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Case Study

Comparison of Rainfall Interpolation Methods in a
Mountainous Region of a Tropical Island

Alan Mair1 and Ali Fares2

Abstract: A total of 21 gauges across the mountainous leeward portion of the island of Oʻahu, Hawaiʻi, were used to compare rainfall

interpolation methods and assess rainfall spatial variability over a 34-month monitoring period from 2005 to 2008. Traditional and geo-

statistical interpolation methods, including Thiessen polygon, inverse distance weighting (IDW), linear regression, ordinary kriging

(OK), and simple kriging with varying local means (SKlm), were used to estimate wet and dry season rainfall. The linear regression

and SKlm methods were used to incorporate two types of exhaustive secondary information: (1) elevation extracted from a digital elevation

model (DEM), and (2) distance to a regional rainfall maximum. The Thiessen method produced the highest error, whereas OK produced the

lowest error in all but one period. The OKmethod produced more accurate predictions than linear regression of rainfall against elevation when

the correlation between rainfall and elevation is moderate (R < 0:82). The SKlm method produced lower error than linear regression and IDW

methods in all periods. Comparison of the OK interpolation map with gridded isohyet data indicate that the areas of greatest rainfall deficit

were confined to the mountainous region of west Oʻahu. DOI: 10.1061/(ASCE)HE.1943-5584.0000330. © 2011 American Society of Civil

Engineers.

CE Database subject headings: Rainfall; Spatial analysis; Hawaiʻi; Mountains; Tropical regions; Estimation.

Author keywords: Rainfall; Spatial analysis; Hawaiʻi; Estimation.

Introduction

Assessing the spatial distribution of rainfall is frequently required

for water resource management, hydrologic and ecologic modeling,

recharge assessment, and irrigation scheduling. In mountainous

regions, evaluating rainfall distribution is more complicated

because rainfall patterns are influenced by high changes in topo-

graphical relief over relatively short distances. The ability to accu-

rately characterize variable rainfall patterns requires a dense

network of gauges that involves prohibitive installation and main-

tenance costs. Hydrologists are frequently required to estimate

point rainfall at unrecorded locations from measurements at sur-

rounding sites. Optimizing rain gauge network design and selecting

an appropriate interpolation method requires knowledge of rainfall

spatial variability.
Traditional approaches for estimating areal and point rainfall

have included station-average, Thiessen polygon, inverse distance

weighting (IDW), and isohyetal methods (Thiessen 1911; Shepard

1968;McCuen 1989). As an alternative to conventional approaches,

geostatistical methods are now used for rainfall estimation. Geosta-

tistics is based on the theory of regionalized variables and

provides a set of statistical tools for incorporating the spatial

correlation of observations in data processing (Goovaerts

1997). It is a commonly preferred method because it allows one

to account for spatial correlation between neighboring observa-

tions to estimate values at ungauged locations. Several studies

have found that geostatistics produces better estimates of precipi-

tation than traditional methods (Bacchi and Kottegoda 1995;

Christel and Reed 1999; Goovaerts 2000; Campling et al. 2001;

Drogue et al. 2002; Buytaert et al. 2006).
Another advantage of geostatistics is that the inclusion of more

densely sampled secondary attributes (e.g., weather radar data,

elevation) with sparsely sampled measurement of the primary

attribute (e.g., rainfall) can be used to improve rainfall estimation.

Two multivariate geostatistical methods, ordinary cokriging (OCK)

and kriging with an external drift (KED), have been used for

merging rain gauge and radar-rainfall data (Creutin et al. 1988;

Seo et al. 1990; Raspa et al. 1997). Elevation data have also been

merged with rain gauge data to improve rainfall estimation by using

these and other geostatistical methods (Hevesi et al. 1992; Christel

and Reed 1999; Goovaerts 2000; Sarangi et al. 2005; Carrera-

Hernandez and Gaskin 2007). Others have estimated rainfall

through a linear regression of rainfall versus elevation, whereas

elevation is derived by grid cell from a digital elevation model

(DEM) (Daly et al. 1994).
Goovaerts (2000) compared the rainfall prediction performances

of two types of interpolation methods: (1) methods that use only

rainfall data from 36 stations [Thiessen polygon, IDW, and ordi-

nary kriging (OK)]; and (2) methods that combine rainfall data

with elevation [linear regression, SKlm, KED, colocated ordinary

cokriging (CCK)]. The largest prediction errors were obtained

for the Thiessen polygon and IDW methods. The SKlm method

produced the smallest error in most months and yielded the best

prediction overall. However, OK produced smaller errors than

all other methods when the correlation between rainfall and eleva-

tion was less than 0.75. Goovaerts (2000) suggested that other types
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of secondary information be investigated to assess whether they can

further improve rainfall interpolation.
The KED and CCK methods can be cumbersome to apply

because of their additional computational complexity and geostat-

istical software limitations. For example, CCK requires that a linear

model of coregionalization be fitted, a feature that is not available in

many popular geostatistical software applications (Deutsch and

Journel 1998; ESRI 2008; Robertson 2008; Hansen 2010). The

wide variety of geostatistical applications and the continuous

development of new methods make it difficult to find all the

necessary elements in one software for one specific application

(Goovaerts 2010). In the case of CCK, the public domain software

GSLIB (Deutsch and Journel 1998) is the only geostatistical soft-

ware of the four previously mentioned that can perform CCK.

