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Abstract

Background: During the last years, several groups have identified prognostic gene expression
signatures with apparently similar performances. However, signatures were never compared on an
independent population of untreated breast cancer patients, where risk assessment was computed
using the original algorithms and microarray platforms.

Results: We compared three gene expression signatures, the 70-gene, the 76-gene and the Gene
expression Grade Index (GGI) signatures, in terms of predicting distant metastasis free survival
(DMFS) for the individual patient. To this end, we used the previously published TRANSBIG
independent validation series of node-negative untreated primary breast cancer patients. We
observed agreement in prediction for 135 of 198 patients (68%) when considering the three
signatures. When comparing the signatures two by two, the agreement in prediction was 71% for
the 70- and 76-gene signatures, 76% for the 76-gene signature and the GGI, and 88% for the 70-
gene signature and the GGI. The three signatures had similar capabilities of predicting DMFS and
added significant prognostic information to that provided by the classical parameters.

Conclusion: Despite the difference in development of these signatures and the limited overlap in
gene identity, they showed similar prognostic performance, adding to the growing evidence that
these prognostic signatures are of clinical relevance.

Background lines have been developed to assist clinicians in selecting
During the last two decades, several clinical and patholog- ~ patients who should receive adjuvant therapy, such as the
ical parameters have been used to evaluate the prognosis St Gallen consensus criteria [1], the NIH guidelines [2] or
of breast cancer (BC) patients. Although different guide-  Adjuvant! Online [3], it still remains a challenge to distin-
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guish those patients who would really need adjuvant sys-
temic therapy from those who could be spared such a
treatment.

With the advent of array-based technology and the
sequencing of the human genome, new insights into BC
biology and prognosis have emerged. Interestingly, sev-
eral groups conducted comprehensive genome-wide
assessments of gene expression profiling and identified
prognostic gene expression signatures [4-6]. To this end,
different approaches have been used: 1/ the "top-down"
(data-driven) approach and 2/ the "bottom-up" (hypoth-
esis-driven) approach.

Examples of signatures which were developed using the
first approach, i.e. by seeking gene expression profiles that
are associated or correlated with clinical outcome without
any a priori biological assumption, are the 70- and 76-
gene signatures developed by the Netherlands Cancer
Institute in Amsterdam with Rosetta Informatics-Merck,
and the Erasmus MC in Rotterdam together with Veridex,
respectively [5,6]. Although these signatures were built
using a different microarray platform and had only a
small gene overlap, a feature common to both signatures
is that they correctly identified the high-risk patients while
also identifying a higher number of low-risk patients not
needing treatment compared to the clinical guidelines. In
order to investigate the enormous potential of these signa-
tures towards better individualization of treatment
options in BC therapy, TRANSBIG, a network for transla-
tional research established by the Breast International
Group (BIG), recently conducted a validation study of the
70-gene and 76-gene signatures which demonstrated the
reproducibility and robustness of the 70- and 76-gene sig-
natures [7,8]. This important validation work has led to
the implementation of one of the first prospective clinical
trials, MINDACT (Microarray In Node-negative Disease
may Avoid Chemotherapy Trial) which evaluates the ben-
efit/risk ratio of chemotherapy when the assessment of
prognosis based on clinico-pathological features differs
from that provided by the 70-gene signature assessed by
the MammaPrint™ [9].

An example of deriving a prognostic gene expression sig-
nature using a hypothesis-driven approach was the study
reported by our group that focused on histological grade,
a well-established pathological parameter rooted in the
cell biology of BC [4]. Indeed, clinicians face a huge prob-
lem with respect to patients who have intermediate-grade
tumors (grade 2), as these tumors, which represent 30%
to 60% of cases, are the major source of inter-observer dis-
crepancy and may display intermediate phenotype and
survival, making treatment decisions for these patients a
great challenge, with subsequent under- or over-treat-
ment. Performing a supervised analysis, we developed a
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Gene expression Grade Index (GGI) score based on 97
genes. These genes were mainly involved in cell cycle reg-
ulation and proliferation and were consistently differen-
tially expressed between low and high grade breast
carcinomas. Interestingly, the GGI was able to reclassify
patients with histological grade 2 tumors into two groups
with distinct clinical outcomes similar to those of histo-
logical grade 1 and 3, respectively.

