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Abstract The governing dynamics of fluid flow is stated as a system of partial
differential equations referred to as the Navier-Stokes system. In industrial
and scientific applications, fluid flow control becomes an optimization problem
where the governing partial differential equations of the fluid flow are stated
as constraints. When discretized, the optimal control of the Navier-Stokes
equations leads to large sparse saddle point systems in two levels.

In this paper we consider distributed optimal control for the Stokes system
and test the particular case when the arising linear system can be compressed
after eliminating the control function. In that case, a system arises in a form
which enables the application of an efficient block matrix preconditioner that
previously has been applied to solve complex-valued systems in real arithmetic.
Under certain conditions the condition number of the so preconditioned matrix
is bounded by 2. The numerical and computational efficiency of the method in
terms of number of iterations and execution time is favorably compared with
other published methods.
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1 Introduction

Optimal control problems constrained by a partial differential equations (PDEs)
arise in many applications, see for instance [9, 18, 16] and the references
therein. Due to the increased dimension of the problems involving both state
and control functions as well as Lagrange multipliers for the constraints, effi-
cient numerical solution methods are required. To get an acceptable runtime,
these methods have to be of iterative type. The matrices, arising after dis-
cretization have a rich block structure. It is then crucial to write those matrices
in a form for which efficient preconditioners can be constructed.

Recently, construction of efficient solution strategies for the Stokes control
problem has drawn attention. In the work [27], a parameter-robust block-
diagonal preconditioner is derived and its analysis is based on nonstandard
norm argument which in some sense follows the idea of operator precondition-
ing discussed in [6] and the references therein. Subsequently, another work in
[11] is based on the fundamental saddle point theory, which then in turn utilizes
block approximations based on the work [3] and a variation of a commutator
argument discussed in the book [20]; four preconditioners are suggested - two
of block-diagonal and two of block lower-triangular form. One of the precon-
ditioners is a re-derivation of the one in [27]. The four preconditioners are
tested and their numerical and computational efficiencies are compared. The
outcome shows that the block-diagonal preconditioners are performing best
and therefore we compare our preconditioner with those two only.

We mention two more works, where Stokes control problems are studied,
[22] and [17]. There, the cost functional differs from that considered in [27, 11],
namely, it includes also control of the pressure variable. The preconditioning
techniques proposed there rely on effective approximations of the (1,1) pivot
block and the Schur complement. While the quality of the Schur complement
approximation is mesh size (h) independent, it is not regularity parameter (β)
independent. Some discussion on that case is included in [11]. In this work we
do not consider them any further.

In [10], a technique, previously used to solve linear systems with complex-
valued matrices in real arithmetic, is utilized in the context of optimal control
problems, constrained by the Poisson and the convection-diffusion equations.
In the present paper the latter technique is applied also for Stokes control
problems. It is shown that the very favorable parameter-independent condition
number 2 of the corresponding preconditioned matrix holds then also.

The remainder of the paper is structured as follows. In Section 2 we briefly
formulate the control problems with a PDE constraint and present with more
detail the control problem for Stokes equations. In Section 3 we state our pre-
conditioner and derive condition number bounds. Section 4 contains a sum-
mary of some other preconditioning methods and a summary of computational
complexity of the preconditioners considered is given in Section 5. Section
6 presents a performance comparisons between the different preconditioning
techniques, referred to in this paper, in terms of total solution time and number
of iterations. The paper ends with some concluding remarks.
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2 Optimal control problems, constrained by PDEs. Stokes control

We recall the general form of a distributed control problem, minimized subject
to a PDE, posed on some domain Ω ⊂ R

d, d = 1, 2, 3:

min
y,u

J (y, u) =
1

2
‖y − yd‖2

L2(Ω) +
1

2
β‖u‖2

L2(Ω)

such that L(y) = u

(1)

and satisfying appropriate boundary conditions. Here, L is a scalar or vector
partial differential operator, y is the state function, u is the control function in
the form of a distributed control, yd is the target (desired) solution we want to
achieve, β > 0 is the regularization parameter (also called the cost parameter)
and in practice is chosen to be small. The PDE-constraint that models the
underlying process to be controlled, is referred to as the state equation. This
equation may itself contain a constraint, such as divergence-free criterion as
for a Stokes problem.

We consider now the minimization of the cost functional with Stokes equa-
tions as the constraint in two dimensions. Below, we respect the following
notational conventions. A continuous vector field is denoted by a bold lower-
case letter. After discretization, for simplicity, the notation is kept the same.
The scalar continuous variables are denoted by lowercase letters and after
discretization - by bold lowercase letter.

The independent variables for the Stokes equations are the velocity, de-
noted below by y and the pressure p. The control problem is stated as follows,

min
y,u

J (y,u)

s.t. −∆y + ∇p = u in Ω
∇ · y = 0 in Ω

y = gD on ∂Ω.

(2)

We now solve the optimization problem concerning the attainment of desired
state yd, by finding u such that the velocity y is close to yd. The constraint
is implemented with Lagrange multipliers l̃, corresponding to the solution y
and m̃, corresponding to the pressure p.