However, cross-validation is not an option in the existing CCK sub-

routine, and the user is left to modify other FORTRAN subroutines

to conduct error analysis. Finally, most of the 29 main geostatistical

software programs also lack a GIS interface (Goovaerts 2010).
Over the past 30 years, rainfall has declined significantly in the

upper Mākaha Valley, with the greatest reduction at Mt. Kaʻala, the

headwaters area for Mākaha Stream and the highest point on

the island of Oʻahu (1,227 m) (Mair and Fares 2010a). More rapid

warming at higher elevations and increased persistence of the trade

wind inversion have also been observed in other parts of Hawaiʻi

over the same period and may be a contributing factor to more rapid

rainfall decline at higher elevations (Cao et al. 2007; Giambelluca

et al. 2008). The upper Mākaha Valley is part of a much larger pres-

ervation district in the Waiʻanae Mountains with critical importance

for groundwater recharge, irrigation water supply, and protected

habitat of endangered native species (Townscape 2009). Thus,

investigating the spatial variability of rainfall across the Mākaha

Valley and the surrounding area is of renewed interest.
This study examines the spatial variability of rainfall across

Mākaha Valley and west Oʻahu from 2005 to 2008. The prediction

performances of OK and SKlm were compared with other tradi-

tional interpolation methods by using cross-validation in a GIS

environment. We combined rainfall data with two types of secon-

dary information: (1) elevation derived from the DEM of west

Oʻahu, and (2) distance to the regional rainfall maximum. Seasonal

rainfall data were then interpolated to map the spatial variability.

The resulting patterns of rainfall spatial variability were compared

with rainfall isohyet maps.

Study Area

The west Oʻahu study area comprises an area of 280 km2 and

encompasses most of the Waiʻanae Mountains (Fig. 1). The

Fig. 1. Location map of west Oʻahu, Mākaha Valley, and rain gauges

372 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / APRIL 2011

 J. Hydrol. Eng., 2011, 16(4): 371-383 

D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 P

ra
ir

ie
 V

ie
w

 A
&

M
 U

n
iv

er
si

ty
 o

n
 0

9
/2

1
/2

1
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

.



topography of the area is rugged and varies from sea level to the top
of Mt. Kaʻala at 1,226 m. Average annual rainfall varies from
600 mm near the coast to more than 2,000 mm around Mt. Kaʻala
(Giambelluca et al. 1986). The long-term monthly and annual rain-
fall isohyet maps for west Oʻahu depict a single, regional maximum
around Mt. Kaʻala. The rainfall patterns imply that rainfall dimin-
ishes with distance from Mt. Kaʻala in west Oʻahu, and that rainfall
interpolation might be improved by incorporating this information.
Numerous leeward valleys, including the Mākaha Valley, extend
from the mountain ridgeline to the sea along the dry leeward coast
of O‘ahu. Slope along the steep valley walls reaches more than
350%. The Mākaha Valley encompasses a total area of 23:9 km2,
while its upper part comprises an area of only 5:5 km2.

Before 1976, a total of 1,985 rain gauges operated at one time
or another in Hawaiʻi (0:125 gauges km�2) (Schroeder 1981). The
dense gauge network was developed because of large rainfall spa-
tial variability and a need to support plantation agriculture (sugar
cane and pineapple) and local water purveyors. Giambelluca et al.
(1986) used this network to produce isohyet maps of monthly and
annual rainfall for six of the main Hawaiʻian Islands, including
Oʻahu, where the density reached 0:199 gauges km�2. With the
decline in plantation agriculture in the 1970s and 1980s, the num-
ber of operating gauges diminished by more than 50% on Oʻahu by
1993 (0:093 gauges km�2) (Fontaine 1996). However, most of
these gauges were located at lower elevations in the central/eastern
portions of the island. During this time, a total of nine operating
gauges were located in west Oʻahu (0:032 gauges km�2), of
which only two were located above an elevation of 300 m
(0:013 gauges km�2). Over the last 10 years, monitoring by the
Desert Research Institute’s Western Regional Climate Center
(DRI-WRCC) and the University of Hawaiʻi at Mānoa, Department
of Natural Resources and Environmental Management (UHM-
NREM) has increased the number of operating gauges in west
Oʻahu to 23 (0:082 gauges km�2), of which 10 are located above
300 m.

Data Collection and Preprocessing

Daily rainfall data collected from August 2005 to July 2008 at 22 of
23 operating rain gaugeswere used in this study (Table 1). Data from
seven gauges were collected as part of an ongoing research study by
UHM-NREM.Data for gauge 842.1 were obtained from the Depart-
ment of Meteorology (UHM-MET) and the U.S. Geological Survey
(USGS) in hard copy and electronic form. Data for 14 other rain
gauges were obtained from different online sources, including
the National Oceanic and Atmospheric Administration’s (NOAA)
National Climate Data Center (NCDC), available at http://www
.ncdc.noaa.gov/oa/climate/stationlocator.html, NOAA’s Hydronet
system, available at http://www.prh.noaa.gov/hnl/hydro/hydronet/
hydronet-data.php, and DRI-WRCC’s Remote Automatic Weather
Stations (RAWS), available at http://www.raws.dri.edu/hiF.html.
Data from the online sources were collected for the same period
except for four of the NCDC gauges, which extend through May
2008. The remaining operating gauge was excluded because of
data quality concerns (Dillingham not shown). Gridded rainfall
data at a resolution of 250 m and obtained from the rainfall atlas
by Giambelluca et al. (1986) were used to obtain the long-term aver-
age monthly and annual rainfall at each gauge. The database was
provided by T.W. Giambelluca and L. Cuo.

