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Abstract

A comprehensive analytical model is presented to study the pressure transient be-

havior of a naturally fractured reservoir with a continuous matrix block size distri-

bution. Geologically realistic probability density functions of matrix block size are

used to represent reservoirs of varying fracture intensity and uniformity. Transient

interporosity flow is assumed and interporosity skin is incorporated.

° Drawdown and interference pressure _,ransient tests are investigated. The results

show distinctions in the pressure response from intensely and sparsely fractured

' reservoirs in the absence of interporosity skin. Also, uniformly and nonuniformly

fractured reservoirs exhibit distinct responses, irrespective of the degree of fracture

intensity. The pressure response in a nonuniformly fractured reservoir with large

block size variabilit)_ approaches a nonfractured (homogeneous) reservoir response.

Type cur_'es are developed to estimate matrix block size variability and the degree

of :_acture intensity from drawdown and interference well tests.
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Section 1

Introduction

It has long been recognized that naturally fractured reservoirs contain a significant

portion of the world's hydrocarbon reserves. As such, the need to understand the

detailed mechanisms of flow in these reservoirs is paramount. One of the main

parameters that governs flow in fractured reservoirs is the matrix block size distri- °

bution. In one phase flow, it controls the transition from early production from the

fractures to late production from the total reservoir (matrix and fractures). In two

phase flow, it controls the rate of imbibition (or displacement) and ultimately the

recovery.efficiency of the reservoir [34].

Pressure transient testing provides a method to predict producibility in naturally

fractured reservoirs. In order to estimate producibility, however, many assumptions

are made. Certain assumptions, such as the idealization of a single matrix block

size _epresenting the reservoir, may be eliminated. Matrix block size distributions

can be included in the model to more accurately describe the flow in naturally

fractured reservoirs. The model presented in this study captures the int_._ cies of

flow in a naturally fractured reservoir without complicating the task of analysis.

The following are the key assumptions used in deriving the analytical solution:

• The primary porosity (matrix) is uniform, homogeneous and isotropic. The

matrix blocks are defined by a characteristic length (volume of matrix

block/surface area of matrix block, i.e. reciprical of specific surface area)
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" and are represented as slabs or plates. All matrix blocks have the same con-

nectivity path to the wellbore.

• The secondary porosity (fractures) is uniform, homogeneous and isotropic.
i

' Flow occurs from the matrix into the fractures and then radially to the well-

bore. No flow from the matrix to the wellbore is allowed and all flow is

unsteady state (USS).

• The overall reservoir is infinite in extent and horizontal.

• The surface flow rate in the active well is constant, gravitY effects are negligi-

ble, and Darcy's law is obeyed.

• A single phase fluid of small compressibility and constant viscosity flows

• through the medium.

In this report, a continuous probability density function of matrix block size

" is used. The interaction between the matrix and the fractures are defined by the

following five parameters:

• h_a,io: the ratio of the characteristic lengths of the minimum and maximum

matrix block size (hm_,,./h,_,,x),

, win' the fractional storativity of the matrix,

• ,k=i_: the minimum interporosity flow coefficient which corresponds to the

• . largest matrix block size,

• SID: the interporosity skin, and

• P(h): the probability density function describing the type of distribution c.f

matrix block sizes.

Other parameters such as ,1,_, the smallest matrix block interporosity flow

coefficient, or w], the fractional storativity of the fractures, are determined from

, the parameters defined above. The only a priori knowledge needed in the analysis

!
!

!
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SECTION I. INTRODUCTION 3

is the type of distribution (i.e. exponentially decaying, exponentially increasing,

linearly decreasing, linearly increasing, rectangular, or Din,c delta). The limits of

the probability density function (i.e.h.,i. and h,.az), however, do not need to be

known and are obtained from the analysis of the pressure transient data.
&

i
!
i
|
!



Section 2

Literature Review

2.1 Geological Aspects
J

" In order to analyze naturally fractured reservoirs, petroleum engineers have ideal-

ized complex fracture patterns into very simple geometric shapes. Without such

" simplification, the mathematical problem would be unsolvable. The idealized as-

sumptions, however, are not as unrealistic as they may seem because fractures are

created in a structured way. The orientations and distributions of fractur_ have

been shown to _ e related to tectonic stresses and variations in these are due to

local complexities of stress fields, rate of bending of the rocks, lithology and the

proximity to fault planes.

According to Aguilera [2], fracture generation is generally attributed to three

main causes:
e

• folding and faulting,

. • deep erosion of the overburden that permits the upper parts to expand, uplift,

and fracture through planes of weakness, and

® volume shrinkage (i.e. shales that lose water, cooling of igneous rocks, and

desiccation of sedimentary rocks).

He also indicates that fractures and joints were usually formed in brittle rocks

(especially those that are close to a fault plane). For instance, quartzite rocks have

4
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a greater tendency to fracture than soft rocks such as limestones, which have a

tendency to flow or bend.

Outcrops provide the best visual identification of the types of fracture pat-

terns that exist. Dyer t22] presented spectacular aerial photographs of jointing of

sandstones in the Arches National Park. The photographs clearly showed parallel

fractures extending over a large distance. The joints were continuous in one direc-

tion bu*:,the majority did not link up in the perpendicular direction, and they were ,

distributed in length such that there were more smaller joints than larger joints (i.e.

exponential decaying or linearly decreasing). In terms of model simplification, these

fractures can be represented as vertical or horizontal slabs. Other outcrops _hown

by Dyer, demonstrated the _ame type of parallel fractures, but with a subparal]el

set of fractures which were Ferpendicular to the top and bottom bedding surfaces.

These fractures can be represented as either skewed rectangles, perpendicular rect-

angles or squares depending on the intersection angle of the fractures (Figure 2.1).

In three dimensions, these can be modeled as cubes or rectangular pamllelepipeds.

Other fracture photographs show calcite cemented or mineral filled fractures that

could restrict (low from one m_trix block to another. This phenomenon is termed

interporosity skin [14,38].

Pollard and Aydin [43] showed that most joints were not individually continuous

but were usually a series of subparallel fractures (i.e. several smaller joints make up

- a larger joint). The spacing between the joints in sedimentary rocks generally had a
_

a regular distribution and were scaled with the thickness of the fractured layer. The
J
| outcrops studied suggested most joints (in sedimentary rocks) were perpendicular

to the layering and were roughly rectangular in pattern. They also pointed out that

joints rarely exceeded several hundred meters and were at least as long as several

= times _he characteristic grain size of the rock. Fractures smaller than this were con-
=

sidered to be micro-cracks. Pollard and Aydin divided joint intersection geometries "

into orthogonal and nonorthogonal classifications. Either of these two classifications

- can be divided into three additional groups: continuous, continuous and discontin-

uous, and discontinuous. Depending on the combinations of these groups, '+', 'X',

: 'T', and 'Y' intersections can be formed (Figure 2.1). The greater the joint spacing
i

=

i

!
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D

the greater the communication or linking between joints. Other joint t_pes, such

as echelon fractures can also be seen and are a result of the interaction of the stress

" relief caused by neighboring fractures.

Fractures in the Mt. Abott quadrangle of the central Sierra Nevadas were stud-

ied by Segall [46]. He discussed why fractures propagate and stop. Fractures grow

when the extension force reaches a critical value (a property of the rock and envi-

ronmental stress conditions) and e:ops due to elastic interaction from nearby cracks

and an overall decrease in the systems effective stiffness. Again, the fracture (or

fault) p_tterns were commonly arranged as echelon arrays. Many of these fractures

were discontinuous and appeared to be randomly placed. This pattern can be mod-

elled by a Monte Carlo approach or by using an infinite periodic array of cracks. In

general, the fractures were parallel to each other, and the distribution in fracture

lengths appeared to be exponential (i.e. there were many more smaller joints than

" larger joints). He also showed that joint lengths were comparable to lengths in the

vertical exposure (i.e. these relationships exist in three dimensions).

" McQuillan [37] described similar simple geometric fracture patterns (i.e. cubes

or solid rectangles) in the Asmari formation of Southwestern Iran. In this forma-

tion, the fracture density (i.e. fracture length or matrix block size characteristic

length) had an inverse logarithmic relation to bed thickness and was independent

of structural setting.

_ Outcrops from the Monterey foxmation were examined by Isaacs [25]. She ob-

served that fracture intensity was higher in thin beds than in the thick-bedded

• lowerportionofthe Monterey.Fractureintensitywas generallyhigherinquartzite

' bearingrocksthan inotherlithologytypessuchasopal-CTbearingrocks.