Since the Stokes system is self-adjoint, the two approaches for dealing with
the problem, namely, discretize-then-optimize and optimize-then-discretize, yield
the same optimality system, i.e.,

AF




y
p
u

l̃
m̃




≡




M 0 0 F̃ B̃T

0 0 0 B̃ 0
0 0 βM −M 0

F̃ B̃T −M 0 0

B̃ 0 0 0 0







y
p
u

l̃
m̃




=




b
0
0

f̃
g̃



, (3)
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where

F̃ =

∫

Ω

∇φi : ∇φj , M =

∫

Ω

φiφj , B̃ = −
∫

Ω

ψk∇ · φj ,

b =

∫

Ω

ydφi −
ny+n∂∑

j=ny+1

yj

∫

Ω

∇φi : ∇φj ,

f̃i = −
ny+n∂∑

j=ny+1

yj

∫

Ω

∇φi : ∇φj , g̃i =

ny+n∂∑

j=ny+1

yj

∫

Ω

ψi∇ · φj ,

f̃ = [f̃i], g̃ = [g̃i].

The matrices M and F̃ are Gramian matrices resulting from vector valued
basis functions and are both symmetric and positive definite. Note that φi are
vector basis functions and ∇φi : ∇φj represents the component-wise scalar
product. The coefficients {yj}j=ny+1,...,ny+n∂

interpolate the boundary data

gD. Recall that l̃ and m̃ are the adjoint variables associated with y and p.
We assume that the pair of the basis function set {φi} and {ψj} have been
chosen such that the divergence constraint matrix B has full rank.

Next, using the relation u =
1

β
l̃, we reduce the system as

ÃR




y
p

l̃
m̃


 ≡




M 0 F̃ B̃T

0 0 B̃ 0

F̃ B̃T − 1

β
M 0

B̃ 0 0 0







y
p

l̃
m̃


 =




b
0

f̃
g̃


 . (4)

Further, introducing the notations l = − 1√
β

l̃, m = − 1√
β

m̃ , f = 1√
β

f̃ , g =
√
βg̃ and F =

√
βF̃ , B =

√
βB̃, we can transform the system to

AR




y
p
l

m


 ≡




M 0 −FT −BT

0 0 −B 0
F BT M 0
B 0 0 0







y
p
l

m


 =




b
0
f
g


 , (5)

which has skew-symmetric off-diagonal blocks and is nonsingular. The latter
can be seen, for instance by permuting rows 2 and 4 and columns 2 and 4.
Then the diagonal blocks and the Schur complement become nonsingular.

We consider in this paper only preconditioners for the reduced system in
the form ÃR and AR. To ease the notations, in the rest of the paper we drop
the superscript ’R’.
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3 A preconditioner for A, based on its algebraic structure

3.1 The genesis of the idea

The matrix A can be seen as a two-by-two block matrix of the form

A =

[
M −F
F M

]
,

where M =

[
M 0
0 0

]
and F =

[
F BT

B 0

]
. According to the theory, developed in

[26, 1, 10], a very efficient preconditioner for matrices with such a structure is
of the form

PF =

[
M −F
F M + (F + FT )

]
.

In the above references it has been shown that under certain conditions the
condition number of P−1

F A is bounded by 2. The result holds for instance
when M is positive semidefinite and F satisfies the requirement that F + FT

is positive definite.
Further, it is shown that systems with PF can be solved in a computation-

ally efficient manner, requiring just two solutions with the systems M + F
and M + FT and some vector updates. The algorithm utilizes the fact that
we have an explicit form of the exact inverse of PF .

To make the paper self-contained, we include the algorithm to solve systems
of the form [

M −bF
aF M +

√
ab(F + FT )

] [
x
y

]
=

[
f1

f2

]
.

Denote H1 = M+
√
abF and H2 = M+

√
abFT . Then, x and y are computed

as follows (in our case a = b = 1):

Algorithm 1

1. Solve H1g = f1 +
√

b

a
f2.

2. Compute Mg and f1 − Mg.
3. Solve H2h = f1 − Mg.

4. Compute x = g + h and y = −
√

a

b
h.

The detailed derivation of Algorithm 1 can be found, for instance, in [10]
(Propositions 1 and 2).

The cost of performing Algorithm 1 includes one solution with each of
the matrices H1 and H2, one matrix multiplication with M and five vector
updates.

Although the preconditioner is based on a reformulation of the given sym-
metric system in nonsymmetric form, as it has been shown in [10], the precon-
ditioned matrix becomes normal, i.e., it has a complete eigenvector space and
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the best polynomial approximation property for a Krylov subspace method,
such as GMRES, is still applicable.

3.2 Analysis of the preconditioner for the optimal control problem with
Stokes control

Based on the result, outlined in Section 3.1, we precondition the matrix A in
(5) by a preconditioner formed by adding the matrix

[
F BT

B 0

]
+

[
FT BT

B 0

]
=

[
F + FT 2BT

2B 0

]

to the lower (2, 2) block of the transformed matrix A. Thus, we precondition
A by the matrix

PF =




M 0 −FT −BT

0 0 −B 0
F BT M + F + FT 2BT

B 0 2B 0


 .

To find the eigenvalues (λ) of the corresponding preconditioned matrix
P−1

F A we consider the generalized eigenvalue problem

λ




M 0
0 0

−FT −BT

−B 0
F BT

B 0
M1




[
x
y

]
=




M 0 −FT −BT

0 0 −B 0
F BT M 0
B 0 0 0




[
x
y

]
,

where M1 =

[
M + F + FT 2BT

2B 0

]
. The preconditioned matrix is nonsingular,

so λ 6= 0.

Theorem 1 The preconditioned matrix P−1
F A has a complete eigenvector space

with eigenvalues λ = 1 for eigenvectors (x,0), x 6= 0. The remaining eigen-
values are bounded as 1

3 ≤ λ ≤ 1. If F is symmetric and positive definite, the
lower bound equals 1

2 .