A correction factor of 1.33 was applied to all daily observations
collected from 842.1 to adjust measurements affected by tree
growth (Mair and Fares 2010b). Missing rainfall data as a percent-
age of daily measurements were observed in all but two gauges
(841.3, Schofield Firebreak) and ranged from 0.1 to 33% over
the monitoring period (Table 2). A correlation analysis was used
to compile a list of index gauges. Missing daily rainfall values were
then estimated by using the normal ratio method and the three most
correlated index gauges (Mair and Fares 2010b). In September
2006, MAK2 was installed in a forest clearing 65 m north
of 842.1 to assess the effect of tree growth on rainfall catch at
842.1. Therefore, we considered these two gauges as one location

Table 1. Rain Gauge Network

Gauge ID Lat (°N)/Lat (°W) Record length Data source Zone

1 21°30′23′′/158°10′36′′ 2005–2008 UHM-NREM High

2 21°30′35′′/158°10′55′′ 2005–2008 UHM-NREM High

3 21°30′51′′/158°10′21′′ 2005–2008 UHM-NREM High

4A 21°30′15′′/158°10′08′′ 2006–2008 UHM-NREM High

5 21°30′36′′/158°09′48′′ 2005–2008 UHM-NREM High

6 21°30′22′′/158°09′22′′ 2005–2008 UHM-NREM High

MAK2 21°30′08′′/158°10′48′′ 2006–2008 UHM-NREM Medium

HI-05 21°25′19′′/158°08′08′′ 1994–2008 NOAA-Hydronet Low

HI-07 21°32′19′′/158°05′20′′ 1994–2008 NOAA-Hydronet Medium

HI-17 21°27′31′′/158°10′59′′ 1994–2008 NOAA-Hydronet Low

798 21°25′60′′/158°10′60′′ 1949–2008 NOAA-NCDC Low

800.3 21°28′42′′/158°11′47′′ 1987–2008 NOAA-NCDC Low

841.3 21°34′00′′/158°14′00′′ 1969–2008 NOAA-NCDC Low

842.1 21°30′06′′/158°10′49′′ 1959–2008 UHM/USGS Medium

844 21°30′28′′/158°08′33′′ 1965–2008 NOAA-NCDC High

847 21°34′25′′/158°07′14′′ 1949–2008 NOAA-NCDC Low

Makua Range 21°31′43′′/158°13′34′′ 1999–2008 WRCC Low

Makua Ridge 21°32′34′′/158°11′56′′ 1999–2008 WRCC Medium

Makua Valley 21°31′34′′/158°12′15′′ 1999–2008 WRCC Medium

Schofield Barracks 21°29′42′′/158°04′55′′ 1999–2008 WRCC Medium

Schofield Firebreak 21°30′31′′/158°06′53′′ 2000–2008 WRCC Medium

Waiʻanae Valley 21°28′50′′/158°09′19′′ 2003–2008 WRCC Low
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for the purposes of the spatial analysis. Data from 842.1 were used
in the analysis from August 2005 to August 2006, whereas data
from MAK2 were used from September 2006 to July 2008. Gauge
4A was added to the network in September 2006. Thus, the oper-
ating west Oʻahu rain gauge network for this study consisted of
20 gauges from August 2005 to August 2006, and 21 gauges from
September 2006 to July 2008 (Fig. 1).

Rainfall data were aggregated into a monthly format to produce
a 36-month-long time series extending from August 2005 to July
2008. The time series of monthly rainfall data were reviewed and
then compiled into seasonal wet and dry periods to examine the
differences in rainfall distribution. Rainfall data were also grouped
into a water year extending from October 1 to September 30 to keep
winter and summer seasonality intact. Given the incomplete records
for water years 2005 and 2008, annualized rainfall data consisted of
water years 2006 and 2007 only. Two types of exhaustive secon-
dary information, elevation and distance to the regional rainfall
maximum, were used for rainfall interpolation. Elevation was
extracted from a DEM of Oʻahu with a grid size of 10 m and
obtained online from NOAA’s Center for Coastal Monitoring and
Assessment website available at http://ccma.nos.noaa.gov/. A sec-
ond set of secondary information was computed a posteriori as the
linear distance from the location of the regional rainfall maximum
to each respective gauge. The location of the regional rainfall maxi-
mum was selected as the gauge with maximum rainfall over each of
the aggregation periods. The distance from the regional rainfall
maximum was determined by using the same grid cells depicted
in the DEM.