Reiss[44]alsousedsimplegeometricshapesto representfracturesystems.He

" usedfourprincipalrepresentations:sheetsor slabs,match-sticks,cubes,and cubes

withan impermeablefractureplane.The impermeablefractureplanecouldbe due

to mineralprecipitation.He added complexitytotheseshapesby consideringthe

flowto be eitherverticalor horizontalto the faces.He presentedrelationships
_

_= between fra.cture permeability, porosity, width, and matrix size for these various

, simplified geometries.

........ I_.... IT_ ............. I "_lpl Irl
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Slabs Cubes Rectangular
Parallelepipeds
#

Skewed Cubes Rhombuses Skewed

Rectangular

.:. Parall elepipeds

-.

Rhombohedral Random Fractures Bi-Directional

Rectangular or Joints Random Fractures

Parallelepipeds

Polygonal Eliptlcal "

Figure 2.1: Idealizations of Typical Fracture Patterns seen in Nature.
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v

2.2 Well Testing Aspects

Barenblatt et al. [4,5] introduced the concept oi"a double porosit_ system for natu-

rally fractured reservoirs. The concept implies that, at every point in the reservoir,

there are two fluid pressures; one.in the fracture and one in the matrix. Flow equa-

tions from the matrix to the fracture were linked using the assumption of pseudo

steady state (PSS), which related the flow rate from the matrix to the fracture to

the difference between the matrix pressure and the fracture pressure (i.e. explicitly

independent of time). Flow from the fracture to the weUbore was assumed to be

unsteady state.

The relationship between recovery behavior for a single reservoir matrix block

and its size was defined by Mattax and Kyte [34]. It was qualitatively shown that the

recovery efficiency due to imbibition was proportional to the square of the distance

" between fractures. The paper defined the critical water injection rates necessary to

_dequately sweep hydrocarbons from a matrix block. 1

• Warren and Root [52] presented essentially the same model as Barenblatt e_

al., but defined the problem in terms of petroleum engineering variables. They

presented a model of an orthogonal system of continuous uniform fracttu'es, but in

fact did not use the specified geometry. They introduced A, the interporosity flow

coefficient, and w, the fractional storativity of the fractures. Using A and w they

characterized the pressure transient response expected from buildup and drawdo_-a

well tests. Two para!lel lines were shown to exist in a semilog plot of pr_sure versus

time. A transition from fracture flow to fracture and matrix flow connected the two
k

" paraiiel straight lines. They showed that as w or A approaches one, the reservoir

transient test behaved like that of a homogenous reservoir. The interporosity flow

" coefficient A contained the geometry dependent parameter a, but this parameter

was not directly included in their work.

Some well tests, however, did not show parallel straight lines. Odeh [41] gave

examples of well tests from fractured reservoirs that did not exhibit the double

1They considered scaling parameters in an imbibition displacement. This was not a paper on
well testing for fracturedreservoirs.

E

!

i

I
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porositybehavior.He suggestedthe doubleporositybehaviorcannotbe seenbe-
p

causereliabledataareno_ obtainedduringtheearlypartofwelltests(i.e.storage

effects).Essentially,Odeh translatedtheanisotropicmodel ofWarren and Root to

an isotropicone.

Severalyearslater,Kazemi ctal. [32]extendedWarren and Root'sdouble

porositymodel to interferencewelltests.Kazemi consideredan infinitereservoir

with a constantrateofproductionatthe observationweil.Likeothers,Kazemi

incorporatedPSS flowfrom thematrixtothefractures.The solutionwas solvedin

Laplacespaceand was numericallyinverted.Some importantconclusion.:werethat

the doubleporositymodel was importantforearlypressuretransientresponses,

and thatat latetimes,themodel approachedthe homogeneousfinitewellsource

solution.In the same year,Kazerni[31]presentedadditionalwork on pressure

transientresponsesinreservoirswith uniformfracturedistributions.This work

droppedtheasstunpticnof"PSS and usedan unsteadystateformulationofflowfrom

the matrix to the fractures. The reservol.r considered was two-dimensional, circular,

and finite. They explored allowing the matrix fluid to flow into the wellbore directly,

but they showed that this effect was insignificant for low matrix permeability. They

concluded the USS formulation increased the length of the transition zone but did

not alter the early and late time parallel straight lines.

In the mid-seventies, De Swaan [17] also used the assumption of USS interporos-

ity flow. Approximate equations to early and late time responses were presented by

the inclusion of a hydraulic diffusivity constant. De Swemn considered horizontal

fractures and spherical matrix blocks.

Najurieta [39,40] solved the interference well test case using De Swaan's USS

solution for both slab and cubic geometries (assuming an infinite reservoir). Najuri-

eta used an improved Schapery [45] inversion technique to transform the solution

from Laplace space to real time space. This improved the approximation of the

early, transition, and late time responses.

Deruyck [20] considered interference well tests using Warren and Root's model.

He considered both constant pressure and constant rate inner boundary conditions

and applied the PSS interporosity flow assumption. Type curves were presented for
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" both constant pressure and constant rate inner boundary conditions. He compared

the line source solution to the finite well radius solution and observed no significant

differences for observation wells greater than approximately twenty feet from the

active well. Most importantly, he introduced a new parameter e (o = Ar_) that

eliminated the need for more than one type curve for constant rate production.

He provided the theoretical basis for this new parameter from the approximate

line source solution. Later, Deruyck et al. [21] presented essentially the same

conclusions, but presented interference well test type curves for both USS and PSS

interporosity flow assumptions. They suggested using the type curve that best fits

the data. In addition, they concluded the double porosity effect can be better seen

for observation wells closer to the active weil.

The first useful typecurves for buildup and drawdown tests were prepared by

Bourdet _,A C_ngarten [10]. The type curves used PSS and USS interporosity flow

" assumptions but were based on approximations of the exact solutions.

Unsteady state interporosity flow for both cylindrical and spherical geometries

" was considered by Kuchuk and Sawyer [33]. They concluded the Warren and Root

model was only applicable under special cases of the fractured reservoir parameters.

Cinco-Ley and Samaniego [13] also used the USS formulation proposed by De

Swaan using spheres and slab matrix block geometries. At early and late times, the

pressure transient responses were similar. During the transition phase, however,

differences were seen between the two geometries. In a later paper, Cinco-Ley et

al. [14] described the effects of multiple matrix block sizes on the pressure transient

curve. They used a discrete model of up to five different block sizes. Using com-

" birmtions of these block sizes, they demonstrated the transition zone was affected

significantly, while the late and early time responses were not changed. They state

" the smaller matrix block sizes dominated the transition period since the surface to

fracture contact area was greater. In addition, both Cinco-Ley et al. and Moench

[38] presented an explanation for the observance of the PSS behavior. They intro-

duced an interporosity skin factor that, in conjunction with USS interporosity flow

assumptions, produced the PSS-like behavior.

Streltsova [50] explored the differences between the USS and PSS flow models.

B

!
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She showed that small matrix blocks have a pressure response more like the PSS

behavior, while larger matrix blocks behaved more like USS. The larger the matrix

blocks, therefore, the longer the transition zone.

The PSS and USS solutions were combined into one model by Jalali-Yazdi and

Ershag_ [28]. Their solution used the Najurieta approximation (improved Schapery

approximation) to develop functions of time that describe the interporosity flow

interaction. Also_ they presented a correlation for parameter estimation, using the

difference between the wellbore pressure response and either the early time or the

late time pressure response.

Braester [11] presented numerical solutions which showed that drawdown pres-

sures were not sensitive enough to the variation in sizes of the blocks (especially

for matrix blocks not in the immediate vicinity of the wellbore). She suggested,

therefore, that drawdown and buildup well tests do not yield a unique solution for

matrix block sizes.

In a recent paper, Belani and Jalali-Yazdi [7] extended the discrete model pro-

posed by Cinco-Ley and Samaniego [13] to a continuous model (i.e. a continuous

probability density function of matrix block sizes). They used three probability

density functions: Dirac delta, uniform and bimodal. The Dirac delta function re-

suited in a sharp pressure response identical to the Warren and Root model. With

an increase in the variance of the matrix block size distribution, they found feature:_

of a fractured reservoir response become less pronounced.