Proof There holds

µ




M 0 −FT −BT

0 0 −B 0
F BT M 0
B 0 0 0




[
x
y

]
=




0 0 0 0
0 0 0 0
0 0 F + FT 2BT

0 0 2B 0




[
x
y

]
(6)

where µ = 1
λ −1. Here µ = 0, i.e. λ = 1, if

[
F + FT 2BT

2B 0

]
y =

[
0
0

]
, |x|+|y| 6= 0.

However, since F +FT is symmetric and positive definite and B has full rank,
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this system has only the trivial solution, y = 0, so λ = 1 for (x,y) = (x, 0),

x 6= 0. Consider now µ 6= 0 (λ 6= 1). Let x =

[
x1

x2

]
, y =

[
y1

y2

]
, where y 6= 0.

It holds that By1 = 0 and µBx1 = 2By1 so also Bx1 = 0. Note that
for complex vectors this holds both for the real and imaginary parts of the
vectors. From the remaining equations in (6) it follows

{
µ(Mx1 − FT y1 −BT y2) = 0

µ(Fx1 +BT x2 +My1) = (F + FT )y1 + 2BT y2 = Mx1 + Fy1 +BT y2.
(7)

Let now x̂i = M1/2xi, ŷi = M1/2yi, i = 1, 2 and multiply the equations in
(7) by M−1/2. Then

{
x̂1 = F̂T ŷ1 + B̂T ŷ2

µ(F̂ x̂1 + B̂T x̂2 + ŷ1) = x̂1 + F̂ ŷ1 + B̂T ŷ2

(8)

where F̂ = M−1/2FM−1/2, B̂ = M−1/2BM−1/2.
Since Bx1 = 0, By1 = 0, it follows that B̂x̂1 = 0, B̂ŷ1 = 0. Hence, a

multiplication of the equations in (8) with B̂ leads to B̂F̂T ŷ1 + B̂B̂T ŷ2 = 0,

i.e. ŷ2 = −(B̂B̂T )−1B̂F̂T ŷ1 and

µ(B̂F̂ x̂1 + B̂B̂T x̂2) = B̂F̂ ŷ1 + B̂B̂T ŷ2 = B̂(F̂ − F̂T )ŷ1.

Thus, x̂1 = (I − P )F̂T ŷ1, where P = B̂T (B̂B̂T )−1B̂, i.e. P is a projection

matrix. It follows that ŷ∗
1x̂1 = ŷ∗

1F̂
T ŷ1 and x̂∗

1x̂1 = x̂∗
1F̂

T ŷ1, where x∗ stands

for the complex conjugate vector. Hence, x̂∗
1ŷ1 = ŷ∗

1F̂ ŷ1 and x̂∗
1x̂1 = ŷ∗

1F̂ x̂1.
Multiplications of the second equation in (8) with x̂∗

1 and ŷ∗
1, respectively,

leads to

µ x̂∗

1F̂ x̂1 + µ x̂∗

1ŷ1 = |x̂1|2 + x̂∗

1F̂ ŷ1 = 2|x̂1|2 (9)

µ ŷ∗

1F̂ x̂1 + µ |ŷ1|2 = ŷ∗

1x̂1 + ŷ∗

1F̂ ŷ1. (10)

It follows then from (9) that

µ(x̂∗

1F̂ x̂1 + ŷ∗

1F̂ ŷ1) = 2|x̂1|2 (11)

and from (10) that

µ(|x̂1|2 + |ŷ1|2) = ŷ∗

1(F̂ + F̂T )ŷ1 = 2ŷ∗

1F̂ ŷ1. (12)

Since by assumptions made, F̂ + F̂T is symmetric and positive definite, it
follows from (12) that µ is real and positive. Further µ ≤ 2‖F̂‖. Also from
(11) and (12),

µ2(|x̂1|2 + |ŷ1|2) = 2µŷ∗

1F̂ ŷ1 = 2(2|x̂1|2 − µx̂∗

1F̂ x̂1),
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so, since |ŷ1| 6= 0 then µ2 < 4. Hence, µ ≤ 2 min{1, ‖F̂‖}. For µ = 2 we get
λ = 1/3. Therefore, since µ > 0, it follows that 1/3 ≤ λ ≤ 1.

If F is symmetric positive definite, as for the Stokes problem, then (11)
shows that

µ(x̂∗

1F̂ x̂1 + ŷ∗

1F̂ ŷ1) = 2x̂∗

1F̂ ŷ1 ≤ 2(x̂∗

1F̂ x̂1)1/2(ŷ∗

1F̂ ŷ1)1/2 ≤ x̂∗

1F̂ x̂1 + ŷ∗

1F̂ ŷ1,

so µ ≤ 1 and 1/2 ≤ λ ≤ 1.

These are the same eigenvalue bounds that hold for optimal control of the
Poisson equation, see [10].

4 Other preconditioners for Stokes constrained optimal control
problems

In order to provide some basic understanding on the preconditioning tech-
niques that are currently available for the Stokes control problem, we briefly
describe the work done in [11] along with the best performing preconditioner
proposed in [27].

4.1 Block-diagonal preconditioner for the reduced system, based on
nonstandard norms

A preconditioner for the system (4) that is parameter-independent has been
proposed in [27] using non-standard norm arguments. It is of the form

Pnsn =




M +
√
βF 0 0 0

0
1

β
(M +

√
βF ) 0 0

0 0 (F−1
p +

√
βM−1

p )−1 0
0 0 0 β(F−1

p +
√
βM−1

p )−1


 .