Interpolation Methods

A brief description of the rainfall interpolation methods used
to estimate rainfall depth at unsampled locations is described

subsequently. These include Thiessen polygon, IDW, linear regres-

sion, OK, and SKlm. For more detailed descriptions of these

methods, the reader is referred to Goovaerts (1997, 2000). The geo-

statistical analysis extension module of ArcEditor 9.3.1 (ESRI

2008), and GS+ v. 9 (Robertson 2008) were used to aid the analyses

and generate rainfall spatial variability maps. The set of rainfall

data was measured at n ¼ 20 locations (before September 1,

2006) and n ¼ 21 (after September 1, 2006).
Thiessen polygons is a simple and straightforward method

whereby each unsampled or interpolated location is given the value

of the closest observation (Thiessen 1911). For the IDW method,

the value at each interpolated location is estimated as a linear com-

bination of surrounding observations, with the weights being

inversely proportional to the distance between the observations

and the interpolated location (Shepard 1968). We used an optimal

value of b, a constant by which the distance is weighted, that

resulted in the lowest error. A total of 14 observations were used

for the IDW method. Next, consider the situation where rainfall

data are supplemented by secondary information, available at all

primary attribute locations. The rainfall depth at the interpolated

location can be estimated by using a linear regression between rain-

fall and the colocated secondary information. Linear regression

models are contingent on assumptions of linearity between depen-

dent and independent variables, constant variance of the errors, and

normality of the error distribution. The assumption of normality for

primary, secondary, and residual data was tested by using the

Kolmogorov-Smirnov test (McCuen 2003; SAS 2010).
Kriging is a term used by geostatisticians for a family of

generalized least-squares regression methods that use available

data in a specified search neighborhood to estimate the values at

unsampled locations (Isaaks and Srivastava 1989; Goovaerts 1997;

Deutsch and Journel 1998). Let fzðuαÞ;α ¼ 1;…; ng be the set of

rainfall data measured at n ¼ 20 locations (before September 1,

Table 2. Statistical Summary of Monthly Rainfall

Mean Median
Standard
deviation

Coeff. of
variation Min Max Elevation

Distance to
regional max N Missing

Gauge ID mm mm mm — mm mm m m Month Day Day %

MAK2 88 55 64 0.73 20 220 292 2,538 23 700 144 21%

1 108 76 101 0.94 17 565 344 2,136 36 1096 67 6.1%

2 98 67 102 1.05 9 586 477 2,706 36 1096 18 1.6%

3 128 88 124 0.97 17 692 538 1,935 36 1096 17 1.6%

4A 117 73 90 0.77 37 332 610 1,350 23 700 6 0.9%

5 151 94 127 0.84 15 657 605 884 36 1096 224 20%

6 166 112 125 0.75 15 571 731 0 36 1096 77 7.0%

798 39 10 69 1.75 0 369 8 8,548 34 1035 12 1.2%

800.3 43 16 68 1.59 0 363 82 5,198 34 1035 22 2.1%

841.3 62 49 47 0.76 4 228 378 11,010 36 1096 0 0%

842.1 103 64 118 1.14 7 640 286 2,559 36 1096 27 2.5%

844 127 78 114 0.90 19 516 1227 1,395 34 1035 128 12%

847 59 23 92 1.57 0 500 5 8,303 34 1035 339 33%

HI-05 44 21 70 1.60 0 396 35 9,573 36 1096 12 1.1%

HI-07 64 39 79 1.23 0 391 207 7,812 36 1096 12 1.1%

HI-17 37 14 68 1.83 0 387 9 5,979 36 1096 6 0.5%

Makua Range 45 18 58 1.29 2 310 6 7,677 36 1096 162 15%

Makua Ridge 90 56 103 1.14 12 593 534 6,013 36 1096 118 11%

Makua Valley 81 51 83 1.03 9 414 159 5,457 36 1096 334 30%

Schofield Barracks 65 33 100 1.53 5 584 299 7,772 36 1096 27 2.5%

Schofield Firebreak 81 45 103 1.26 5 498 347 4,282 36 1096 0 0%

Waiʻanae Valley 65 29 84 1.30 6 446 292 2,838 36 1096 1 0.1%
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2006) and n ¼ 21 (after September 1, 2006). The unknown
values zðuÞ and data values zðuαÞ are interpreted as realizations
of random variables (RVs) ZðuÞ and ZðuαÞ. All versions of kriging
are variations of the basic generalized linear regression method and
estimator Z�ðuÞ as follows (Deutsch and Journel 1998)

Z�ðuÞ � mðuÞ ¼
X

nðuÞ

α¼1

λαðuÞ½zðuαÞ � mðuαÞ� ð1Þ

where λαðuÞ = kriging weight assigned to the datum zðuαÞ. The
parameters mðuÞ and mðuαÞ are the expected values of ZðuÞ and
ZðuαÞ, respectively. In practice, only nðuÞ data within a given
window WðuÞ centered on u are included in the estimation.

All types of kriging methods strive to minimize the estimation
variance, σ2

EðuÞ, with the constraint of unbiasedness of the estima-
tor as follows:

σ2
EðuÞ ¼ Var½Z�ðuÞ � ZðuÞ�; E½Z�ðuÞ � ZðuÞ� ¼ 0 ð2Þ

where Var½Z�ðuÞ � ZðuÞ� = estimation variance and E½Z�ðuÞ �
ZðuÞ� = expected error. The RV ZðuÞ is decomposed into
a residual component RðuÞ and a trend component or expected
value mðuÞ

ZðuÞ ¼ RðuÞ þ mðuÞ ð3Þ

where RðuÞ is modeled as a stationary random function (RF) with
zero mean and covariance CðhÞ.