Section 3

Statement of the Problem

Currently, block size distribution is not considered a determinable parameter from

well pressure transient testing. Yet, the utility of determining the matrix block size

. distribution is paramount since block size is considered one of the main parameters

of a fractured reservoir [11]. In single phase flow, it controls the transition from early

. production of hydrocarbons from the fractures to late production from the total

reservoir. In reservoirs with two-phase flow, it controls the rate of imbibition (or

displacement) and ultimately the recovery efficiency of the reservoir (i.e. waterflood

injection rate).

The objective of this research is to infer fracture intensity and the degree of

fracture uniformity from transient pressure data. It is recognized that this can

only be done in a qualitative way for many reservoirs. Nevertheless, a completely

quantitative solution based on some specified assumptions (i.e. slab matrix block

. geometry) is presented. Certainly, this research can br modified for the particular

constraints of any given reservoir. Other information, such as that from cores

. and logs, should be used in conjunction with well pressure testing, to evaluate the

distribution of fractures.

12

|
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Section 4

Theory and Solution

4.1 General Solution

The diffusivityequationfora doubleporosityreservoircan be modifiedtoinclude
v

a probabilitydistributionofmatrixblocksizeby introducinga sourceintegral[7]:

k--L/V2 Pf = ¢/c1 + Q(h)P(h)dh. (4.1) .
p Jh_.

The source integral in Equation 4.1 accounts for the flow contribution of the ma-

- trix to the fracture. It is assumed that fluid travels from the matrix to the fractures

and to the wellbore. P(h) is the probability density function (PDF) describing the

likelihood of a certain matrix block size to exist and Q(h) is the flow contribution

from that matrix block to the fracture. For transient interporosity flow and slab

geometry:

Q(h) = ---_ X7p,_ I,.,.._.o.. (4.2) .

Q(h), therefore, takes into consideration the mode of interporosity flow and also the

geometry of the matrix blocks.

For a well producing at constant rate in an infinite reservoir, the interference

solution in Laplace space is:

Ko(xrD)
Pp,= (4.3)

s[CDs(Ko(x) + SDXIQ(x))+ xlQ(x)] '

13
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" and for drawdown:

_D,_ = Ko(z) + SDxK,(z) (4.4)" _[cD_(_'o(_)+s_a',(_))+ _K,(_)]"

Parameter s is the Laplace variable related to dimensionless time (tD) mad the Bessel

function argument is:

= _. (4.5)

The function f(s) embodies the reservoir parameters including the m_trix block size

distribution. For transient interporosity flow in the presence of interporosity skin:

dhD, (4.6)
...,°+s, V-r- oh V-r-j

_vhere,
h,m,

. h_o,,o= h.o--'7' (4.7)

k,,h, (4.8)
SID= k,"'h-'

The interporosity skin factor (SxD) is a function of matrix block size distribution

and, hence is constant ii -_ is constant. An alternate assumption is that the depth

of skin damage (h,) is constant for all matrix blocks, and hence, SXD is a variable:

A
SXD SID,,,,,, , (4.9)

where,
kmh8

. SID.,. = k°h_o_' (4.10)
and now:

,m

dhD . (_.11)
,'o,,,,1 + SID.,..lv--.-tanh[,/--'¢-)

V,'_min V ,_

i
!

|
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4.2 Long Time Approximation

As _D becomes large, the Laplace space variable s becomes small. As s approaches

zero, the function f(s) becomes one. Neglecting wellbore storage and inverting to

' the time domain, Equation 4.4 yields:

Pp. ----l[,_n(tm) + 2SD -_-.80907], (4.12)

and Equation 4.3 yields:

tD

Pp,= _[Zn(_)+ .S0907]. (4._31

4.3 Early Time Approximation

As tD becomes very small, the Laplace space variable s becomes large and the

function f(s) approaches wj, the fractional storativity of the fractures. In the absence

of wellbore storage and skin, inversions of Equation 4.4 give:

-PD_=2 tD . (4.14)

This early time solution should not be confused with the 'classical' early parallel

straight line response given by:

PD,,, = l[ln( tD) + 2SD + .80907]. (4.15)
,5 w!

I



Section 5

i Probability Density Functions
J

; Prediction of the pressure response requires the type of matrix block size distribution

] be "known or assumed. When the PDF is selected, fracture intensity can be inferred

i " from pressl_e grane';ent data. Two types of probability density functions are used to

represent the variability of matrix block size. These types, exponential and linear

. , (Figure 5.1), occur in outcrops as indicated in the geological literature [22,43,46].

The Dirac delta and rectangular distribution are e_ch subsets of the exponential

ii and linear distributions.

The mean of a distribution is a measure of fracture intensity, while the variance

i is a measure of the degree of fracture uniformity. As fracture intensity increases,

mean block size decreases and P(h) becomes skewed toward smaller block sizes. As

__ fracture intensity decreases, P(h) becomes skewed toward large block sizes. When

_" fracturing becomes uniform, h,.,_io approaches unity and P(h) becomes 'narrow'.

" When fracturing becomes nonuniform, h,.tio approaches zero and P(h) becomes
=
a

• 'wide'.

, Figure 5.2 is an example of the construction of a probability density function [3].Q

The lengths of the joints were measured at the outcrop and plotted as shown. There

_= are many more smaller joints than larger joints. In this example, h,_in is one meter

_ and h,_a= is approximately thirty-three meters. The parameter hro_io, therefore, is
_=

small (.03) indicating very nonuniform fracturing. A probability density function

_= is then constructed by normalizing the frequency plot by the parameter h,_,=. The

I '
I

i
i

i
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result is a normalized probability density function that is exponentially decaying

with a decay constant ('a')of-5.

5.1 Exponential and Linear PDF

The exponential PDF 'is given by:

a(_p-_ho) (5.1)
P( hD) = 'exp_(ah,o,_) _ exp-'"'

where. _a' is the exponential constant. The linear distribution function is:

' mhD+b

PCh_)= .5m(1 + '- h_,io) b(1 - h,.,.io) (5.2)

where 'm' is the slope and 'b' is the vertical intercept of the cartesian plot of P(hm)

versus hD. Because a probability function must be positive, the slope must be in

the range: -2 2

(1 - h,_,,o)2 <- m < (1 - h,=,io)2" (5.3)

%'he intercept 'b' is given by:

•bhwr,lo (5.4)b = 1 - .5m + 2
1 - hra_io

5.2 Limiting Forms-Rectangular and Dirac Delta

Distributions
i

When 'm' is zero (linear PDF) or 'a' is zero (exponential PDF), both probability
.

density functions reduce to the rectangular distribution:

1

P(hD) = i- h_o,,o ' (5.5) .

and when 'm' or 'a' approach infinity, the distributions reduce to the Dirac delta

function:
[

P(hD)=6(hD 1)=: _ 0 for hD#l . (5.6)
[ oo for hD= l
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Figure 5.1' Probability Density Functions.
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. PDF f(s),where _ = V x.,.,, , , ' , ,

Linear w! + _[.5m(1 - h_.t,o)+ b(1 - hL.rio)] __...0 1 + SLD.,.(, tanh(y)

i i iiiiii ii ii

w,,, f_ tanh(y)Rectangular w! + _(1 - h..t,.) h.°,,, y[1 + SID,.,._ tanh(y)_ dy

i i iiiii

• w.,tanh(_)

Dirac delta w! + _, where A,._. = Am,, = A

, ,

Table 5.1' Functions f(s) for Various PDF's.

The Dirac delta distribution describes fractures that axe perfectly ordered as in

the Waxren and Root model. The rect_mgular distribution, however, represents

' fractures that are perfectly disordered with a continuum of block sizes that _re

equally probable from the smMlest (h,,i,) to the largest (h,,.=). In general, the

• rectangular distribution should be used if the distribution Wpe is unknown.

Upon specifying the type of PDF, Equation 4.11 can be solved for f(s). Table

5.1 lists the solutions of f(s) for the particular PDF.
!

.

!

r.

