)

fR0(R0)
(11)

In the absence of any a priori information about mine position, we take fR0 to be uniform over the region of interest.

Feature-level fusion can also be formulated using the class-conditioned densities. This approach has advantages
when models for such densities exist. From Bayes� rule we can write

k = arg min
j

KX
`=1

Cj` Pr(H`(R))fD|H`(R)(D|H`(R)) (12)

Note that this formulation requires knowledge of the priors Pr(Hk(R)), which are sometimes difficult to obtain.
Again using Bayes� rule, we Þnd

fD|Hk(R)(D) =

Z
dΘfΘ|Hk(R)(Θ)fD|Θ,Hk(R)(D) (13)

Since G is presumed known, the data D conditioned on the parameter Θ have the same density as the clutter N,
which leads to

fD|Θ,Hk(R)(D) = fN(D−Gk(Θ)) (14)

and

fD|Hk(R)(D) =

Z
dΘfΘ|Hk(R)(Θ)fN(D−Gk(Θ)) (15)

Once again we have an exact result, but the cost of evaluating equation (15) can be high. As done above, we obtain

an approximate expression by assuming that fN(D−Gk(Θ)) has a well deÞned maximum for Θ = �Θ. We Þnd

fD|Hk(R)(D) ≈ fΘ|Hk(R)(
�Θ)

Z
dΘfN(D−Gk(Θ)) = (const)fΘ|Hk(R)(

�Θ) = (const)fθ|Hk(R)(
�θ)fR0|Hk(R)(

�R0) (16)

where the constant term depends only on the data D and in the last step we have made the assumption that θ and
R0 are conditionally independent.

3. DECISION-LEVEL FUSION

The formulation of an optimal decision-level fusion algorithm is similar to that described in Section 2 for feature-
level fusion. As before, each sensor i collects data {di(Ri1), . . . ,di(RiJi)}. On the basis of these data, it makes a
declaration ui regarding the truth of intermediate hypotheses hiq(R) for q = 1, 2, ..., Qi. The intermediate hypotheses
may be selected on the basis of the sensors involved. For example, for a sensor suite that comprises EMI, GPR and
IR we might use h11 =�metallic object present,� h12 =�metallic object not present,� h21 =�dielectric discontinuity
present,� h22 =�dielectric discontinuity not present,� h31 =�thermal discontinuity present,� and h32 =�thermal
discontinuity not present,� rather than simply �mine present� and �mine not present.� To simplify the discussion
we will only treat the case in which all the Qis are equal. The single-sensor detections ui can be obtained by any
process, including that described in Section 2, if in that discussion the data set is restricted to one sensor only. To
simplify the notation we form the vector of local declarations given by

u = [u1 u2 . . . uNs ]
T (17)



We wish to combine these declarations into a fused declaration u0 which describes the truth of hypotheses Hk(R),
k = 1, 2, ...,K. We will assume the following: (1) the fusion processor has no knowledge of the sensor data D and u0
is based only on the declarations u, (2) the association problem has been solved so that a putative detection Hk(R)
is not confused with another detection Hk(R

0), (3) for each sensor we know the detection conÞdences Pr(ui|Hk(R))
for all k, and (4) the a priori probabilities Pr(Hk(R)) are known. For optimal fusion we must minimize the risk of
the decision, which for a Þxed value of u is equivalent to minimizing

arg min
j

KX
`=1

Cj` Pr(H`|u) = arg min
j

KX
`=1

Cj` Pr(u|H`)Pr(H`) (18)

There are several approaches to decision fusion. The relation between u0 and the individual declarations ui,
which is expressed by Pr(u0 = j|u), is a mapping from the Ns-fold product of the space {1, 2, ..., Q} to one of K
output hypothesis values. There are KQNs

such functions, from which we must determine the most effective rule.
Even for the case of binary decisions with K = Q = 2, this leads to a large number of possible mappings. Several
ad hoc mappings from the ui to u0 have been used (some with considerable success) in performing fusion. These
include logical AND and OR operations, as well as majority voting.

In some situations we can determine the optimal mapping.1 Here we consider the simplest case, in which the
local decision rules (i.e., the mappings from D to the local decisions ui) are Þxed. For K = Q = 2 the minimum in
equation (18) reduces to a likelihood ratio test, given by

Pr(u1, u2, . . . , uNs
|H1)

Pr(u1, u2, . . . , uNs
|H0)

>
< η (19)

where η is a constant threshold and the cases > and < correspond to the decisions u0 = 1 and u0 = 0 respectively.