Geostatistics uses the semivariogram γðhÞ as a measure of dis-
similarity between observations. The experimental semivariogram
γ̂ðhÞ is computed as half the average squared difference between
the components of data pairs

γ̂ðhÞ ¼
1

2NðhÞ

X

NðhÞ

α¼1

½zðuαÞ � zðuα þ hÞ�2 ð4Þ

where NðhÞ = number of pairs of data locations a vector h apart.
The semivariogram can account for direction-dependent variability;
however, we only computed the omnidirectional semivariogram
because of the sparse nature of our sample network. For this study,
we chose the widely used spherical semivariogram model for rain-
fall and elevation because it is characterized by linear behavior
at the origin (Goovaerts 2000) and is also a commonly available
semivariogram model in many geostatistical software packages
(Deutsch and Journel 1998; ESRI 2008; Robertson 2008). The
spherical model may be written as

γðhÞ ¼

8

<

:

S

�

1:5 h
a
� 0:5

�

h
a

�

3
�

h ≤ a

S h ≥ a

ð5Þ

where γðhÞ = the spherical semivariogram with range a and sill S
for lag distance h.

OK allows one to account for local variation of the mean by
limiting the domain of stationarity of the mean to the search neigh-
borhood centered on the interpolated location. The constant but un-
known local mean can be removed from the generalized kriging
algorithm [Eq. (1)] by forcing the kriging weights to sum to 1.
Thus, the OK estimator Z�

OKðuÞ may be rewritten as a linear com-
bination only of nðuÞ RVs zðuαÞ

Z�
OKðuÞ ¼

X

nðuÞ

α¼1

λOKα ðuÞzðuαÞ;
X

nðuÞ

α¼1

λOK
α ðuÞ ¼ 1 ð6Þ

For OK, the kriging weights λOKα ðuÞ are determined to minimize
the estimation variance and ensure the unbiasedness of the

estimator [Eq. (2)]. These weights may be obtained by solving a
system of linear equations as follows:

X

nðuÞ

β¼1

λOK
β ðuÞγðuα � uβÞ � μOKðuÞ ¼ γðuα � uÞ α ¼ 1;…; nðuÞ

X

nðuÞ

β¼1

λOK
β ðuÞ ¼ 1 ð7Þ

where μOKðuÞ = Lagrange parameter accounting for the constraint
on the weights.

The SKlm method involves substituting the known stationary
mean mðuÞ in the generalized kriging method in Eq. (1) with
the varying means estimator m�

SKðuÞ derived from secondary infor-
mation. One can write the SKlm estimator Z�

SKlmðuÞ as the sum of
the regression estimate f ðyðuÞÞ and the simple kriging estimate of
the residual value at u

Z�
SKlmðuÞ ¼ f ½yðuÞ� þ

X

nðuÞ

α¼1

λSKα ðuÞrðuαÞ

rðuαÞ ¼ zðuαÞ � m�
SKðuαÞ

ð8Þ

where rðuαÞ = residual of the observed value zðuαÞ minus the
regression estimate, f ½yðuαÞ� ¼ m�

SKðuαÞ, at location uα; and
λSKα ðuÞ are the kriging weights. Values for λSK

α ðuÞ are obtained
by solving the simple kriging system

X

nðuÞ

β¼1

λSKβ ðuÞCRðuα � uβÞ ¼ CRðuα � uÞ; for α ¼ 1;…; nðuÞ

ð9Þ

where CRðhÞ = covariance function of the residual RF,
RðuÞ ¼ ZðuÞ � mðuÞ. If the residuals are uncorrelated such that
all the kriging weights in Eq. (8) are zero, the SKlm estimate
reduces to the linear regression estimate.

The best spherical semivariogram model was generated by
observing the coefficient of determination (R2) and residual sum
square (RSS) values with a trial-and-error approach for different
lag sizes and lag intervals (Goovaerts 1997). The lag sizes and num-
ber of lags varied because of a general rule of thumb, in which the
lag size times the number of lags should be less than one-half of the
largest distance between data pairs (Johnston et al. 2010). The
optimum model parameters (sill, nugget, and range) corresponding
to the highest R2 value were noted. The performance of the inter-
polation methods were evaluated and compared by using cross-
validation (Isaaks and Srivastava 1989). The method consists of
temporarily removing one observation at a time from the data
set and reestimating the removed value from the remaining data
by using each interpolation method. For this study, the root mean
squared error (RMSE) was used as the error criterion for compari-
son of the model-predicted results with the observed values. The
RMSE is defined as

RMSE ¼

(

1

n

X

n

α¼1

½zðuαÞ � z�ðuαÞ�
2

)

1=2

ð10Þ

where z�ðuαÞ = reestimated value at location uα. The RMSE indi-
cates how closely the interpolation method predicts the measured
values; hence, the smaller the RMSE, the better the prediction
capability. For linear regression, the RMSE was computed as
the average residual value for the linear model, which means that
the prediction error would tend to be underestimated. To further
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assess the performance of each method, the RMSE-observations
standard deviation ratio (RSR) was used as an error index (Moriasi
et al. 2007).