(13)
Here Mp is the pressure, i.e. scalar, mass matrix and Fp is the scalar analogue
of F .

The idea is to find a norm for which (4) satisfies the well-posedness inf-
sup condition, cf. [2]. This norm then is utilized to construct a preconditioner
to (4). The condition number of the corresponding preconditioned system is
shown to be 4.25, see [28].

On our test problems, the performance of this preconditioner shows both
h- and β-independence, see Tables 2 and 7.
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4.2 Block-diagonal preconditioner for the reduced system, utilising the
underlying system of PDEs

Another preconditioner for the system in (4) has been recently derived in [11],
using the so-called commutator argument. The preconditioner is of the form

Pcta =




M 0 0 0

0 (F +
1√
β
M)M−1(F +

1√
β
M)T 0 0

0 0 Fp 0

0 0 0 (M−1
p FpM

−1
p +

1

β
F−1

p )−1



.

(14)
Utilizing the knowledge of the fundamental saddle point theory and viewing
(4) as a two-by-two block structure, one can see that the pivot block (1,1)
is structurally equivalent to a Poisson control problem; hence this block is
approximated by an equivalent preconditioner for the Poisson control prob-
lem as described in [21]. For the Schur complement, however, two approxi-
mations are required – one for BM−1

p BT and another for BΘ−1BT , where

Θ = FM−1F +
1

β
M . The first approximation is based on the well known re-

sult that BM−1
p BT ≈ Fp, cf. [20]. The second approximation is obtained using

the assumption that a convection-diffusion operator can also be defined on the
pressure space and the commutator of the convection-diffusion operators with
the gradient operator ∇ is small in some sense, cf. [Chapter 8, [20]]. Using the

strategy, it is shown that BΘ−1BT ≈ FpΘ
−1Mp ≈ (M−1

p FpM
−1
p +

1

β
F−1

p ).

We note that, apart from the complete analysis of the pivot (1,1) block, the
quality of the so-arising preconditioner Pcta has not been rigorously quantified.

The performance of Pcta is illustrated in Tables 3 and 8. Similarly to the
results in [11], we observe that for the tested range of the parameters h and
β, it shows h-independence, but not fully β-independence.

5 Computational complexity of the preconditioners Pnsn, Pcta and
PF

We note first, that since in the Stokes control problem F is the discrete vector
Laplacian (thus F = FT ), we have that

H1 = H2 ≡ H =

[
M + F BT

B 0

]
. (15)

In order to efficiently solve systems with H we introduce

PH =

[
M + F 0
B −Sp

]
(16)
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Preconditioner Operations
Pnsn Four block solves with AMG; two block solves with Chebyshev semi-

iterations (Tables 2 and 7)
Pcta Four block solves with AMG; three block solves with Chebyshev semi-

iterations (Tables 3 and 8)
two block solves with AMG, and one block solve with Chebyshev
semi-iterations per each block H. Since two systems with H are
solved, in total we have four block solves with

PF AMG; two block solves with Chebyshev semi-iterations. In turn, each
H is solved using the preconditioner PH in (16) (Tables 4, 5, 6, 9, 10
and 11)

Table 1: Summary of the computational complexity of the preconditioners

where S−1
p =

√
βM−1

p +F−1
p is a well-known approximation of the correspond-

ing exact Schur complement obtained in [3]. Moreover, the preconditioner PH

in (16) has been shown to possess a mesh-independent convergence, cf. [24, 13].
As pointed out in the erratum to [24], see [25], and in [13], this holds at least
if Ω is a convex domain.

A successful application of the preconditioners Pnsn, Pcta and PF requires
that each block can be approximated efficiently in a numerical sense. In the
numerical tests in Section 6, the following approximations are used.

(i) Based on the analysis done in [12] and used in [11], a system with a mass
matrix block, whether in the velocity space or the pressure space, i.e., M
and Mp, is solved by the Chebyshev semi-iteration method, terminated
either after at most 20 iterations or when the norm of the relative residual
becomes less than 10−4.

(ii) All blocks of the form Fp, F +
1√
β
M , (F +

1√
β
M)T and M +

√
βF are

replaced by one V-cycle of an Algebraic Multigrid (AMG) solver.

Table 1 summarizes the computational costs for each preconditioner per
iteration.

Remark 1 (Solving the two-by-two H block) We can numerically solve the H
block in various ways. One such option is by preconditioning it with PH and
using an iterative solver such as the flexible GMRES (FGMRES) method
([14]). Another way is to use the inexact Uzawa method [4, 19], in which case
PH then acts as a splitting matrix for the iteration,

ρn+1 = ρn + P−1
H

Hrn (17)

where ρn = (x,y)T and rn are the solution and residual vectors at the n-th
iteration. However, a parameter τ is introduced with Sp in PH to improve per-
formance. This approach has been previously used in [22] in a similar context
with τ = 3/5. In [22] and [20], this value is based on the average of the eigen-
value bounds of the preconditioned Schur complement, there preconditioned
by the pressure mass matrix. In our case, the largest eigenvalues of the pre-
conditioned Schur complement matrix are larger, but close to unity, for small
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values of β. There are also some small positive eigenvalues. We find that the
value 3/5 is close to the average also in our case.

6 Numerical Results

In this section we demonstrate the numerical and computational performance
of the three preconditioners, i.e., Pcta, Pnsn, and PF . To this end, we use the
following two test problems.