In addition to the signatures described above, many other
research groups have contributed gene expression signa-
tures that are predictive of clinical outcome in BC [10].
However, given the fact that their performances were eval-
uated on different datasets with limited or no independ-
ent validation and that there is only little gene overlap
between the different gene sets, which can be attributed to
the different platforms, training sets, and/or statistical
tools used, it is unclear which is the best. The public avail-
ability of the TRANSBIG series gives the opportunity to
perform a thorough comparison of several gene signa-
tures. Indeed, this dataset of untreated primary BC
patients is the only one on which three gene signatures,
the 70-gene, the 76-gene and the GGI signatures, were
computed using the original algorithms and microarray
platforms [7,8], providing also the advantage that this
population was not used for the development of any of
these signatures. Here, we statistically compared these
three signatures in terms of predicting clinical outcome
for the individual patient using two performance criteria.

Methods

Gene expression and clinical data

Gene expression and clinical data of TRANSBIG series
[7,8] were retrieved from EMBL-EBI ArrayExpress (http://
www.ebi.ac.uk/microarray-as/aer/, accession number E-
TABM-77) and NCBI GEO (http://
www.ncbi.nlm.nih.gov/projects/geo/, accession number
GSE7390) databases, for the validation of the 70-gene sig-
nature (TBAGD) and of the 76-gene signature (TBVDX),
respectively. The original TRANSBIG series included 309
patients for whom the 70-gene signature was computed
using the Agendia clinical MammaPrint™ 1.9 k Agilent
custom microarray chip. This series is referred to as
TBAGD. In a second time, the 76-gene signature was com-
puted for a subset of these patients for whom there was
enough material left. The Affymetrix HG-U133A research
GeneChip™ was used for the signature computation. This
series of 198 patients is referred to as TBVDX. Finally, we
were able to compute the gene expression grade index in
TBVDX as this series used Affymetrix technology. In this
paper, we used the TBVDX patient's series for which we
had the official classification for the three gene signatures,
i.e. the 70-gene, 76-gene and the gene expression grade
index.

Page 2 of 9

(page number not for citation purposes)


http://www.ebi.ac.uk/microarray-as/aer/
http://www.ebi.ac.uk/microarray-as/aer/
http://www.ncbi.nlm.nih.gov/projects/geo/
http://www.ncbi.nlm.nih.gov/projects/geo/

BMC Genomics 2008, 9:394

Risk status

We considered only the binary risk status for the survival
analysis, as the continuous risk scores are not publicly
available for 70- and 76-gene signatures in the TBAGD
and TBVDX series, respectively. The TBAGD series is com-
posed of 307 BC patients and the TBVDX series is com-
posed of 198 BC patients who are also included in the
TBAGD series. In order to use the GGI as a prognostic sig-
nature, we first identified a threshold that allows to define
the binary risk status according to the GGI scores, on the
dataset of 286 patients used by Wang et al. (VDX, [6]).
Indeed, the threshold used in the original publication [4]
was selected to optimize the discrimination between
patients with histological grade 1 and 3 tumors. As this
threshold was not suited for survival analysis, we used the
same training set as the 76-gene signature to keep the
TRANSBIG series fully independent. We did not attempt
to select a threshold optimizing some performance crite-
ria, e.g. hazard ratio or logrank p-value, in order to avoid
overfitting in VDX. Instead, we selected a threshold based
on tertiles (the third of the patients having the lowest GGI
scores being defined as low-risk and the remaining
patients as high-risk) leading to similar repartition of
patients in low- and high-risk groups to the 76-gene signa-
ture. The GGI score was computed as in Sotiriou et al. [4]
except that we performed a robust scaling instead of the
original scaling method to avoid the use of histological
grade information. After the robust scaling, the GGI scores
have an interquartile range equals 1 and a median equals
0 within the dataset. The risk status computed using the
threshold based on tertiles, yielded good classification
performance on the VDX dataset (HR of 2.12; 95% CI:
1.35-3.34; p = 0.001). The GGI continuous risk scores for
TBVDX were computed as for VDX and the GGI binary
risk status was defined using the threshold identified on
VDX. The clinical risk status was defined using the Adju-
vant! Online software (AOL, http://www.adjuvanton
line.com) as in the validation study conducted by the
TRANSBIG consortium [7,8].