!

|

mm

!
m_



Section 6

Discussion-Drawdown Testing

Equation 4.4 in the absence of wellbore storage and skin reduces to:

) (0.1)
-

Equation 6.1 is nurr.erically evaluated using the Stehfest algorithm [48] for the ex-

ponential PDF listed in Table 5.1. Figure 6.1 illustrates the respor_e for varying

values of 'a' holding h_,io constant. For positively ir_creasing values of 'a', fracture

intensity increases and the respor_-_e approaches the Dirac delta response for a uni-

form matrix block size h,_i, (i.e. the response occurs earlier in time). For negatively

increasing values of 'a', fracture intensity decreases and the response approaches the

Dirac delta response for a uniform matrix block size h,_= (i.e. the response occurs

later in time). Thus, fracture intensity determines the temporal position of the

pressure response. Fracture uniformity, however, affects the shape of the pressure

response. From Figure 6.1, it is evident the derivative profile shows a substantial

degree of asymmetry with respect to the time axis as 'a' increases or decreases to

large absolute values. The response for the rectangular matrix block size distri--

bution (i.e. a=0), however, is nearly symmetric. Therefore, asymmetry increases

as fracturing becomes more uniform, and the shape of the derivative profile can

be used as a qualitative indicator of the degree of matrix block size variability or

nonuniformity.

1t

i 21
!
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Figure 6.1: Exponential PDF: Varying 'a' with hratio = .1, ,kmi" = 10 -7, _m = .9.
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In addition, parameter h,_,io provides an estimate of matrix block size variabil-

ity. An h..,io approaching one indicates perfectly uniform fracturing, while h..,io

approaching zero indicates perfectly nonuniform fracturing. Figure 6.2 illustrates

the pressure response for varying values of h,_uo with 'a' held constant. For h,.uo

approaching zero, the response approaches a homogenous reservoir response. This

occurs because there is an incessant gradual contribution from the matrix to the

fractures. As long as fracturing is extremely nonuniform, the response will not ex-

hibit the classical profile of a distinct transition zone separating early and late time

semilog straight lines.

6.1 Type Curve For Drawdown Well Tests

For the rectangular PDF, a type curve can be developed for estimation of w,,, ,k,,i,,

and h,,_;o. The type curve is based on the following time domain solution of the
ib

wellbore pressure response:

li/n( tD
_ PD,_ = _ F(tD)r2 D) + .80907], (6.2)

where F(tD) is the time-dependent reservoir storativity:

F(tD)-- _W+ _o_ tanh( r )P(hD)dh_, (6.3/
ratio

and r is the matrix response time coefficient:

_ (_.4)

Equations 6.2 and 6.3 are obtained by applying the inversion technique of Najurieta

and Schapery [45,40,39]. For the rectangular PDF, Equation 6.3 becomes:

F( ) = wl + (1 - h,.,Uo) h..,,oV_--_ y

where y is the variable of integration and r,,_x is the response time coefficient of the

most dormant (or largest) matrix block:

_' (6.6)
rmaz = 7_mi ..
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In genen_l, the time domain approximation gives remarkably good results (Figure

6.3). Using the difference between the extrapolated late time pressure response and

the observed pressure, one obtains:

= - = !Z-"). (s.7)
Z Tmaz

The type curve (Figure 6.4) is generated for the rectangular PDF by plotting

the pressure difference Ap versus _ for a range of h,.aao and w,_ values. This typeT,nQ_

curve issimilarto one presentedby Jalali-Yazdiand Ershaghi [27]where the time

match yieldsr,_az(and hence, Am/,),and the pressurematch yieldsw,,. Fracture

permeability,kl,can be calculatedfrom theslopeofthe sernilogstraightline.Given

reliableestimatesofmatrix permeability(i.e.from coreanalysis),one can calculate

hmaz from the defufitionof Aral,given inAppendix A. From the shape ofthe curve,

hratioisestimated,and hence,hmi, isdetermined.The arithmeticmean ofhmin and

hre== is a measure of fracture intensity or sparsity.

The type curve demonstrates two key ideas. First, as matrix storativity pre-

dominates (increasing w_), h,.o,io affects the pressure response more significantly.

Conversely, as w,, decreases, the effect of matrix block size variability becomes less

significant. Second, the effect of h,.,t/o on the pressure response is greatest for lower

values of h,.,,io ( e.g. the pressure response changes more significantly for h,.,tio val-

ues from 0.1 to 0.5 than from 0.5 to 1.0). This indicates that block size variability

affects the pressure response significantly if h,,.,i,., and h,_., differ by at least one

order of magnitude. Block size variability less than half an order of magnitude does

not affect the pressure response significantly.

t

! 6.2 Effect of Interporosity Skin .

I An example of the effect of interporosity skin (SID,n,.) on the pressure transient
_

response is shown in Figure 6.5. A significant change in the pressure derivative is
seen for small changes in SID,n,., and thus, the effect of the matrix block size d/str/-

but/on is masked. The derivative profile becomes symmetric and more pronounced

I
-!

,_1 _ ,
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• which is typical of the PSS response of \¥arren and Root. A syInmetric PSS type

response develops even if the no skin profile is asymmetric. As interporosity skin

. increases, the derivative profile shifts in time, giving apparent A values that are

' too small (more dormant matrix). Thus, if interporosity skin exists, interpretation

of pressure transient tests by the Warren and Root model underestimates A and

fracture intensity.

q
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Section 7

Discussion-Interference Testing

Braester[11] demonstrated that drawdown (or buildup) tests in naturally fractured

reservoirs may not be influenced by matrix blocks significantly away from the well-

" bore. Interference testing, therefore, is preferred because the response is affected

by matrix blocks between the active and observation wells. A simplified solution

- for interference testing in the absence of storage and wellbore skin is the line source

solution: Ko(rD_)
:gD,= • (7.1)8

7.1 Type Curve For Interference Well Tests

For any PDF distribution, it can be shown that 8 = A,_i,r_ is a correlating param-

eter [20,21]. For instance, using the rectangular PDF:
ct

• Equation 7.1 can then be evaluated using the inverse Laplace transform relation:

• 1 tD

|i z-_[_,(_)] = _P_,(_). (_.3)
| A type curve (Figure 7.1) is prepared using the rectangular PDF for w,_ = 0.9. For

i each value of 8, hra,,o is varied from zero to one. If hr_.o determined from the type

3O

tt
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curve is equal to one, the PDF is a Dirac delta function and the type curve is similar

to that presented by Deruyck e_ ai [20,21].

For large values of 8, the matrix block size variability becomes increasingly

important and h,..tio can be better estimated. Thus, if the dimensionless distance

(tD) between the active and observation wells is large, or if A,_, becomes large

(i.e. greater fracture intensity), then matrix block size variability becomes a key

parameter in interference pressure transient analysis. Conversely, for smaller values

of 8, matrix block size variability (or h,.ati,,) does not affect the pressure response

significantly. Also, as 8 becomes larger, the response approaches the line source

solution for smaller values of tr-_.





Section 8

Conclusions

1. A formulation incorporating transient interporosity flow and interporc_ity skin

is presented for fractured reservoirs with variable: matrix block size. Expo-

nential and linear probability density functiorm have been used to represent

intensely and sparsely fractured reservoirs with ,_r_,ing degrees of fracture

uniformity.

2. Type curves have been generated for drawdown and interference well tests

based on the rectangular P DF and slab matrix block geometry. Type curves

yield estimates of fracture intensity as well as fractttre nonuniformity.

3. Fracture intensity determines the temporal position of the pressure response,

while fracture uniforn_ity affects the shape of the pressure response. For

transient interporosity flow, uniformly fractured resezvoirs exhibit asymmetric

derivative profiles, whereas nonuniformly fractured reservoirs exhibit symme*,-

ric profiles.

4. The parameter h._.o quantifies the degree of fracture uniformity. Uniform

fracturing is indicated when h,_t,o is near one, while nonuniform fracturing

is indicated when h..t_o is near zero. For an extremely nonuniform :h_.ctured

reservoir (h..tio approaching zero), the pressure response is similar 1_oa non-

fractured homogeneous reservoir response.