Results

Mean monthly rainfall over the 36-month monitoring period varied
from a low of 37 mm at Gauge HI-17 to a high of 166 mm at Gauge
6 (Table 2). The greatest variability (coefficient of variation > 1:5)
was exhibited by gauges with a mean less than 65 mm and located
most distant from the mountain ridgeline (798, 800.3, 847, HI-05,
HI-17, Schofield Barracks). Rain gauges were split into low,
medium, and high rainfall zones according to the long-term
average annual rainfall isohyet map (Giambelluca et al. 1986):
(1) < 1;000 mm, (2) 1,000–1,500 mm, (3) > 1;500 mm (Fig. 1,
Table 1). Gauge measurements within each zone were averaged
for comparison. The monthly data display a seasonal pattern in
all three zones, consisting of a dry season extending from April
to September and a wet season extending from October to March
(Fig. 2). However, the pattern was not exclusive, as one of the driest
months recorded for the entire period occurred in December 2005.
The wettest month occurred in March 2006, when an average of
485 mm was recorded in the gauge network. March 2006 ranked
among the wettest months on record at long-term Gauges 842.1
(7th) and 844 (17th). As expected, rainfall accumulation is lowest
in the low rainfall zone that consists of gauges most distant from
Mt. Kaʻala and closest to the coast and is highest in the high-rainfall
zone of the upper Mākaha Valley and Mt. Kaʻala, the dominant
local topographic feature (Fig. 2). A similar pattern of rainfall
accumulation is evident in all three zones and suggests that all of
west Oʻahu has a similar rainfall regime that is consistent with the
designation by Diaz et al. (2005).

The maximum monthly rainfall was recorded in the upper
Mākaha Valley at Gauges 3, 5, and 6 during 33 months of the
36-month monitoring period. Gauge 6 recorded the maximum a
total of 25 months and was second highest for eight of the remain-
ing 11 months. The other maxima were recorded along the northern

ridgeline of the Waiʻanae Mountains at Mākua Ridge and 841.3.

Gauge 844 located atop Mt. Kaʻala was conspicuously missing

from the group of gauges with maximum monthly recorded rainfall.

Long-term monthly and annual rainfall isohyets all depict a rainfall

maximum centered around Mt. Kaʻala (Giambelluca et al. 1986).

However, our results suggest that the rainfall maximum occurs

northwest of Mt. Kaʻala and leeward of the summit of the ridgeline

in the upper Mākaha Valley that is consistent with the pattern of

maximum rainfall for mountains situated beneath the cloud base in

Hawaiʻi (Lau and Mink 2006). For this study, we identified Gauge

6 as the location of the regional rainfall maximum. The linear dis-

tance to Gauge 6 was then computed for the remaining gauges in

the network and recorded as the distance to the regional maximum

(Table 2).
The average correlation between monthly rainfall at a lag of one

month is 0.76 and declines only slightly to 0.72 at a lag of six

months (Fig. 3). The moderate degree of correlation among the

Fig. 2. Average recorded monthly rainfall of rain gauges located within three rainfall zones from August 2005 to July 2008; low, medium, and high

rainfall zones are defined by the annual long-term average isohyet map of Giambelluca et al. (1986):< 1;000 mm (low); 1,000–1,500 mm (medium),

and > 1;500 mm (high)

Fig. 3. Average correlation among monthly rainfall data measured at

increasing time intervals: 1–6 months
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monthly rainfall data is evidence of some topographic control on
spatial structure. The spatial correlogram of daily rainfall data in-
dicates that rain gauges at a mutual distance of less than 2,500 m are
strongly correlated (Pearson’s R ¼ 0:85–0:98) (Fig. 4). At distan-
ces larger than 2,500 m, the correlation gradually range widens
with increasing lag distance (R ¼ 0:44–0:87) and indicates that
the correlation is less dependent on the actual distance. The correlo-
gram suggests a spatial rainfall distribution characterized by local-
ized topoclimates generated from differences in proximity and
location relative to the mountain ridgeline and Mt. Kaʻala. Despite
high correlation, cumulative rainfall across short distances can
differ significantly. For example, Gauges 1 and 5 are located at a
mutual distance of only 1.4 km and show strong correlation in daily
rainfall (R ¼ 0:96). However, the mean monthly rainfall at Gauge 5
is 40% greater than the mean at Gauge 1 (Table 2). Thus, rainfall
tends to accumulate simultaneously (daily time step) at Gauges 1
and 5, but the differences in topography (altitude, distance to

ridgeline) result in a systematic bias in the total amount of rainfall

recorded at each rain gauge.
Monthly rainfall data were aggregated into a wet winter season

(October to March) and a dry summer season (April to September),

annual water years for 2006 and 2007, and total rainfall over the

monitoring period (August 2005 to May 2008). For example, the

period from October 2005 to March 2006 corresponds to winter

2006. We chose to use seasonally aggregated data to investigate

differences in wet and dry season rainfall accumulation in Mākaha

Valley and the surrounding area. In addition, the presence of

numerous months with no rainfall at multiple gauges precluded

the use of geostatistical methods on a monthly time scale. The

months of June and July 2008 were excluded from the seasonal

spatial analysis because of a lack of data for four of the five NCDC

rain gauges (798, 800.3, 844, 847).