Classification association

We used Cramer's V statistic [11] to quantify the strength
of the association between two gene signature classifica-
tions. The values range from 0 to 1, with 0 indicating no
association and 1 indicating a perfect association. Tradi-
tionally, values of 0.36 to 0.49 indicate a substantial asso-
ciation, and values of 0.50 or more indicate a strong
association. The significance of such an association was
computed using a chi-squared test.

Survival analysis

We considered the distant metastasis free survival
(DMES), time to distant metastasis (TDM) and overall
survival (OS) of BC patients as the survival endpoints. We
performed the survival analyses by censoring the survival
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data at 10 years and by considering the full follow-up. We
show the results for DMFS censored at 10 years in the arti-
cle. The results for TDM and OS censored at 10 years are
reported in [Additional File 1]. The survival analyses with
the full follow-up are also reported in [Additional File 1].
Sensitivity and specificity were estimated at 3, 5 (the end-
point used to derive the 70- and 76-gene signatures), 10
and 15 years and by considering the full follow-up as well.
Sensitivity was defined as the probability that a patient
who experienced the event of interest was in the high-risk
group and specificity as the probability that a patient who
did not experience the event of interest was in the low-risk
group. We used the nearest neighbors estimator defined in
[12] in order to take into account the time of events and
the censoring. Hazard ratios between two groups were
estimated through univariate Cox's proportional hazard
regression models, stratified by clinical center to account
for the possible heterogeneity in patient selection or other
potential confounders among the various centers. Hazard
ratios for the risk groups defined by the gene signature
were also estimated with stratification for clinical risk in
order to reflect the prognostic impact of the gene signature
over and above that of clinicopathological variables
("adjusted hazard ratios"), as reported previously in [7,8].
In addition to the hazard ratio, we used the concordance
index to quantify the predictive ability of a survival model
[13]. It estimates the probability that, of a pair of ran-
domly chosen comparable patients, the patient in the
high-risk group will recur before the patient in the low-
risk group. A pair of patients is comparable if one of the
patients recurred before the other patient and if the
patients are in different risk groups. Standard error for the
concordance index was estimated based on the asymp-
totic normality of its estimate [14]. The difference in haz-
ard ratios and concordance indices were computed using
a paired Student t test. Survival curves were computed
through the Kaplan-Meier product limit estimator and
their difference was tested in a univariate Cox model,
stratified when required.

All p-values were two-tailed and p-values < 0.05 were con-
sidered statistically significant. All statistical analyses were
carried out using R version 2.5.1 [15].

Results

Risk status computed by the prognostic signatures

We used the original algorithms and microarray platforms
to compute the risk status of 198 patients used in the sec-
ond TRANSBIG validation study [8]. Similarly to the
GENE?70 [5] and GENE76 [6] signatures, we performed a
calibration step in order to compute GGI classification in
this independent series. This step makes the prediction of
a single patient challenging, as it requires a large number
of samples. However, the standardization of hybridiza-
tion protocols, the setup of a central laboratory to carry
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out the microarray experiments and the use of test sam-
ples to calibrate the process might help to avoid this issue.
The MAQC consortium [16] is specifically studying this
problem in order to bring the microarray-based gene sig-
natures into clinic.