33

!
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5. Matrix block size variability (h_.ao) cannot be estimated in the presence of

interporosity skin damage. The Warren and Root model overestimates matrix

block size if interporosity skin is present.
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]

Nomenclature

a -- exponential PDF constant

b = intercept of linear PDF

c1 -- fracture compressibility

c., = matrix compressibility

C'D = dimensionless weUbore storage

ct - total compressibility

f(s) - Laplace space function

h = matrix block size characteristic length (Volume/Surface Area ,....

hD = dimensionless matrix block size length

h! = fracture thickness

h.,== = maximum block size length

i h._i. = minimum block size length

h,.=t_o = ratio of h_i,_ to h._= "

h. interporosity damaged zone thickness

k/ fracture permeability

• k._ matrix permeability
i

i k° interporosity damaged zone permeability

i Ko(X)" modified Bessel function, second kind, zero orderi

o KI(x) modified Bessel function, second kind, first order

; m slope of linear P DF

i 35
J,

|
m
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PDI = dimensionless fracture pressure

Pore = dimensionless matrix pressure
i,

PD_ = dimensionless wellbore pressure

PI = fracture fluid pressure

P(h) = block size distribution function

P(hD) = dimensionless block size distribution function

Pi = initial reservoir pressure

Pm =' matrix fluid pressure

Pw/ = welIbore flowing pressure

Q(h) = flow contribution from matrix size h

r = radial coordinate

rD m dimensionless radial coordinate

r_ = wellbore radius

• s = Laplace parameter

S D = dimensionless wellbore skin factor

" SXD = dimensionless interporosity skin factor

S_Dm,. = minimum dimensionless interporosity skin factor

t "-time

tD = dimensionless time

"r = :_.781, exponential of Euler's constant

A = dimensionless interporosity flow coefficient

A._ = maximum dimensionless interporosity flow coefficient

A,ni. = minimum dimensionless interporosity flow coefficient

r = dimensionless matrix response time coefficient

vmi= = maximum dimensionless matrix response time coefficient

" _z = viscosity

e = coordinate normal to fracture-matrix interface

e D = dimensionless coordinate normal to fracture-matrix interface

" ¢1 = fracture porosity

i ¢._ = matrix porosity
w/ = dimensionless fracture storativity ratio

i
i

i
I
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a;., = dimensionless matrix storativity ratio

8 = dimensionless correlation parameter

J
m

I



Appendix A

Derivation of General Solution

The dimensionless flow equations and boundary conditions are:

c92PD, 1 CgPDI = O3PD! fh 1 AcgPD_

0 2PD_ wrn cgPDm

0_ _ OtD"

• PD, =PDm=OattD=O

• PD! = PD_. = 0 at rD-_ oo

... hPD,,

•Po_,= [P_,-_oWl l,°=_

" • _ [,_1 .ro, ,t,,b,= 0 at no flow boundariesDCD

where:

2_k,hj(P,-Pi)
PD] "_" '

q_

PD_ =
q#
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2_'kjhf(P_- P_f)
PD_ =

_/t
tD =

r

rD = ---
tw

C
CD =

2=hfc,r_

A = kr"r--_2w
kth 2

k_r_
,_m in "_-

W'_(IZ ----

CmCm

w., = ¢fcf + ¢,,,c,,,
wf = 1 - w,,,

h
hD -- ----

P(hD)- h,,,_,P(h).

Other matrix block geometries can be included in the solution by changing the

interporosity boundary conditions. After applying Laplace transforms to the flow

equations and boundary conditions one obtains Equations 4.3 and 4.4.
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Computer Programs



m_m... m,

C ........... EXACT EXPONENTIAL SOLUTION .................
Cm_m .._..m m m_D.m.m m_... _

C THIS PROGRAM CALCULATES THE EXACT SOLUTION FOR THE TRANSIENT
C INTERPOROSITY FLOW WELL TEST USING AN EXPONENTIAL PROBABILITY
C DENSITY FUNCTION. THE EXACT SOLUTION IN LAPLACE SPACE IS USED

C AND INVERTED VIA THE STEFEST ALGORITHYM. THE VARIABLES IN THE
C PROGRAM ARE :
C

C AA EXPONENTIAL DECLINE FACTOR. FOR AA EQUAL TO
C ZERO USE THE LINEAR PDF MODEL.
C RD .......... DIMENSIONLESS DISTANCE FROM ACTIVE WELL

C WF .......... FRACTIONAL STORATIVITY OF THE FRACTURES TO THE
C BULK VOLUME STORATIVITY
C WM ........... FRACTIONAL STORATIVITY OF THE MATRIX TO THE
C BULK VOLUME STORArIVITY
C HKATIO ...... THE RATIO OF THE MINIMUM TO MAXIMUM BLOCK SIZE

C XLAMMAX ..... THE MAXIMUM LAMBDA OF THE PROBABILITY DENSITY
C FUNCTION
C XLAMMIN ..... THE MINIMUM LAMBDA OF THE PROBABILITY DENSITY

C FUNCTION
C XTAUMIN ..... THE APPROXIMATE TIME WHEN THE MAXIMUM SIZE

C BLOCK EFFECTS THE PRESSURE TRANSIENT
C RESPONSE--TAU=WM/ (1 .7 81 *LAMBDA)
C XTAUMAX ..... THE APPROXIMATE TIME WHEN THE MINIMUM SIZE

C BLOCK EFFECTS THE PRESSURE TRANSIENT
C SD .......... THE INTERPOROSITY SKIN FACTOR
C

C TD .......... DIMENSIONLESS TIME

C PD DIMENSIONLESS FRACTURE PRESSURE
C PDS ......... DIMENSIONLESS SLOPE OF PD/LN(TD)
C IN THIS PROGRAM, THIS IS NOT OUTPUT
C FS .......... THE FUNCTION IN LAPLACE SPACE TO BE INVERTED
C

C M,N INTERGERS USED IN STEFAST SUBROUTINE
C
C PWD ......... THE CALLABLE STEFAST SUBROUTINE
C

C DQDAGS ...... THE CALLABLE INTEGRATION ROUTINE DESIGNED
C BY IMSL
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON RD, WF, WM, XLAMMAX, XLAMMIN, AA, XXUP, SD
COMMON M

OPEN (UNIT=2, FILE=' PROJ. OUT' )
REWIND (UNIT=2)
OPEN (UNIT=3, FILE=' PROJS .OUT' )
REWIND (UNIT=3)
M=I
N=I2
RD=I.

PRINT *, 'EXPONENTIAL DECLINE A= '
READ *, AA
PRINT *, 'FRAC. SKIN= ' °
READ *, SD
PRINT *, 'LAMMIN= '
READ *, XLAMMIN
PRINT *, 'LAMMAX= '
READ *, XI2hMMAX
PRINT *, 'WM= '
READ *, WM
WF=I. 0-WM
NNN=220
TD=I.

!
|



WRITE (2,*) NNN
WRITE (3,*) NNN

C CALCULATE THE PD, PDS IN REAL TIME SPACE USING
C THE STEFAST SUBROUTINE AND DQDAGS SUBROUTINE

DO 10 I-I,NNN
CALL PWD(TD,N,PD,PDS)

C THE SLOPE IS TD*D(PD/TD)

PDS=TD*PDS

WRITE (2,99) TD, PD

WRITE (3,99) TD,PDS
99 FORMAT (2X, 2F24.9)

TD=TD* 1.1
10 CONTINUE

. STOP
END

C .._____..

C THIS FUNCTION IS CALLED BY THE STEFAST SUBROUTINE AND

C IS CONTAINS THE FUNCTION IN LAPLACE SPACE TO BE

C INVERTED. THIS FUNCTION IS USED TO CALCULATE THE PD

C IN REAL TIME SPACE.

C

DOUBLE PRECISION FUNCTION PLAP(S)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
EXTERNAL F

COMMON RD, WF, WM, XLAMMAX, XLAMMIN, AA, XXUP, SD
COMMON M
EB/_L=. 0001
ERRABS=0.0

XTAUMIN=WM/ (I. 78 I*XLAMMAX)
XTAUMAX=WM/ (1.78 I*XLAMMIN)
HRATIO=DSQRT (XLAMMIN/XLAMMAX)
XLOW=DSQRT (WM* S/XLAMMAX)
XUP=DSQRT (WM* S/XLAMMIN )
XXUP=XUP

• CALL DQDAGS (F, XLOW, XUP, ERRABS, ERRREL, RESULT, ERREST)
TERM=I/ (DEXP (-AA*HRATIO)-DEXP (-AA))
FS..WF+DSQRT (WM*XLAMMIN/S )*AA*TERM*RESULT
XX=RD*DSQRT (S'FS)

. XXX=D SQRT (S*FS )
A=DBSK0 (XX)
B=DBSKI (XXX)
TOP=A
BOT=S*XXX*B

PLAP=TOP/BOT
RETURN
END

C --

C THIS FUNCTION IS CALLED BY THE STEFAST SUBROUTINE AND
C CONTAINS THE FUNCTION IN LAPLACE SPACE TO BE INVERTED
C THIS FUNCTION IS USED TO CALCULATE THE SLOPE OF
C PD/LN(TD) IN REAL TIME SPACE.
C _.-_m_

DOUBLE PRECISION FUNCTION PLAPS(S)