Problem 1 (Velocity tracking problem with distributed control, cf.
[27]) Find the state y ∈ H1

0 (Ω) and the control u ∈ L2(Ω) that minimize the
cost functional

J (y,u) =
1

2
‖y − yd‖2

L2(Ω) +
1

2
β‖u‖2

L2(Ω)

s.t. −∆y + ∇p = u in Ω
∇ · y = 0 in Ω

y = yd on ∂Ω.

(18)

with Ω = [0, 1]2 and a desired state yd(x1, x2) = (yd,1(x1, x2), yd,2(x1, x2)),

given by yd,1(x1, x2) = 10
∂

∂x2
(ϕ(x1)ϕ(x2)) and yd,2(x1, x2) = −10

∂

∂x1
(ϕ(x1)ϕ(x2)),

where ϕ(z) = (1 − cos(0.8πz))(1 − z)2.

Problem 2 (Lid-driven cavity) Find the state y ∈ H1
0 (Ω) and the control

u ∈ L2(Ω) that minimize the cost functional J (y,u) in (18) subject the the
same constraints and a desired state yd = x2i − x1j. Here i and j are the unit
vectors in x1 and x2 directions, correspondingly and

yd =

{
−j if x1 = 1, 0 ≤ x2 ≤ 1,

0 otherwise.

We discretize the problems with inf-sup stable Taylor-Hood finite element
basis functions, (also known as the Q2-Q1 stable pair), see for details [5]. Thus,

the state y, the control u and the adjoint l̃ are discretized using piece-wise
quadratic (Q2) basis functions, while the pressure p and its corresponding
adjoint m̃ are discretized using piece-wise linear (Q1) basis functions. The re-
sults obtained by solving the problem using the three different preconditioners
discussed earlier, i.e., Pnsn, Pcta, and PF are presented in Tables 2-5 for Prob-
lem 1 and in Tables 7-10 for Problem 2. In accordance with the experiments
performed in [27, 11], when applying Pcta and Pnsn, we use MINRES ([15])
as an outer solver. The outer solver when using the preconditioner PF is the
FGMRES. Systems with PH are also solved with an (inner) FGMRES solver
or with an inexact Uzawa type method. The relative convergence tolerance for
both MINRES and outer FGMRES is set to 10−6. For one experiment only,
in Table 5, we present results for the outer stopping tolerance set to 10−10. As
shown by the iteration counts and the execution time, the behaviour of our
preconditioned method is fully consistent.
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β

Size 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

4934 74(4+23) 74(4+23) 71(4+24) 61(4+24) 53(4+23) 41(4+23) 36(4+22) 31(4+23) 25(4+22)
0.16 0.16 0.156 0.134 0.116 0.09 0.079 0.068 0.056

19078 82(4+22) 82(4+22) 80(4+23) 71(4+23) 59(4+23) 45(4+22) 39(4+22) 33(4+21) 27(4+21)
0.789 0.79 0.772 0.688 0.57 0.436 0.38 0.321 0.266

75014 90(4+21) 89(4+21) 87(4+22) 77(4+22) 65(4+22) 49(4+21) 41(4+21) 35(4+21) 29(4+19)
3.885 3.848 3.764 3.338 2.822 2.131 1.788 1.526 1.276

297478 96(4+21) 97(4+21) 95(4+21) 85(4+21) 72(4+20) 53(4+19) 43(4+19) 37(4+20) 29(4+19)
18.654 18.872 18.495 16.574 14.043 10.329 8.391 7.252 5.713

Table 2: Problem P1: Performance of the preconditioner Pnsn

The optimal value of the regularization parameter β can be problem-
dependent but normally, in practice, these values are chosen in the interval,
considered in the numerical experiments, presented in the sequel. Based on
Table 12, some further comments are included, that β shall be taken in the
smaller range of the interval [10−2 − 10−10].

All preconditioners are implemented in C++ and executed using the open
source finite element library deal.ii ([7]) (Version 8.2.1) that provides the
meshes, the finite element discretization and the basic iterative methods.
Further, deal.ii supplies interface to the Trilinos library [23], giving access
to the Trilinos Algebraic Multigrid (AMG) solver. All experiments are per-
formed on Intel(R) Core(TM) i5 CPU 750 @ 2.67GHz-2.80GHz with installed
memory RAM of 4GB. The main settings for the AMG to mention are :
aggregation threshold = 0.8, and smoother type=symmetric Gauss-Seidel, with
the rest taking on package default values. The results are presented in the Ta-
bles 2-10 and obey the following convention.

– Regarding Pnsn and Pcta: For each value of β and h, in the first row we show
the number of outer (MINRES) iterations in bold, followed in brackets by
the number of V-cycle AMG iterations (always 4) and the average number
of Chebyshev semi-iterations per outer iteration. The next row shows the
total solution time (in seconds).

– Regarding PF : the first row shows the outer FGMRES iterations in bold,
followed by the the average number of inner FGMRES iterations (or inexact
Uzawa iterations) required to solve the blocks H1 and H2 (separated by a
plus sign) at each outer iteration; In the following row we show the total
solution time (in seconds).

To better illustrate the performance of PF , we present three experiments
per test problem. In the first experiment the stopping tolerance is 10−4 (Ta-
bles 4 and 9). In the second experiment the inner FGMRES iterations are
fixed to 4 (Tables 5 and 10). At last, in Tables 6 and 11, we show the result
obtained using inexact Uzawa method for the two problems. When reporting
the performance of PF , we do not include information regarding AMG and the
Chebyshev iteration method as these do not bring any new insight compared
to the performance observed for the other two preconditioners.