Patient characteristics according to the prognostic
signatures

The patients were younger than the age of 61 (median age
47), had node-negative, T1-T2 (< 5 cm) tumors and did
not receive any adjuvant treatment. The tumor samples
from these patients were previously hybridized on the
Agilent platform to define the 70-gene signature [6,17], as
well as on the Affymetrix platform, from which the 76-
gene signature [6] and Gene expression Grade Index (GGI,
[4]) were computed. Patient characteristics are shown in
Table 1, organized according to their genomic risk of
recurrence as defined by the 70-gene and the 76-gene sig-
natures as well as by the GGI, and by their clinical risk as
defined by Adjuvant! Online (AOL, [3,7,8]). The distribu-
tion of the risk categories was similar for the different sig-
natures in terms of patient's age and tumor size. However,
differences in risk distribution were observed between the
76-gene signature and the two others in terms of tumor
grade and estrogen receptor (ER) status. Indeed, the 76-
gene signature identified a higher proportion of high-risk
grade 2 tumors and low-risk grade 3 tumors, high-risk ER-
positive and low-risk ER-negative tumors. When looking
at the distribution of the high and low-risk patients
according to the ER status, it appears clearly that these sig-
natures mainly impact on the prediction of clinical out-
come on ER-positive patients. Compared to the different
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genomic risk classifications, the clinical risk classification
(AOL) identifies a higher proportion of high-risk patients
in the older subgroup or in the group of patients with
large tumors. None of the patients whose tumors were
moderately/poorly differentiated or ER-negative are con-
sidered as low-risk by AOL.

Concordance of classification of samples

Figure 1 illustrates the classification of the tumor samples
according to the prognostic signatures. We observed
agreement in prediction in 135 of 198 patients (68%)
when considering the three signatures. When comparing
the signatures two by two, agreement in prediction was
71% for the 70- and 76-gene signatures, 76% for the 76-
gene signature and the GGI, and 88% for the 70-gene sig-
nature and the GGI. The strength of the concordance of
classifications, quantified through Cramer's V statistic,
was 0.33 for the 70- and 76-gene signatures, 0.47 for the
76-gene signature and the GGI, and 0.76 for the 70-gene
signature and the GGI.

Survival analyses

In this section, we report the results from the survival
analyses using the DMFS censored at 10 years and with
the full follow-up. We performed these two separate anal-
yses in order to highlight the time-dependency of the gene
signatures as shown in [7,8].

Survival data censored at 10 years

To assess the prognostic ability of the three signatures, we
first compared their concordance index, which is used to
quantify the predictive ability of a survival model.

Table I: Characteristics of patients of the TRANSBIG validation series (n = 198), according to the 70-gene signature (GENE70), the 76-
gene signature (GENE76), the Gene expression Grade Index (GGI) and the Adjuvant! Online (AOL) risk classifications.

Signature GENE70 GENE76 GGl AOL
Number of patients Low-risk High-risk Low-risk High-risk Low-risk High-risk Low-risk High-risk
(N =66) (N =132) (N =55) (N =143) (N =69) (N =129) (N = 46) (N =152)
Age
< 4] years I 31 10 32 10 32 4 38
41-50 years 33 67 24 76 33 67 33 67
51-60 years 33 34 24 35 26 30 9 47
Size
Tlab (< | cm) 4 5 4 5 4 5 8 |
Tlc (1-2 cm) 24 35 17 42 25 34 21 38
T2 (2-5cm) 38 92 34 96 40 90 17 113
Tumor grade
Good differentiation 17 13 14 16 20 10 23 7
Intermediate 42 41 21 62 44 39 23 60
Poor differentiation 7 76 20 63 5 78 0 83
Unknown 0 2 0 2 0 2 0 2
Estrogen receptors
Positive 63 71 41 93 65 69 46 88
Negative 3 6l 14 50 4 60 0 64
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GENE70 GENE76

GGl

Figure |

Venn diagram illustrating the classification of the
tumor sample according to the prognostic signa-
tures. Dark red = high-risk patients and blue = low-risk
patients. GENE70 = 70-gene signature, GENE76 = 76-gene
signature, and GGI = Gene expression Grade Index.