" IMPLICIT DOUBLE PRECISION (A-H,O-Z)
EXTERNAL F

COMMON RD, WF, WM, XLAMMAX, XLAMMIN, AA, XXUP, SD
COMMON M

• EB2dAEL=. 0001

ERRABS=0.0
XTAUMIN=WM/ (i. 78 I*XLAMMAX)
XTAUMAX=WM/ (I. 781*XLAMMIN)
HRAT IO=DSQRT (XLAMMIN /XLAMMAX)

XLOW=DSQRT (WM*S/XLA_)
XUP=DSQRT (WM*S/XLAMMIN)
XXUP=XUP

CALL DQDAGS (F, XLOW, XUP, ERRABS, ERRREL, RESULT, ERREST)

" [

|



TERM-l/(DEXP (-AA*H_TIO) -DEXP (-AA))
FS-WF+DSQRT (WM*XLAMMIN/S) *AA*TERM*RESULT
XX-RD*DSQRT (S'FS )
XXX-DSQRT (S'FS )

A-DBSK0 (XX)

BuDBSKI (XXX)

' TOP-A
BOT-XXX*B

PLAP S-TOP/BOT
RETURN
END

,B

c
C THIS IS THE FUNCTION ASSOCIA'iED WITH THE SPECIFIED

C PROBABILITY DENSITY FUNCTION AND IS USED AS INPUT TO

C THE NUMERICAL INTEGRATION SUBROUTINE DQDAGS

DOUBLE PRECISION FUNCTION F(X)
COMMON RD, WF, WM, XLAMMAX, XLAMMIN, AA, XXUP, SD

IMPLICIT _DOUBLE PRECISION (A-H,O-Z)
F-DEXP (-AA*X/XXUP) * (DTANH (X)) / (X* (I+SD*XXUP*DTANH (X)) )

RETURN
END



mm_

C.................... EXACT LINEAR SOLUTION ....

C THIS PROGRAM CALCULATES THE EXACT SOLUTION FOR THE TRANSIENT
C INTERPOROSITY FLOW WELL TEST USING A LINEAR PROBABILITY
C DENSITY FUNCTION. THE EXACT SOLUTION IN LAPLACE SPACE IS USED

C AND INVERTED VIA THE STEFEST ALGORITHYM. THE VARIABLES IN THE
C PROGRAM ARE :

• C

C XM SLOPE OF LINEAR PROBABILITY DENSITY FUNCTION
C XB .......... INTERCEPT OF LINEAR PROBABILITY DENSITY FUNCTION
C THIS IS DETERMINED BY THE PROGRAM DUE TO THE

• C APPLICATION OF THE FACT THAT THE AREA MUST BE _

C EQUAL TO ONE
C RD DIMENSIONLESS DISTANCE FROM ACTIVE WELL
C WF --FRACTIONAL STORATIVITY OF THE FRACTURES TO THE
C BULK VOLUME STORATIVITY
C WM .......... FRACTIONAL STORATIVITY OF THE MATRIX TO THE
C BULK VOLUME STORATIVITY
C HRATIO ...... THE RATIO OF THE MINIMUM TO MAXIMUM BLOCK SIZE

C XLAMMAX ..... THE MAXIMUM LAMBDA OF THE PROBABILITY DENSITY

C FUNCTION
C XLAMMIN ..... THE MINIMUM LAMBDA OF THE PROBABILITY DENSITY
C FUNCTION
C XTAUMIN ..... THE APPROXIMATE TIME WHEN THE MAXIMUM SIZE
C BLOCK EFFECTS THE PRESSURE TRANSIENT
C RESPONSE--TAU=WM/ (1 .7 81*LAMBDA)
C XTAUMAX ..... THE APPROXIMATE TIME WHEN THE MINIMUM SIZE
C BLOCK EFFECTS THE PRESSURE TRANSIENT
C SD .......... THE INTERPOROSITY SKIN FACTOR
C

C TD --DIMENSIONLESS TIME
C PD DIMENSIONLESS FRACTURE PRESSURE

• C PDS DIMENSIONLESS SLOPE OF PD/LN(TD)

C IN THIS PROGRAM, THIS IS NOT OUTPUT
C FS .......... THE FUNCTION IN LAPLACE SPACE TO BE INVERTED
C

C M,N ......... INTERGERS USED IN STEFAST SUBROUTINE
C

C PWD-- ....... THE CALLABLE STEFAST SUBROUTINE
C

C DQDAGS ...... THE CALLABLE INTEGRATION ROUTINE DESIGNED
C BY IMSL
C

----------------,

C THIS PROGRAM CALCULATES THE LAPLACE INVERSIONS TO THE
C DOUBLE-POROSITY MODEL.

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON RD, WF, WM, XLAMMAX, XLAMMIN, SD, XXUP, XM, XB, HRATIO
COMMON M

OPEN (UNIT=2, FILE=' PROJ.OUT' )
REWIND (UNIT=2)
OPEN (UNIT=3, FILE-"' PROJS .OUT' )

__ REWIND (UNIT=3)
" M=I

N_I2

PRINT *, 'RD= '
READ *, RD

'FRAC SKIN= 'PRINT *,
READ *, SD
PRINT *, 'SLOPE= '
READ *, XM
PRINT *, 'LAMMIN= '
READ *, XLAMMIN

|
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PRINT *, 'HRATIO" '
READ *, HRATIO
PRINT *, 'WM= '
READ *, WM
WF=I. 0-WM

XLAMMAX'XLAMMIN / (HRATIO** 2)

XB= (1,. 5*XM+. 5*XM* (HRATIO**2))/(1-HRATIO)
FHRAT=XM*HRATIO+XB
FONE=XM+XB

PRINT *, 'CORR. FOR AREA ','FHRAT= ',FHRAT,'FI = ',FONE,'M= ',XM
'LAMMIN- ' XLAMMIN, 'LAMMAX- ' XLAMMAXPRINT *, , ,

NNN'220

TD=I.

WRITE (2,*) NNN J

WRITE (3,*) NNN

C CALCULATE THE PD, PDS IN REAL TIME SPACE USING THE
C STEFAST SUBROUTINE AND DQDAGS SUBROUTINE

DO I0 I"I,NNN
CALL PWD(TD,N, PD,PDS)

C THE SLOPE IS TD*D(PD/TD)
PDS=TD*PDS

IF(PDS.LT..0001) PDS " .0001
IF (PD,LT. .0001) PD I" .0001

WRITE (2,99) TD,PD
WRITE (3,99) TD,PDS

99 FORMAT (2X,2F24.9)
TD=TD* i. 1

10 CONTINUE
STOP
END

C

C THIS FUNCTION IS CALLED BY THE STEFAST SUBROUTINE AND

C CONTAINS THE FUNCTION IN LAPLACE SPACE TO BE INVERTED.
C THIS FUNCTION IS USED TO CALCULATE THE PD IN REAL

C TIME SPACE.

C - •
DOUBLE PRECISION FUNCTION PLAP (S)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
EXTERNAL F

COMMON RD, WF, WM, XLAMMAX, XLAMMIN, SD, XXUP, XM, XB, HKATIO
COMMON M
ERRREL=. 00001
ERRABS=0.0

XTAUMIN=WM/ (I. 78 I*XLAMMAX)
XTAUMAX=WM/ (i. 781*XLAMMIN)
HRATIO=DSQRT (XLAMMIN /XLAMMAX)
XLOW=DSQRT (WM* S/XLAMMAX)
XUP=DSQRT (WM*S/XLAMMIN)

XXUP=XUP

CALL DQDAGS (F,XLOW, XUP, ERRABS, ERRREL, RESULT, ERREST)
FS=WF+ (WM/XXUP) *RESULT
XX=RD*DSQRT (S'FS)
XXX=DSQRT (S'FS )

AmDBSK0 (XX)

B=DBSKI (XXX)
TOP=A
BOT=S*XXX*B
PLAP=TOP/BOT
RE'_URN
END

C
C THIS FUNCTION IS CALLED BY THE STEFAST SUBROUTINE AND
C CONTAINS THE FUNCTION IN LAPLACE SPACE TO BE INVERTED.
C THIS FUNCTION IS USED TO CALCULATE THE SLOPE OF

C PD/LN(TD) IN REAL TIME SPACE.
C



DOUBLE PRECISION FUNCTION PLAPS(S)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
EXTERNAL F

COMMON RD, WF, WM, XLAMMAX, XLAMMIN, SD, XXUP, XM, XB, HRATIO
COMMON M
ERRREL=. 0001
ERRABS=0.0

XTAUMIN,.WM/( I. 7 81 *XLAMMAX)
XTAUMAX'.WM/ (I. 781 *XLAMMIN)
HRATIO=DSQRT (XLAMMIN /XLAMMAX)
XLOW"DSQRT (WM*S/XLAMMAX)
XUP=DSQRT (WM*S/XLAMMIN)
XXUP=XUP

CALL DQDAGS (F, XLOW, XUP, ERRABS, ERRREL, RESULT, ER/_EST)
FS=WF+ (WM/XXUP) *RESULT
XX'.RD*DSQRT (S'FS)
XXX=D SQRT (S *FS )
A=DBSK0 (XX)
B=DBSK1 (XXX)

TOP=A
BOT=XXX*B
PLAP S=TOP /BOT
RETURN
END

C
C THIS IS THE FUNCTION ASSOCIATED WITH THE SPECIFIED
C PROBABILITY DENSITY FUNCTION AND IS USED AS INPUT TO

C THE NUMERICAL INTEGRATION SUBROUTINE DQDAGS.