If the declarations ui are conditionally independent for each sensor, then we have

Pr(u1, u2, . . . , uNs |H1)
Pr(u1, u2, . . . , uNs |H0)

=
NsY
i=1

Pr(ui|H1)
Pr(ui|H0) (20)

If we deÞne miss and false-alarm probabilities for each sensor as follows:

PMi = Pr(ui = 0|H1) (21)

PFi = Pr(ui = 1|H0) (22)

then we can write the optimum test as

NsX
i=1

·
ui log

µ
1− PMi

PFi

¶
+ (1− ui) log

µ
PMi

1− PFi

¶¸
>
< log(η) (23)

which is a weighted form of voting.

4. SENSORS AND SIGNAL PROCESSING

The foregoing algorithms are being used with a sensor suite that comprises a ground penetrating radar (GPR), a
commercial infrared (IR) camera, and a Schiebel electromagnetic induction (EMI) sensor. Brief descriptions of these
devices and their supporting signal preprocessing algorithms are presented below.

4.1. Electromagnetic Induction Sensor

4.1.1. Hardware

The EMI sensor used in this work was a Schiebel AN-19/2 pulsed-induction metal detector. The standard output
signal, an audio tone, is not suitable for the modeling work described here. Instead, data were acquired with a digital
oscilloscope at an internal signal within the sensor. The sensor was Þtted to a linear scanner, which was programmed
to acquire 56 samples over a 55 inch path. Scans were performed at six inch intervals along a track to obtain a grid
of sample points over the region of interest.



Figure 1. The GPR dielectric rod antenna and scanning system.

4.1.2. Signal Processing

Signal processing for the EMI sensor is a two-step process. First, the sensor response over metal-free soil was acquired,
and this background was subtracted from the waveforms collected over other locations. In principle, the response
of a pulse-induction EMI sensor should be well approximated by a sum of decaying exponentials. The resulting
difference signal, however, is not well approximated in this manner (especially for small mines), but its integral is a
very effective detector of buried metal.

The second step involves estimation of the feature vector Θ. For targets not too near the sensor head and not
too large compared to the loop radius, the integrated sensor response described above has a spatial variation that is
approximated by the function

G1(R;Θ1) = B +
S

1+ (||R−R0||/a)b
(24)

where R0 is the location of the target�s centroid, B is the response of the background, S is the amplitude of the
target response and a and b are shape parameters. At each sample position R we Þt all data within a window to this
model. The size of the window is selected on the basis of the signal amplitude. A nonlinear optimization technique is
then used to estimate the values of these parameters from samples within the window. The resulting feature vector
is given by

Θ1 = [a b S B E R0]
T (25)

where E = |D−G1|2/|D|2 is the normalized residual error in the estimate.

4.2. Ground Penetrating Radar

4.2.1. Hardware

The GPR used in this effort was developed at The Ohio State University (OSU) ElectroScience Laboratory (ESL)3

and is shown in Figure 1. It employs a novel dielectric rod antenna, which is scanned horizontally over the earth at
a Þxed height. The antenna and its supporting platform are moved along a linear track in two inch intervals, and a
horizontal scan of 55-inch length and 101 samples is taken in the cross track dimensions at each position. A network
analyzer is used to acquire complex reßection coefficient measurements at 51 frequencies between 1 and 6 GHz. The
frequency regime from 5 to 6 GHz was found to be dominated by clutter and was not used in this analysis.



Figure 2. Example GPR data acquired over the 3.5 inch metal disk mine surrogate. The upper Þgure shows the
time-domain data. The lower Þgure shows the same data with the surface reßection suppressed. The thin white line
in the lower Þgure is the estimated position of the surface.

4.2.2. Signal Processing

A background signature (the response of the radar when the antenna points into free space) was acquired and
subtracted from all data. The impulse response of the radar was determined by measuring scattering from a reference
target (a short cylinder) in the absence of soil and comparing the result with a calculated scattered response. This
impulse response was then deconvolved from the background-corrected measured data.