Although all three concordance indices were highly signif-
icant, the 70-gene signature and GGI displayed a higher
concordance index compared to the 76-gene signature
(0.90 compared to 0.80; Figure 2A). However, this differ-
ence was not statistically significant (Table 2). In contrast,
the clinical risk calculated using AOL displayed a lower
concordance index value (0.69) compared to either ones
generated by the genomic signatures.

We next performed univariate and multivariate Cox anal-
yses, which included the traditional clinico-pathological
parameters, for each signature separately. The univariate
hazard ratios (HR) were 7.12 (95% CI: 2.52-20.11; p =
2.1 x 104), 3.18 (95% CI: 1.35-7.53; p = 8.4 - 103) and
5.85 (95% CI: 2.3-15; p = 2.1 - 10) for the 70-gene sig-
nature, 76-gene signature and the GGI respectively. We
additionally computed the HR for the clinical risk as
defined by AOL, which was not statistically significant for
DMEFS evaluation in this cohort of patients (2.01; 95% CI:
0.89-4.5; p = 0.091). The log2 of these HR are illustrated
in Figure 2B. Although the HR of the 70-gene signature
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and the GGI were higher than the HR of the 76-gene sig-
nature, the differences were not statistically significant
(see Table 2). Figure 3 illustrates the Kaplan-Meier esti-
mates of DMFS for the four groups of patients (two groups
with concordant results in risk assessment and two with
discordant results) for the different signatures two by two.

From the multivariate analyses (Table 3), we can conclude
that the three signatures added significant information to
the traditional parameters and were the strongest predic-
tive variables of DMFS, as reflected by their lowest p-val-
ues compared to the other variables. The additional
information of these signatures over the clinical risk was
also confirmed by the fact that the univariate HRs for the
three signatures remained similar when adjusted for the
clinical risk, with a HR of 7.25 (95% CI: 2.4-21.5; p = 3.5
- 104), 2.8 (95% CI: 1.2-6.8; p = 0.018) and 6.25 (95%
CIL: 2.3-17; p = 3.3 - 10*) for the 70-gene signature, 76-
gene signature and the GGI respectively.

Lastly, we combined the three gene signatures in order to
assess the potential improvement in BC prognostication.
We used a simple combination scheme that defined the
risk of a patient as the sum of the classifications (low-risk
= 0 and high-risk = 1) by the three gene signatures. As
illustrated in Supplementary Figure 1 in [Additional File
1], the patients for whom the three gene signature classifi-
cations were concordant are well defined, with only 2
patients relapsing in the low-risk group after 9 years of fol-
low up. However, the patients with discordant classifica-
tions exhibited good survival and their survival curves
were not distinguishable. The combination of the three
gene signatures did not yield significant improvement in
prognostication (the hazard ratio between the concordant
cases, i.e. 'All Low' and 'All High', is not significantly
higher than when each gene signature was considered sep-
arately), maybe due to their high concordance and the
sample size of the TBVDX series

Survival data with the full follow-up

We computed the concordance index of all the gene signa-
tures using the survival data with the full follow-up. The
three concordance indices were significant. We observed
higher concordance indices for the 70-gene signature and
GGI compared to the 76-gene signature (0.84 and 0.79 for
GENE70 and GGI respectively compared to 0.71 for

Table 2: P-values of the Student t test for the difference between concordance indices and hazard ratios for the 70-gene signature
(GENE70), the 76-gene signature (GENE76), and the Gene expression Grade Index (GGI) risk classifications.

p-value for difference in concordance indices

p-value for difference in hazard ratios

GENE70 vs GENE76 0.15
GENE70 vs GGl 0.53
GENE76 vs GGI 0.22

0.11
0.42
0.19
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concordance index log2 hazard ratio
Figure 2

Forest plots (and 95% CI) for the three gene signa-
tures and the Adjuvant! Online classification showing:
Al/the concordance indices, and B/the log2 hazard
ratios. GENE70 = 70-gene signature, GENE76 = 76-gene
signature, GGl = Gene expression Grade Index and AOL =
Adjuvant! Online.