DOUBLE PRECISION FUNCTION F(X)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON IAD,WF, WM, XLAMMAX, XLAMMIN, SD, XXUP, XM,XB, HKATIO
F= ((XM/XXUP) +XB/X) *DTANH (X) / (I+SD*XXUP*DTANH (X))
RETURN
END



re,,

C THIS PROGRAM CALCULATES THE LAPLACE INVERSIONS TO THE
C DOUBLE-POROSITY MODEL TO CREATE A DRAWDOWN TYPE CURVE.
C THE LATE TIME RESPONSE IS _UBTKACTED FROM PDW. THIS
C DELTA P IS CALCULATED VS. TD/TAUMAX.

C m.,. m m m_ mm _ m m _ m.., m.b,

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
EXTERNAL F

COMMON RD, WF, WM, XI2tMMAX, XLAMMIN, SD, XXUP, XM, XB, HRATIO
COMMON M

OPEN (UNIT'2, FILE-' PROJ. OUT' ) o
REWIND (UNIT-2)
M-1
N-12
PRINT *, 'RD- ' .

READ *, RD

PRINT *, 'FRAC. SKIN" '

READ *, SD
PRINT *, 'SLOPE =, '
READ *, XM
PRINT *, 'HRATIO" '
READ *, HKATIO
PRINT *, 'LAMMIN" '
READ *, XLAMMIN
PRINT *, 'WM- '
READ *, WM
WF-I. 0-WM

XLAMMAX=XLAMMIN / (HKAT IO* *2 )
XB= (1-. 5*XM+. 5*XM* (HRATIO**2)) / (I-HKATIO)
FHRAT'XM*HRATIO*XB
FONE=XM+XB

PRINT *, 'LAMMIN= ', XIGLMMIN,'LAMMAX = '.XLAMMAX
PRINT *, 'FHRAT" ',FHRAT,'FI" ',FONE,'M = ',XM
XTAUMIN=WM/ (I. 78 I*XLAMMAX)
XTAUMAX'WM/ (I. 781 *XLAMMIN)

PRINT *, 'TAUMAX" ',XTAUMAX
NNN=28 0

TD=I.

WRITE (2,*) NNN
DO I0 I=I,NNN

CALL PWD (TD, N, PD, PDS)
PD=PD-. 5* (DLOG (TD/ (RD**2)) +. 80907)
TDTAU=TD /XTAUMAX
IF(PD.LT..0001) PD = .0001
IF(TDTAU.LT.IE-9) TDTAU=IE-9
WRITE (2,99) TDTAU, PD

99 FORMAT (2X,2F24.9)
TD=TD* l. 1

l0 CONTINUE
STOP
END

C m _m_

DOUBLE PRECISION FUNCTION PLAP(S)
IMPLICIT DOUBLE PRECISION (A-H,O...Z)
EXTERNAL F

COMMON KD, WF, WM, X!JLMMAX, XI2.MMIN, SD, XXUP, XM, XB, HRA.TIO
COMMON M
ERRREL=. 00001
ERBABS=0.0

XLOW=HKATIO*DSQRT (WM*S/XLAMMIN)
XUP=DSQRT (WM*S/XLAMMIN)
XXUP-XUP

CALL DQDAGS (F, XLOW, XUP, ERRABS, ERRREL, RESULT, ERREST)
FS=WF+ (WM/XXUP) *RESULT

XX=RD*DSQRT (S'FS)
XXX=DSQRT (S *FS )

l



A-DBSK0 (XX)
BmDBSK1 (XXX)
TOP-A

BOT=S*XXX*B
PLAP-TOP/BOT

RETURN

END

C

DOUBLE PRECISION FUNCTION F(X)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
COMMON RD, WF, WM, XLAMMAX, XLAMMIN, SD, XXUP_ XM, )CB,HRATIO
F-,_((XM/XXUP) +XB/X) *DTANH (X) / (I+SD*XXUP*DTANH (X))

RETURN
END

|
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C- EXACT LINEAR SOLUTION
C.................. FOR INTERFERENCE WELL TESTS

mwm--

C THIS PROGRAM CALCULATES THE EXACT SOLUTION FOR THE TRANSIENT
C INTERPOROSITY FLOW INTEP2ERENCE WELL TEST USING A LINEAR
C PROBABILITY DENSITY FUNCTION. THE EXACT SOLUTION IN LAPLACE

C SPACE IS USED AND INVERTED VIA THE STEFEST ALGORITHYM. THE

C PROGRAM DOES ASSUME THE FORM OF THE LINE SOURCE SOLUTION IS VALID.

C THE
C VARIABLES IN THE PROGRAM ARE: "
C

C XM .......... SLOPE OF TT'_ "NEAR PROBABILITY DENSITY
C FUNCTION
C XB .......... INTERCEPT O_ 2HE LINEAR PROBABILITY DENSITY

C FUNCTION. THIS IS CALCULATED BY THE PROGRAM
C AND IT DETERMINED FROM THE FACT THAT THE
C AREA OF A PROBABILITY DENSITY FUNCTION MUST

C BE EQUAL TO ONE.
C RD DIMENSIONLESS DISTANCE FROM ACTIVE WELL

C WF .......... FRACTIONAL STORATIVITY OF THE FRACTURES TO THE
C BULK VOLUME STORATIVITY

C WM .......... FRACTIONAL STOKATIVITY OF THE MATRIX TO THE
C BULK VOLUME STORATIVITY
C HRATIO ...... THE RATIO OF THE MINIMUM TO MAXIMUM BLOCK SIZE

C XLAMMAX ..... THE MAXIMUM LAMBDA OF THE PROBABILITY DENSITY
C FUNCTION
C XLAMMIN-----THE MINIMUM LAMBDA OF THE PROBABILITY DENSITY
C FUNCTION
C XTAUMIN ..... THE APPROXIMATE TIME WHEN THE MAXIMUM SIZE
C BLOCK EFFECTS THE PRESSURE TRANSIENT

C RESPONSE--TAU=WM/ (1.7 81 *LAMBDA)
C XTAUMAX ..... THE APPROXIMATE TIME WHEN THE MINIMUM SIZE
C BLOCK EFFECTS THE PRESSURE TRANSIENT
C THETA ....... CORRELATION PARAMETER (THETA=LAMBDA*RD**2)
C SD .... THE INTERPOROSITY SKIN FACTOR
C
C TD -DIMENSIONLESS TIME
C TDRD ........ DIMENSIONLESS TIME, INCLUDES RD**2 TERM
C (I.E. TDRD-TD/RD**2)
C PD .......... DIMENSIONLESS FRACTURE PRESSURE

C PDS -.'DIMENSIONLESS SLOPE OF PP/LN(TD)
C IN THIS PROGRAM, THIS IS NOT OUTPUT
C FS .......... THE FUNCTION IN LAPLACE SPACE TO BE INVERTED
C

C M,N ......... INTERGERS USED IN STEFAST SUBROUTINE
C
C PWD ......... THE CALLABLE STEFAST SUBROUTINE
C

C DQDAGS ...... ThE CALLABLE INTEGRATION ROUTINE DESIGNED
C BY IMSL
C

m--mw--m"

--m--_wm_mQ. uwm----mwm u

--uuwmuwu-- m--W--

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
- COMMON RD, WF, WM, XLAMMAX, XLAMMIN, SD, XXUP, XM, XB, HRATIO

COMMON M
I OPEN (UNIT=2, FILE=' PROJ .OUT' )
J REWIND (UNIT=2)