The resulting data are processed by Þrst locating and removing the ground-reßected wave. This wave, a bandlim-
ited approximation to an impulse response, is removed using an OSU-developed TLS-Prony technique.4 An example
of the process is shown in Figure 2 for a 3.5 inch metal mine surrogate buried at 1 inch depth. Mine signatures are
detected by performing a three-dimensional convolution with a matched Þlter, which comprises G2. The Þlter is
formed by simulating the response of a point scatterer in the soil medium at the depth of interest. GPR clutter tends
to be highly correlated in the horizontal dimension (primarly because of the return from plane-stratiÞed media), and
whitening is performed prior to using this Þlter. The sensor feature vector Θ2 used in classiÞcation is the position
and maximum value of the matched Þlter within a window several samples wide at each position R.

4.3. Infrared Camera

4.3.1. Hardware

We used a commercially available MWIR camera in this work. The sensor is a InSb photovoltaic array of 160 by 120
pixels. The optics provide a Þeld of view of 9.1◦ by 6.8◦ for an IFOV of 1 mrad. The noise equivalent temperature
difference for the sensor is 0.025 K. More information on the sensor and our IR measurements is available in a
companion paper.5

The camera was positioned on the roof of the ESL building adjacent to the test site, and data were acquired from
this vantage point. The camera�s Þeld of view does not permit us to sample the entire region simultaneously, and a
sequence of images was necessary. Fiducial markers were placed over the region to permit registration.



Figure 3. An example IR image after remapping to ground coordinates.

4.3.2. Signal Processing

Processing the IR data begins by remapping the imagery to ground coordinates using a standard perspective trans-
formation. This step is followed by bilinear interpolation and resampling to a uniform pixel size. An example image
is shown in Figure 3. An image chip is extracted at each interrogation point R. Based on empirical observations,
we employ a signature model identical to that used for the EMI sensor. A nonlinear optimization process is used to
determine parameter values within the chip.

5. RESULTS

The fusion procedures described above in Sections 2 and 3 have been tested on experimental data acquired by the
sensors described in Section 4. These data are preliminary and require further analysis before a complete comparision
of the methods is possible. The test procedures and results are described below.

5.1. Test Site

Our experimental work was performed using a simulated mine Þeld of 40 mine-like and clutter-like surrogates. The
layout of this mine Þeld is shown in Figure 4 and the identities of the buried objects are given in Table 1. The objects
in this Þeld had been in situ for more than 18 months at the time these data were acquired.

Our objective in creating this mine Þeld was to provide an environment for testing sensors, validating fusion
algorithms, and identifying problems that arise in realistic conditions. The target set is quite challenging. Roughly
half the mine surrogates contain no metal (in contrast to real mines, essentially all of which contain some metal). In
addition, some of the targets are quite small (only 1.5 inches in diameter), which present detection problems for all
of the sensors. Those targets (all P15 objects in Figure 4) were designated clutter in what follows.

Consistent with our initial goal of simulating realistic Þeld conditions, the test area was not specially conditioned
prior to emplacing the targets. As a result, there exists a variety of clutter and buried objects in this area. Since
our tests began about two years ago, roughly 100 metallic fragments, and a number of stones have been located in
(and subsequently removed from) the region. The four concrete pilings shown in the Þgure were concealed by a lush



Figure 4. The layout of the ESL mine Þeld.

grass cover that was present when the test objects were emplaced. Surface vegetation on the mine Þeld has since
been completely removed. In addition to these objects, the soil contains a large amount of clay, which affects GPR
performance. The surface of the mine Þeld contains a number of irregularities, but it is planar to within an estimated
variation of ±2 inches. As a result of this surface roughness, scanned sensors such as the EMI and GPR cannot
maintain a constant height, and some undesirable variations in signal amplitude occur.

Position errors in the data arise from several sources. The positions of the targets shown in Figure 4 are accurate to
within approximately one inch. Each sensor is operated on a different platform, and the platform position is known
to within approximately one inch. As a result of roll, pitch, and yaw by the sensor platform, surface roughness
produce errors in the sensor Þeld of view on the order of one to two inches, for a total maximum position uncertainty
of four inches. Processing of the individual sensor data sets has conÞrmed this estimate.