GENE76; Supplementary Figure 12 in [Additional File 1]).
This difference was not statistically significant (Supple-
mentary Table 5 in [Additional File 1]) although we noted
a trend for GENE70 to have a higher concordance index (p
=0.065). In contrast, the clinical risk calculated using AOL
displayed a lower concordance index value (0.69) com-
pared to either ones generated by the genomic signatures.

We next performed univariate and multivariate Cox anal-
yses, which included the traditional clinico-pathological
parameters, for each signature separately. The univariate
hazard ratios (HR) were 2.77 (95% CI: 1.41-5.43; p=3.1
- 103), 1.76 (95% CI: 0.92-3.34; p = 0.086) and 2.41
(95% CI: 1.29-4.5; p = 5.9 - 103) for the 70-gene signa-
ture, 76-gene signature and the GGI respectively. We addi-
tionally computed the HR for the clinical risk as defined
by AOL, which was not statistically significant for DMFS
evaluation in this cohort of patients (1.5; 95% CI: 1.29-
4.5;p =0.11). The log2 of these HR are illustrated in Sup-
plementary Figure 13 in [Additional File 1]. Although the
HR of the 70-gene signature and the GGI were higher than
the HR of the 76-gene signature, the differences were not
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statistically significant (see Supplementary Table 5 in
[Additional File 1]). Supplementary Figures 14-16 in
[Additional File 1] illustrate the Kaplan-Meier estimates of
DMES for the four groups of patients for the different sig-
natures two by two.

From the multivariate analyses (Supplementary Table 6 in
[Additional File 1]), we can conclude that the three signa-
tures added significant information to the traditional
parameters and were the strongest predictive variables of
DMFS, as reflected by their lowest p-values compared to
the other variables. We computed the univariate HRs
adjusted for the clinical risk, i.e. 2.8 (95% CI: 1.35-5.82;
p =5.8 - 103), 1.55 (95% CI: 0.81-2.97; p = 0.18) and
2.13 (95% CI: 1.12-4.02; p = 0.02) for the 70-gene signa-
ture, 76-gene signature and the GGI respectively.

Contrary to the analyses using the survival data censored
at 10 years, the HRs with and without adjustment for clin-
ical risk were not significant for GENE76, highlighting the
decrease in performance we observed by using the survival
data with the full follow-up. This performance degrada-
tion was due to a group of late relapses occurring after 10
years of follow-up, classified as low-risk by the three gene
signatures (see Supplementary Figure 17 in [Additional
File 1]).

We combined the three gene signatures using the method
described previously. In agreement with the results from
survival data censored at 10 years, the combination did
not yield significant improvement in prognostication (see
Section 2.1.1 in [Additional File 1]).

Sensitivity and specificity

We computed the sensitivity and the specificity for DMFS
at 5 years for the three signatures as well as for the clinical
risk as defined by AOL. These signatures exhibited high

Probabilty of dmfs
Probabilty of dmfs

B — GENE70 Low / GENE76 Low S
- - - GENE70 Low / GENET6 High

- - - GENE70 High / GENE76 Low
—— GENE70 High / GENETS High

Probabilty of dmfs

7 — GENE76 Low/ GGl Low
- - GENET6 Low / GG High

- - - GENE7 High / GGI Low
— GENETS High / GGI High

4 6
Time (years)

No. At Risk
GENE70 Low /GGl Low 57 57
GENE70Low/GGI High 9 o
GENE70 High /GGl Low 12 12
GENET0 High / GG High 120 107

No. At Risk
GENE70 Low/ GENE76 Low 32 32 at 31 20 25
GENE70 Low / GENE76 High 3¢ 3 34 %2 32 30
GENE70 High / GENE76 Low 23 23 23 22 17 18
GENE7O High / GENET6 High 109 o7 82 o 61 55