OPEN (UNIT=3, FILE=' PROJS .OUT' )
REWIND (UNIT=3)
M=I
N=I2

'FRAC SKIN= 'PRINT *,
READ *, SD

!
q



PRINT *, 'RD= '
READ *, RD

PRINT *, 'SLOPE" '
READ *, XM

PRINT *, 'THETA" '
READ *, THETA
PRINT *, 'HRATIO= '

READ *, HRATIO
PRINT *, 'WM= '

" READ *, WM

WF'I. 0-WM
XLAMMIN=THETA/ (RD**2)
XLAMMAX'XLAMMIN/ (HRATIO**2)

" PRINT *, 'LAMMIN" ',XLAMMIN, 'LAMM= ',XLAMMAX

XB= (1-. 5*XM+. 5*XM* (HKATIO**2)) / (1-HKATIO)

FHKAT-XM* HRAT IO+XB
FONE=XM+XB
PRINT *, 'CORR. FOR AREA ','FHKAT- ',FHKAT,'FI" ',FONE,'M" ',XM

NNN=220
TD'I •

WRITE (2,*) NNN

WRITE (3,*) NNN
C CALCULATE THE PD, PDS IN REAL TIME SPACE USING THE
C STEFAST SUBROUTINE AND DQDAGS SUBROUTINE.

DO 10 I=I,NNN
CALL PWD(TD,N,PD,PDS)

C THE SLOPE IS TD*D(PD/TD)
PDS=TD*PDS

IF(PDS.LT..0001) PDS " .0001
IF(PD.LT..0001) PD " .0001
IF (TD.LT. 1E-9) TD=lE- 9

TDRD=TD / (RD**2)
WRITE (2,99) TDRD,PD

WRITE (3,99) TDRD,PDS
" 99 FORMAT (2X,2F24.9)

TD=TD* 1 •1

I0 CONTINUE
STOP

• END
C m..-- m

C THIS FUNCTION IS CALLED BY THE STEFAST SUBROUTINE AND
C CONTAINS THE FUNCTION IN LAPLACE SPACE TO BE INVERTED.
C THIS FUNCTION IS USED TO CALCULATE THE PD IN REAL TIME
C SPACE.
C _....------ m.. D m,,.--, m--D_

DOUBLE PRECISION FUNCTION PLAP(S)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
EXTERNAL F

COMMON RD, WF, WM, XLAMMAX, XLAMMIN, SD, XXUP, XM, XB, HRATIO
COMMON M
ERRREL = .00001
ERKABS=0.0

. XTAUMIN=WM/ (1.7 81 _XLAMMAX)
XTAUMAX=WM/( 1.7 81 *XLAMMIN)
XUP=DSQRT (WM*S/XLAMMIN)
XLOW=HRAT IO*XUP

. XXUP=XUP

CALL DQDAGS (F, XLOW, XUP, ERRABS, ERRREL, RESULT, ERREST)
FS-WF+ (WM/XXUP) *RESULT
XX-RD*DSQRT (S'FS )
XXX-DSQRT (S'FS)
A=DBSK0 (XX)
B-DBSKI (XXX)
TOP=A
BOT=S*XXX*B
PLAP=TOP/BOT



RETURN
END

C ....... _

C THIS FUNCTION IS CALLED BY THE STEFAST SUBROUTINE AND
C CONTAINS THE FUNCTION IN LAPLACE SPACE TO BE INVERTED
C , THIS FUNCTION IS USED TO CALCULATE THE SLOPE OF
C PD/LN(TD) IN REAL TIME SPACE.
C

DOUBLE PRECISION FUNCTION PLAPS (S)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
EXTERNAL F

COMMON RD, WF, WM, XLAMMAX, XLAMMIN, SD, XXUP, XM, XB, HRAT I0
COMMON M
ERRREL=. 0001
ERRABS=0.0 "

XTAUMIN..WM/ (I. 7 8I*XLAMMAX)
XTAUMAX=WM / (I. 7 81 *XLAMMIN )

XUP=DSQRT (WM* S/XLAMMIN)
XLOW_-HRATIO*XUP
XXUP=XUP

CALL DQDAGS (F, XLOW, XUP, ERRABS, ERRREL, RESULT, ERREST)
FS=WF+ (WM/XXUP) *RESULT
XX=RD*DSQRT (S'FS)
XXX=DSQRT (S'FS)
A=DBSK0 (XX)
B=DBSKI (XXX)
TOP=A
BOT=XXX*B

PLAP S=TOP/BOT
RETURN
END

C THIS IS THE FUNCTION ASSOCIATED WITH THE SPECIFIED
C PROBABILITY DENSITY FUNCTION AND IS USED AS INPUT TO

C THE NUMERICAL INTEGRATION SUBROUTINE DQDAGS.
C mm_m_ _ _.,,_

DOUBLE PRECISION FUNCTION F(X)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)

COMMON RD, WF, WM, XLAMMAX, XLAMMIN, SD, XXUP, XM, XB, HKATIO
F= ((XM/XXUP) +XB/X) *DTANH (X) / (I+SD*XXUP*DTANH (X))
RETURN
END



q '

C THE STEHFEST ALGORITHM
C *****************************
C

SUBROUTINE PWD (TD, N, PD, PDS)

C THIS FUNTION COMPUTES NUMERICALLY THE LAPLACE TRNSFORM

C INVERSE OF F(S) .

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION G(50),V(50),H(25)
COMMON RD, WF, WM, XLAMMAX, XLAMMIN, AA, XXUP, SD '
COI_MON M ,,

C ,

C NOW IF THE ARRAY V(I) WAS COMPUTED BEFORE THE PROGRAM
C GOES DIRECTLY TO THE END OF THE SUBRUTINE TO CALCULATE

• c F(S).
IF (N.EQ.M) GO TO 17
M-'N
DLOGTW=0 .6931471805599

NH=N/2
C
C THE FACTORIALS OF I TO N APE CALCULATED INTO ARRAY G.

G(1)-I

DO 1 I=2,N
G (I)-_G(I-I) *I

1 CONTINUE
C

C TERMS WITH K ONLY ARE CALCULATED INTO ARRAY H.

H (I) -,2./G (NH-I)
DO 6 I=2, NH

FI-I

IF(I-NH) 4,5,6
4 H (I) -'FI**NH*G (2"I) / (G (NH-I) *G (I) *G (I-l))

GO TO 6

5 H(I)=FI**NH*G(2*I) /(G(I)*G(I-I))
6 CONTINUE

• C
C THE TERMS (-I)**NH+I ARE CALCULATED : _'
C FIRST THE TERM FOR I-,l

SN=2* (NH-NH/2*2) -1
C

C THE REST OF THE SN_S ARECALCULATED IN THE MAIN RUTINE0
C

C

C THE ARRAY V(I) IS CALCULATED.

DO 7 I=I,N
C

C FIRST SET V(I)-,0
v(1)=0.

C
C THE LIMITS FOR K ARE ESTABLISHED.

C THE LOWER LIMIT IS KI-_INTEG((I+I/2) )
KI= (I+1)/2

C

, C THE UPPER LIMIT IS K2=MIN(I,N/2)
K2=I

IF (K2-NH) 8,8,9

9 K2=NH
C
C THE SUMMATION TERM IN V(I) IS CALCULATED.

8 DO 10 K=K1,K2
IF (2*K-I) 12, 13, 12

12 IF (I-K) Ii,14,11ii V (1) =V (I) +H (K) / (G (I-K) *G (2*K-I))

i GO TO I0
13 V(I)-V(I)+H(K) /G(I-K)

GO TO 10

• 14 V(I) =V(I) +H (K) /G (2*K-II

\ o
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10 CONT INUE

C
C THE V(I) ARRAY IS FINALLY CALCULATED BY WEIGHTING
C ACCORDING TO SN.

V (1) -SN*V (I)
C
C THE TERM SN CHANGES ITS SIGN EACH ITERATION.

SN,,-SN
7 CONTINUE

C

C THE NUMERICAL APPROXIMATION IS CALCULATED. _
17 A-DLOGTW/TD

PD=0
PDS-0

DO 15 I-I,N
ARC-A* I

PD-PD+V (I)*PLAP (ARG)
PDS-PDS+V (I) *PLAPS (ARG)

15 CONTINUE

PD-PD*A
PDS-PDS*A

18 RETURN
END

z
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