For completeness, in Table 12 we illustrate the behavior of the cost func-
tional J for different values of β for the velocity tracking problem. As is
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β

Size 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

4934 101(4+29) 102(4+29) 93(4+29) 84(4+30) 73(4+31) 57(4+33) 42(4+32) 30(4+32) 24(4+31)
0.31 0.308 0.282 0.257 0.232 0.187 0.14 0.105 0.08

19078 122(4+28) 119(4+28) 108(4+28) 96(4+28) 84(4+29) 63(3+30) 50(4+31) 39(4+31) 28(4+30)
1.569 1.509 1.364 1.217 1.095 0.823 0.68 0.538 0.387

75014 143(4+27) 134(4+27) 122(4+26) 107(4+26) 94(4+27) 75(4+27) 60(4+28) 47(4+28) 36(4+28)
8.184 7.612 6.8 5.958 5.239 4.205 3.406 2.681 2.123

297478 156(4+27) 145(4+26) 140(4+25) 119(4+25) 104(4+25) 91(4+26) 66(4+25) 54(4+27) 41(4+26)
39.44 35.767 34.146 29.042 25.136 22.215 16.188 13.281 10.099

Table 3: Problem 1: Performance of the preconditioner Pcta

β

Size 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

4934 6(10+10) 8(9+9) 8(8+8) 7(7+7) 7(6+5) 6(6+5) 5(6+5) 4(6+6) 3(6+6)
0.205 0.215 0.219 0.16 0.142 0.136 0.1 0.088 0.066

19078 6(10+11) 8(9+10) 8(8+8) 7(8+7) 7(7+5) 6(6+5) 5(6+5) 4(6+6) 3(6+6)
0.732 0.919 0.799 0.629 0.592 0.446 0.378 0.317 0.242

75014 6(12+12) 7(10+10) 8(9+8) 7(8+7) 7(7+5) 6(6+5) 5(6+5) 5(6+5) 4(6+5)
3.378 3.459 3.481 2.74 2.436 1.793 1.559 1.515 1.253

297478 6(12+12) 8(11+11) 8(10+10) 7(9+8) 7(7+6) 6(6+5) 5(6+5) 5(6+5) 4(6+5)
15.345 18.307 16.589 12.706 10.565 7.744 6.715 6.642 5.336

Table 4: Problem 1: Performance of the preconditioner PF . Stopping tolerance
for the inner FGMRES 10−4

β

Size 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

Outer stopping criterion 10−6

4934 8(4+4) 9(4+4) 9(4+4) 8(4+4) 7(4+4) 6(4+4) 5(4+4) 4(4+4) 3(4+4)
0.121 0.138 0.138 0.142 0.122 0.098 0.083 0.085 0.055

19078 8(4+4) 9(4+4) 9(4+4) 8(4+4) 7(4+4) 6(4+4) 6(4+4) 5(4+4) 3(4+4)
0.478 0.536 0.538 0.483 0.432 0.373 0.367 0.314 0.203

75014 8(4+4) 9(4+4) 9(4+4) 8(4+4) 7(4+4) 6(4+4) 6(4+4) 5(4+4) 4(4+4)
1.947 2.171 2.183 1.975 1.751 1.512 1.501 1.263 1.042

297478 8(4+4) 9(4+4) 9(4+4) 8(4+4) 7(4+4) 6(4+4) 6(4+4) 5(4+4) 4(4+4)
8.496 9.45 9.473 8.547 7.601 6.576 6.489 5.475 4.516

Outer stopping criterion 10−10

4934 13(4+4) 14(4+4) 15(4+4) 15(4+4) 14(4+4) 13(4+4) 12(4+4) 10(4+4) 7(4+4)
0.221 0.256 0.253 0.253 0.238 0.223 0.207 0.184 0.128

19078 12(4+4) 14(4+4) 15(4+4) 15(4+4) 13(4+4) 12(4+4) 11(4+4) 10(4+4) 9(4+4)
0.743 0.861 0.924 0.919 0.804 0.750 0.692 0.637 0.578

75014 13(4+4) 15(4+4) 1 (4+4) 14(4+4) 13(4+4) 12(4+4) 12(4+4) 11(4+4) 9(4+4)
3.197 3.440 3.666 3.442 3.217 2.994 2.979 2.755 2.297

297478 13(4+4) 15(4+4) 16(4+4) 14(4+4) 13(4+4) 12(4+4) 12(4+4) 10(4+4) 9(4+4)
13.875 15.848 16.823 14.853 13.841 12.887 12.885 10.883 9.911

Table 5: Problem 1: Performance of the preconditioner PF . Number of itera-
tions for the inner FGMRES fixed to 4

known, how close the state y approaches the desired state yd is determined
by the regularization parameter β. Hence, we observe that ‖y − yd‖ contin-
ues to decrease with decreasing β while ‖u‖ stops increasing further around
β ≤ 10−4. This implies that the optimal value of β for the problem is fairly
small, i.e., around 10−8 to 10−10. Table 12 is produced using the precondi-
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β

Size 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

4934 8(4+4) 10(4+4) 12(4+4) 12(4+4) 11(4+4) 11(4+4) 9(4+4) 7(4+4) 7(4+4)
0.085 0.101 0.117 0.117 0.11 0.11 0.092 0.074 0.075