Figure 3

No. At Risk
GENE76Low/ GGl Low 39 £ 38 a7 35 20
GENE76Low /GGI High 16 16 16
‘GENET6 High/ GGl Low 30 30 20 28 28 26
‘GENET6 High / GGI High 113 101 E3

Kaplan-Meier curves for distant metastasis free survival for: A/the 70-gene signature vs the 76-gene signature;
B/the 70-gene signature vs the Gene expression Grade Index, and C/the 76-gene signature vs the Gene expres-
sion Grade Index. GENE70 = 70-gene signature, GENE76 = 76-gene signature and GGI = Gene expression Grade Index.
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Table 3: Multivariate Cox analyses for the 70-gene signature (GENE70), the 76-gene signature (GENE76) and the Gene expression

Grade Index (GGI) risk classifications.

GENE70 GENE76 GGl
HR p-value HR p-value HR p-value
(95% CI) (95% Cl) (95% Cl)

Age (< or >50 years) 1.51 (0.82-2.79) 0.3 1.78 (0.97-3.25) 0.062 1.73 (0.94-3.16) 0.077
Tumor Size (< or >2 cm) 1.3 (0.72-2.5) 0.36 1.27 (0.68-2.37) 0.45 1.22 (0.65-2.29) 0.53
ER status 0.82 (0.43-1.6) 0.57 0.6 (0.31-1.17) 0.13 0.78 (0.4-1.51) 0.46
Grade 0.93 (0.34-2.53) 0.89 1.51 (0.53—4.28) 0.5 0.75 (0.27-2.08) 0.58
Risk according to the gene signature 7.1 (24-21) 4 x 104 3.39 (1.41-8.12) 6 x 103 6.42 (2.36—17.45) 3 x |04

sensitivities (0.97 to 1) compared to the clinical risk
(0.88). Similarly to the results reported in previous publi-
cations [5-8,18,19], the gene signatures exhibited low spe-
cificities (0.33 to 0.42) which were however higher than
the specificity associated with clinical risk assessment
(0.26). The estimations of sensitivity and specificity for
DMFS, TDM and OS at 3, 5, 10, and 15 years and by con-
sidering the full follow-up, are given in Supplementary
Tables 7, 10 and 13 [see Additional File 1]. Although the
gene signatures yielded higher sensitivities and specifici-
ties than clinical risk until 10 years, we observed a
decrease in performance with increasing follow-up dura-
tion (10 years and more). The specificities of the gene sig-
natures remained higher than clinical risk but their
sensitivities were slightly lower.

The results were highly concordant between the survival
endpoints, namely DMFS, TDM and OS [see Additional
File 1].

Discussion and conclusion

The objective of this study was to conduct an unbiased
comparison of three different prognostic signatures. To
this end, the signatures had to be evaluated on their orig-
inal platform and computed with their original algo-
rithms on an independent population of untreated BC
patients. All these requirements were met by the TRANS-
BIG validation series [7,8]. The results showed that the
three evaluated signatures had similar capabilities of pre-
dicting DMFS (TDM and OS [see Additional File 1]) in
this set of patients and added significant prognostic infor-
mation to that provided by the classical parameters.

Two groups recently undertook to compare different prog-
nostic signatures. Fan et al. reported that the intrinsic sub-
types and several prognostic signatures [5,6,20-24] gave
similar outcome predictions for the individual patient
when investigated on a single dataset [25]. Although this
study yielded promising conclusions, some issues
remained open: 1/ the dataset which was considered for
this study was used for the development of some gene sets

and could then not be considered as a true independent
validation set for all the evaluated signatures and 2/ since
some of these signatures were developed on another plat-
form, the initial algorithms could not be applied. Tho-
massen et al. compared nine prognostic signatures in a
cohort of low-malignancy BC patients [26]. In their study,
they also compared the same signatures as we did, but
computed the associated risk classification from data gen-
erated on a different platform, with as consequence that
not all the genes from the 76-gene signature and the GGI
were represented and that they could not use the original
algorithms. Although the proportions of samples that
they reported with identical classification were slightly
higher to ours, the rank of concordances was similar with
83% between the 70- and 76-gene signatures, 85%
between the 76-gene signature and the GGI, and 92% (the
highest agreement) between the 70-gene signature and
the GGL