Fig. 4. Spatial correlation of daily rainfall among rain gauges used in

this study with a third-order polynomial trendline
Fig. 5. Average seasonal rainfall by rainfall zone (low, medium, high)

expressed as a fraction of average long-term rainfall; rainfall zones

comprised of < 1;000 mm, 1,000–1,500 mm, and > 1;500 mm

Table 3. Descriptive Statistics for Rainfall and Secondary Data

Correlation (R)
Residual normality

(p-value)

Parameter
N

(gauges) Mean Median
Standard
deviation

Coeff.
of

variation Min Max

Data
normality
(p-value) Elev. Dist. Elev. Dist.

Rainfall

Winter 2006 20 913 839 345 0.38 538 1,545 0.05 0.77 �0:81 > 0:15 > 0:15

Summer 2006 20 169 144 130 0.77 14 479 > 0:15 0.82 �0:68 0.07 > 0:15

Winter 2007 21 691 661 337 0.49 277 1,356 > 0:15 0.75 �0:86 > 0:15 > 0:15

Summer 2007 21 224 206 122 0.55 50 514 > 0:15 0.72 �0:76 > 0:15 > 0:15

Winter 2008 21 648 619 297 0.46 241 1,381 > 0:15 0.81 �0:78 > 0:15 > 0:15

2006 20 1082 940 464 0.43 555 1,971 0.02 0.80 �0:79 > 0:15 > 0:15

2007 21 915 844 454 0.50 344 1,870 0.10 0.75 �0:84 > 0:15 > 0:15

Aug 2005–

May 2008

20 2,883 2,569 1,322 0.46 1,327 5,805 0.11 0.80 �0:82 > 0:15 > 0:15

Secondary data

Elevation 20=21 329=343 296=299 305=304 0:93=0:89 4 1,227 > 0:15=

> 0:15

— �0:64=

�0:66

— —

Distance to Max 20=21 5;103=

4;924

5;328=

5;198

3;198=

3;223

0:63=0:65 0 11,010 > 0:15=

0:11

�0:64=

�0:66

— — —

Note: Units = mm for rainfall and m for secondary data.
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Seasonal data confirm a strong wet and dry season trend across
the area. Winter or wet season rainfall accounted for 84% of
regional average rainfall in 2006 and 76% of the regional average
in 2007 (Table 3). Greater variability (CV > 0:5) is exhibited dur-
ing the dry summer months where appreciable amounts of rainfall
are generally confined to the high rainfall zone. Gauges in the low
rainfall zone (< 1;000 mm annually) commonly recorded little or
no rainfall for extended periods during the dry summer season.

Seasonal and annual rainfall are positively correlated with elevation
(R ¼ 0:72 to 0.82) and negatively correlated with distance to
Gauge 6 (R ¼ �0:68 to �0:86). Seasonal and annual rainfall data
and colocated secondary data are normally distributed at a 5% sig-
nificant level, except for rainfall from winter 2006 and water year
2006. Residuals from linear regression analyses of rainfall with
both elevation and distance to the regional rainfall maximum are
all normally distributed. The linear relationship between primary

Fig. 6. Semivariograms for seasonal data: (a) rainfall, summer 2006, R2 ¼ 0:58; (b) elevation residuals, summer 2006, R2 ¼ 0:43; (c) distance
residuals, summer 2006, R2 ¼ 0:68; (d) rainfall, winter 2006, R2 ¼ 0:89; (e) elevation residuals, winter 2006, R2 ¼ 0:40; (f) distance residuals,

winter 2006, R2 ¼ 0:76
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and secondary data for all time periods including winter 2006 and
water year 2006 and the normal error distribution for all residuals
indicates that linear regression is valid for these distributions.

Seasonal rainfall recorded in all three zones was less than the
long-term average, except for winter 2006 (Fig. 5). Winter 2006
recorded rainfall at 102–111% of long-term averages, largely a
result of high rainfall in March 2006. The greatest departures from
long-term averages were recorded during the summer when rainfall
was only 33–50% of average in 2006 and 57–64% of average in
2007. Over the 34-month monitoring period, recorded rainfall
was only 76–87% of the long-term average for this same period
in the three zones. In general, the gauges in the two drier zones
experienced greater departures from long-term average rainfall than
the gauges from wettest zone. Gauge 844 reported only 73% of the
long-term average for the 34-month period, which represents the
greatest departure from long-term normal rainfall among gauges
in the wettest zone.