19078 8(4+4) 10(4+4) 12(4+4) 12(4+4) 12(4+4) 11(4+4) 10(4+4) 8(4+4) 6(4+4)
0.345 0.417 0.488 0.488 0.497 0.455 0.418 0.344 0.266

75014 8(4+4) 10(4+4) 12(4+4) 12(4+4) 12(4+4) 11(4+4) 10(4+4) 8(4+4) 6(4+4)
1.467 1.775 2.088 2.095 2.091 1.942 1.788 1.465 1.14

297478 8(4+4) 10(4+4) 12(4+4) 12(4+4) 12(4+4) 11(4+4) 10(4+4) 8(4+4) 6(4+4)
6.562 7.943 9.327 9.334 9.344 8.645 7.947 6.534 5.077

Table 6: Problem 1: Performance of the preconditioner PF . Number of itera-
tions for the inner inexact Uzawa iteration is fixed to 4

β

Size 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

4934 80(4+25) 64(4+25) 60(4+25) 52(4+26) 46(4+27) 41(4+27) 38(4+27) 34(4+27) 30(4+27)
0.212 0.194 0.199 0.139 0.125 0.112 0.104 0.094 0.092

19078 80(4+24) 68(4+24) 64(4+25) 58(4+25) 50(4+26) 46(4+27) 40(4+27) 36(4+27) 32(4+27)
0.89 0.757 0.714 0.643 0.561 0.522 0.452 0.408 0.366

75014 78(4+24) 70(4+24) 66(4+24) 62(4+24) 56(4+25) 50(4+26) 44(4+27) 37(4+27) 33(4+27)
3.485 3.125 2.954 2.775 2.521 2.261 1.993 1.683 1.51

297478 74(4+23) 74(4+23) 68(4+23) 64(4+24) 58(4+24) 53(4+25) 48(4+26) 42(4+26) 35(4+27)
14.457 14.482 13.328 12.541 11.396 10.455 9.524 8.344 7.002

Table 7: Problem 2: Performance of the preconditioner Pnsn

β

Size 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

4934 97(4+30) 93(4+30) 74(4+31) 67(4+32) 62(4+33) 54(4+34) 43(4+35) 34(4+35) 31(4+35)
0.346 0.331 0.266 0.256 0.227 0.205 0.166 0.131 0.121

19078 106(4+29) 101(4+29) 80(4+29) 74(4+30) 68(4+31) 62(4+33) 53(4+34) 41(4+35) 33(4+35)
1.523 1.438 1.141 1.059 0.988 0.909 0.793 0.625 0.5

75014 113(4+28) 107(4+28) 84(4+28) 80(4+28) 73(4+29) 68(4+30) 59(4+32) 50(4+33) 39(4+34)
6.594 6.204 4.832 4.61 4.229 3.984 3.501 3.028 2.428

297478 119(4+27) 110(4+26) 88(4+26) 83(4+27) 77(4+28) 72(4+29) 66(4+30) 56(4+31) 47(4+32)
29.817 27.129 21.626 20.429 19.084 17.887 16.439 14.182 12.106

Table 8: Problem 2: Performance of the preconditioner Pcta

β

Size 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

4934 6(7+7) 8(8+7) 9(8+8) 9(8+7) 9(7+7) 8(7+7) 8(7+7) 7(7+6) 6(8+7)
0.159 0.203 0.228 0.216 0.206 0.196 0.203 0.158 0.144

19078 6(7+8) 7(8+8) 8(9+9) 9(8+8) 9(8+7) 9(7+7) 8(7+7) 8(7+7) 7(7+6)
0.563 0.692 0.844 0.89 0.865 0.813 0.736 0.7 0.612

75014 5(7+8) 7(9+8) 7(10+9) 8(9+8) 8(9+8) 9(8+7) 8(7+7) 8(7+7) 8(7+7)
1.904 2.989 3.298 3.443 3.352 3.566 2.986 3.004 2.901

297478 5(8+8) 6(9+9) 7(11+10) 7(10+9) 8(9+8) 8(9+8) 9(8+7) 9(8+7) 8(7+7)
8.864 11.701 15.516 14.579 14.752 14.432 15.361 14.863 13.097

Table 9: Problem 2: Performance of the preconditioner PF . Stopping tolerance
for the inner FGMRES 10−4
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β

Size 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

4934 8(4+4) 10(4+4) 11(4+4) 11(4+4) 12(4+4) 11(4+4) 11(4+4) 12(4+4) 14(4+4)
0.126 0.245 0.189 0.198 0.182 0.170 0.170 0.193 0.221

19078 7(4+4) 9(4+4) 10(4+4) 11(4+4) 11(4+4) 11(4+4) 11(4+4) 11(4+4) 11(4+4)
0.424 0.532 0.589 0.644 0.65 0.652 0.654 0.654 0.651

75014 7(4+4) 9(4+4) 10(4+4) 10(4+4) 11(4+4) 11(4+4) 11(4+4) 10(4+4) 10(4+4)
1.724 2.183 2.408 2.413 2.641 2.651 2.663 2.447 2.499

297478 7(4+4) 8(4+4) 9(4+4) 9(4+4) 10(4+4) 10(4+4) 11(4+4) 11(4+4) 10(4+4)
7.836 8.561 9.509 9.550 10.526 10.562 11.544 11.588 10.654

Table 10: Problem 2: Performance of the preconditioner PF . Number of itera-
tions for the inner FGMRES fixed to 4