Thanks to the long follow-up of the TRANSBIG series (up
to 25 years), we were able to assess the performance of the
three gene signatures with respect to the time. In agree-
ment with Buyse et al. [7] and Desmedt et al. [8], we
observed a strong time dependence of the classification
performance. The gene signatures yielded good perform-
ance at 10 years but we observed a strong degradation
when considering the full follow-up due to the poor iden-
tification of late relapses (after 10 years). That might be
due to: (i) the biology, Klein et al. have suggested that the
biological phenomenon responsible for the appearance of
early and late relapses might be different [27,28]; (ii) the
statistical method, the GENE70 and GENE76 signatures
have been developed to predict early relapses (distant
metastasis before 5 years) as in the original publications,
the authors controlled the sensitivity and the specificity of
these signatures for early relapses only; (iii) the quality of
survival data, although it is hard to quantify, one could
intuitively think that the quality of survival data decreases
with respect to the duration of follow-up since it is diffi-
cult to follow patients during a long period (high level of
censoring).
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While there are only partial or very small to no overlaps
between the different prognostic gene signatures [29],
there is still a relatively high agreement of classification of
the patients between the different signatures. We may
assume that these similar outcome predictions are based
on representation of largely overlapping biological proc-
esses. This is supported by several reports. Indeed, Tho-
massen et al. found that cell cycle and cell proliferation
represented the predominant overlaps in gene ontology
categories of the nine prognostic signatures they com-
pared [26]. Yu et al. also conducted pathway analyses of
five published prognostic gene signatures and also found
that the signatures had many pathways in common such
as cell cycle, regulation of cell cycle, mitosis, apoptosis, etc
[29]. Our group also investigated in a large meta-analysis
of publicly available gene expression data extensive anal-
ysis how different gene lists may give rise to signatures
with equivalent prognostic performance and found by
dissecting these signatures according to the main molecu-
lar processes involved in BC, that proliferation may be the
common driving force of several prognostic signatures
[30]. This might explain why the combination of the three
gene signatures evaluated in this study did not yield signif-
icant improvement in prognostication.

Until now, the generation of the prognostic signatures has
been done on global sets of BC patients. However, since it
is clear that BC is a molecular heterogeneous disease, with
subgroups defined primarily by the estrogen (ER) and
HER2 receptors, prognosis could be refined to these
molecularly homogeneous subgroups of patients. We
showed for example in our meta-analysis that prolifera-
tion is the strongest parameter predicting clinical outcome
in the ER+/HER2- subgroup of patients only, whereas
immune response and tumor invasion appear to be the
main biological processes associated with prognosis in the
ER-/HER2- and HER2+ subgroups respectively [30]. This
could also have implications with regard to the evaluation
of response to different therapies [31] and help to define
new therapeutic strategies in the specific molecular sub-
groups of BC patients.

To conclude, our study showed that although prognostic
signatures may have been developed using a different
approach, different platforms and statistical tools on dif-
ferent sets of comparable patients, with a small overlap in
gene identity as a consequence, they can result in similar
predictions of outcome. Although the technology used
has been shown to be ready for clinical practice [16], and
can be used as one parameter in combination with current
clinical parameters, these signatures need to be prospec-
tively validated to prove their superiority and benefit
above and beyond the use of standard clinico-pathologi-
cal prognosis variables to guide the choice of adjuvant
therapy. Two gene signatures, the 70-gene signature which

http://www.biomedcentral.com/1471-2164/9/394

has been studied in this paper, and the recurrence score
[21] have reached the final step of prospective testing in
the MINDACT (Microarray in Node Negative Disease May
Avoid Chemotherapy) and TAILORXx trials, respectively.
We believe that the results from these studies will help to
guide future BC treatment.
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