Data were acquired along the paths shown in Figure 5. The GPR samples were acquired at roughly 0.5 inch
intervals along N-S lines spaced every two inches E-W, and the EMI sensor samples at a 1 inch interval along N-S
lines spaced six inches E-W. The infrared camera acquired eight images as shown by the trapezoids. After remapping
to ground coordinates, the pixel dimensions are approximately 0.5 inches. The small squares are IR Þducial markers,
and the small circles are the target grid points shown in Figure 4.

5.2. Results for Feature-Level Fusion

Features were extracted from each of the sensors as described above, and those features were used in a classiÞer as
indicated in equation (10). For feature-level fusion, in estimating the features �Θ we did not permit the optimization
process to use a variable shift R0. Features samples were computed on a two inch grid of interrogation points R
over the entire mine Þeld. The classiÞer Pr(Hk(R)| �Θ)) was approximated by a backpropagation neural network. We
attempted only the detection problem, for which the output hypotheses were H1 =�mine� and H2 =�non-mine.�
The result of this process was compared to a threshold, leading to a binary map. Regions with small numbers of
adjacent detections were discarded. The performance of the fused system is shown in Figure 6. Targets detectable
by the fused sensor suite are indicated by circles, and we see that all of the mine surrogates have been detected with
nine false alarms.



Table 1. Description of the objects buried in the MURI mine test grid

Abbreviation Object Diameter Height
(inches) (inches)

CC Coke can
CX Crushed coke can
PT Pop top
M35 Aluminum disk 3.5 5/8
P15 Plexiglass disk 1.5 2
R4 Rock 4 2
V4 Void(styrofoam) 4 2
H4 ReÞlled hole 6 2
N35 Nylon disk 3.5 5/8
N3P Nylon disk with 3 1

.078 diam 1 long steel pin
T7 Teßon disk 7 1
N7 Nylon disk 7 1
B8 Concrete pilings 8 varies

Figure 5. Locations of sample points for the sensor suite.



Figure 6. The results of feature-level fusion. The known targets are indicated by circles.

Figure 7. Detections by the EMI sensor.

5.3. Results for Decision-Level Fusion

For decision-level fusion we used the same grid of feature values described above. The resulting features θi for each
sensor i are applied to sensor-speciÞc classiÞers (backpropagation networks) Pr(hk(R)|θi), and a target detection ui
is produced at each point. The target position information R0,i was used to weight the classiÞcation results ui as
given in equation (16). The density fR0|Hk(R) was taken to be uniform over |R−R0| <4 inches and zero otherwise.
This process leads to the three detection maps shown in Figure 7, 8, and 9.

Because our mine-Þeld contains roughly equal numbers of metallic and metal-free mines, we used the EMI and
GPR sensors to recognize metal-bearing objects and the IR and GPR sensors to recognize metal-free objects. A
two-level fusion approach was employed. For the EMI-GPR sensor suite the intermediate hypotheses h11= �metallic
mine� and h12 =�metallic clutter� were used, while for the IR-GPR suite we used h21= �non-metallic mine� and
h22 =�non-metallic clutter.� The second-level fusion involved the trivial mapping H1 = h11∪h21 and H2 = h12∪h22.
The set of all mine detections is shown in Figure 10. We Þnd that the decision-level fusion system has produced a
detection rate equal to that of the feature-level fused system (all targets were detected), and its false-alarm rate is
comparable. The reduction in false alarms compared with the individual sensors is signiÞcant.



Figure 8. Detections by the GPR sensor.

Figure 9. Detections by the IR sensor.

Figure 10. Detection of all mine types obtained by decision-level fusion of the EMI, GPR and IR sensors.



6. CONCLUDING REMARKS

Mine detecting sensors tend to produce data that are non-commensurate and sampled at non-coincident positions.
We have developed and implemented a feature-level fusion technique for such data. The method has a rigorous basis,
and with some approximations it can be reduced to form that is implemented efficiently and with a modest amount
of information. The signal-processing tools required to use EMI, GPR and IR sensors for fusion have been developed.

We have conducted some preliminary tests of the algorithm and compared it to a decision-level fusion algorithm.
Comparable performance was found for both forms of fusion. The theoretical work suggests that feature-level fusion
may have some advantages, but further study is necessary to conÞrm these Þndings. To be more convincing, future
tests of the algorithm must involve larger data sets. Development of more effective feature sets is also desirable to
get maximum information from the available sensors.
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