β

Size 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10

4934 6(6+6) 9(6+6) 11(6+6) 12(6+6) 13(6+6) 13(6+6) 12(6+6) 11(6+6) 11(6+6)
0.096 0.128 0.153 0.169 0.181 0.182 0.169 0.156 0.162

19078 6(6+6) 8(6+6) 10(6+6) 12(6+6) 13(6+6) 14(6+6) 13(6+6) 13(6+6) 12(6+6)
0.384 0.486 0.591 0.701 0.759 0.817 0.8 0.765 0.711

75014 6(6+6) 8(6+6) 10(6+6) 11(6+6) 13(6+6) 14(6+6) 14(6+6) 13(6+6) 13(6+6)
1.661 2.121 2.586 2.818 3.298 3.542 3.56 3.334 3.328

297478 6(6+6) 7(6+6) 9(6+6) 11(6+6) 12(6+6) 13(6+6) 14(6+6) 14(6+6) 13(6+6)
7.445 8.443 10.503 12.593 13.664 14.757 15.88 15.94 14.91

Table 11: Problem 2: Performance of the preconditioner PF . Number of itera-
tions for the inner inexact Uzawa iteration is fixed to 6

β iter ‖u‖2 ‖y − ŷ‖2 ‖y − ŷ‖2/‖ŷ‖2 J ‖b − Ax‖2/‖b‖2 time
1e-02 8 1.39e+02 4.08e-01 9.66e-01 9.70e+01 2.80e-09 1.947
1e-03 9 1.06e+03 3.12e-01 7.39e-01 5.61e+02 2.60e-09 2.171
1e-04 9 3.16e+03 9.84e-02 2.33e-01 5.00e+02 2.38e-09 2.183
1e-05 8 4.06e+03 1.61e-02 3.80e-02 8.25e+01 1.72e-09 1.975
1e-06 7 4.27e+03 2.90e-03 6.86e-03 9.10e+00 2.68e-09 1.751
1e-07 6 4.33e+03 6.29e-04 1.49e-03 9.39e-01 3.13e-09 1.512
1e-08 6 4.37e+03 1.46e-04 3.46e-04 9.53e-02 1.49e-09 1.501
1e-09 5 4.38e+03 3.34e-05 7.92e-05 9.61e-03 1.51e-09 1.263
1e-10 4 4.39e+03 7.26e-06 1.72e-05 9.64e-04 1.35e-09 1.042

Table 12: Problem 1: Study of the cost functional J of the distributed optimal
control problem constrained by the Stokes system

tioner PF . For mesh size 2−6, we show the number of outer FGMRES ite-
rations represented as ”iter”. ‖u‖ represents the discrete L2(Ω) norm of the
control u, ‖y−yd‖ measures how closely the state y matches the desired state
yd, ‖y−yd‖/‖yd‖ measures the relative error. The column J shows the calcu-
lated cost functional, ‖b−Ax‖/‖b‖ represents the residual norm of the related
Karush-Kuhn-Tucker (KKT) system of equations to show that the system has
converged in the discrete L2(Ω) norm. The last column shows the time (sec)
to solve the system. We note that the differences between the cost functionals
using all other preconditioners are insignificant.
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(a) State y

(b) Control u

Finally, we reproduce the plots from [27] for state y, control u and pressure
p for β = 10−6 and mesh size h = 2−6 using [8]. We use the preconditioner
Pnsn to generate these plots. Clearly, the region with the highest magnitude
in Figure 1(a) contains the vectors of the highest magnitude of one for the
state y. The region of the highest magnitude in Figure 1(b) corresponds to
the value 57.7 for the control u. At last, in Figure 1(c) we can see that the
pressure p lies in the range of -5.7 to 5.7.
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(c) Pressure p

Fig. 1: State y, control u and pressure p distribution for h = 2−6 and β = 10−6.

For the lid driven cavity problem using PF , the plots for state y, control
u and pressure p for β = 10−6 and mesh size h = 2−6 are given in Figures
1(a)-1(c).

Discussion

We have tested the three preconditioners, Pnsn, Pcta and PF for two differ-
ent problems, namely, the velocity tracking problem and the lid-driven cavity
problem. All preconditioners are robust with respect to the mesh size h. The
iterations for the preconditioner Pcta show some more pronounced dependence
on β.

As predicted by the theory, PF is fully parameter-independent and con-
verges in very few iterations for both the tested problems. For the velocity
tracking problem it is the best performing both in terms of number of itera-
tions and execution time. For the lid driven cavity problem, however, it is still
the best performing in terms of iterations and time apart from the cases when
β becomes of order 10−7 and smaller, then the preconditioner Pnsn exhibits
slightly faster performance in time. A detailed look at the numerical results
indicates that the performance of the AMG method we use here worsens for
smaller β and h which opens the possibility to look for better solvers for the
blocks H1 and H2.
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(a) State y

(b) Control u

7 Conclusions

To the best of our knowledge there exist only two preconditioners for the Stokes
control problem that are independent with respect to both the mesh size h
and regularization parameter β, cf. [11, 27]. In this paper, by transforming
the saddle point system to acquire the form of a Stokes control problem and
then exploiting the rich block structure, we have been able to construct a
competitive preconditioner with a favourable condition number. The numerical
experiments indicate a very good performance of preconditioner (PF ) in terms
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(c) Pressure p

Fig. 1: State y, control u and pressure p distribution for h = 2−6 and β = 10−6.

of number of iterations as well as small execution time when compared to other
preconditioners for the same target problem.
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