For rainfall, the best-fit semivariogram was obtained by using a
lag size of 1 km and a total of 10 lag intervals. For residuals, the
best-fit semivariogram was obtained by using a lag size of
600 m and seven- to 10-lag intervals for residuals. Semivariogram
parameters including nugget, sill, and range and cross-validation
statistics were estimated for each wet and dry season, water year

(2006 and 2007), and for the entire 34-month monitoring period
(Table 4). Experimental semivariograms of rainfall resulted in
R2 values ranging from 0.58 in summer 2006 to 0.89 in winter
2006 and were consistently more than R2 values for both residuals,
semivariograms (Fig. 6). Cross-validation values of R2 for OK
ranged from a low of 0.67 in summer 2006 to a high of 0.90 in
winter 2007 (Fig. 7), while corresponding values of R2 for SKlm
were lower in all cases except summer 2006 (elevation only). The
summer of 2006 was extremely dry, and rainfall from this period
showed the greatest correlation with elevation and the lowest cor-
relation with distance to the regional maximum among all periods.
The relative nugget effect is greater in summer 2006 and reflects
greater increasing noise in rainfall data resulting from measurement
errors (Goovaerts 2000). The semivariograms of residuals both
show a greater range of spatial correlation in winter 2006 when
compared to summer 2006 (Fig. 6). Although the range of spatial
correlation varies from season to season, there does not appear to be
a clear trend of a consistently shorter correlation range in summer
than in winter (Table 4). The semivariograms of elevation residuals
consistently show a shorter range of correlation than residuals of
distance to the regional maximum.

A comparison of prediction errors for all the interpolation meth-
ods is expressed as proportions of the RMSE for the OK approach
(Fig. 8). Thus, absolute values of the traditional methods can be
easily obtained by multiplying these proportions by the RMSE
values listed in Table 4. The largest RMSE is produced by the
Thiessen polygon method that ignores secondary information.
The OK method produces lower RMSE than all other methods
except during summer 2006. The correlation between elevation
and rainfall was moderately strong (R ¼ 0:82) during the summer
2006 period, which suggests that OK yields less prediction error
than linear regression when the correlation is smaller than 0.82.
Despite strong correlation between the distance to the regional
maximum and rainfall (R ¼ �0:86), linear regression against
distance consistently produces more error than OK. These results
suggest that the threshold for better performance of linear regres-
sion against distance versus OK requires a correlation greater than
�0:86. The SKlm method consistently performed better than linear
regression and IDWmethods across all time periods. Thus, SKlm is
preferable to linear regression and IDWwhen exhaustive secondary
information is available for this network. The greater volatility
in relative RMSE when using elevation as compared with distance
to the regional maximum (SKlm, linear regression) suggests that
elevation may be a less stable form of secondary information
for interpolating rainfall in west Oʻahu.

Moriasi et al. (2007) presented performance ratings for the RSR
error index and noted that model performance can be considered
very good if RSR ≤ 0:50, good if RSR ≤ 0:60, satisfactory if RSR
≤ 0:70, and unsatisfactory if RSR > 0:70. The RSR for the Thies-
sen polygon, IDW, linear regression against elevation, and linear
regression against distance methods ranged from 0.75–0.92,
0.59–0.71, 0.56–0.67, and 0.53–0.72, respectively. Thus, linear
regression against elevation was the only nongeostatistical method
that produced satisfactory or better results for all time periods. For
the geostatistical methods, the range of the RSR improved to
satisfactory or better levels, indicating better overall performance
than traditional methods (Table 4). Cross-validation indicates that
all three geostatistical methods underpredicted and overpredicted
observations by amounts equal to or greater the observed value
(Fig. 7). However, despite large errors for selected observations,
the range of RSR for all three geostatistical methods indicates
satisfactory to very good performance overall.

The dramatic difference between the interpolation methods
is reflected in the maps of interpolated rainfall for winter 2008

Fig. 7. Predicted versus observed rainfall for ordinary kriging and

simple kriging with varying local means methods: (a) summer 2006;

(b) winter 2007; predicted values were computed by using cross-

validation technique of temporarily removing one observation at a

time from the data set and reestimating the removed value from the

remaining data
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(Fig. 9), the period when differences in relative RMSE are the least.

While the Thiessen method displays the characteristic polygonal

zones of influence around the 21 gauges, the IDW method

(b ¼ 4:8) produces a map with boundaries that appear similar to

the Thiessen map. The linear regression approach that uses the

two types of secondary information (elevation, distance to regional

maximum) produces maps that are significantly different from one

another despite similar prediction errors. A major limitation of

these regressions is that rainfall at a particular location is derived

only from the secondary information, regardless of the records at

the surrounding rain gauges. The SKlm map that uses elevation

does not appear dramatically different from linear regression except

where gauge density is high, such as the upper Mākaha Valley. The

short range of spatial correlation of SKlm by using elevation results

in little or no adjustment to large areas of the linear regression map.

The SKlm map that uses distance represents a significant change

from linear regression except in the southeast and north central

portion of west Oʻahu, where the network is sparse. The OK

method produces a map that provides a reasonable representation

of rainfall patterns in Mākaha Valley and the adjacent areas where

the rain gauge density is greater. However, the OK method strug-

gles to represent patterns clearly in areas where there are few rain

gauges, such as the southeast portion of west Oʻahu.
The consistent pattern of a rainfall maximum west of Mt. Kaʻala

implies that the upper Mākaha Valley is receiving proportionally

greater amounts of rainfall than indicated by the spatial structure

of long-term isohyet maps. Annual long-term rainfall data for

gauges in the upper valley (1, 2, 3, 5, and 6) and Mt. Kaʻala

(844) extracted from gridded isohyet rainfall data suggest that

the upper valley receives between 75 and 96% of rainfall recorded

at Mt. Kaʻala. However, the results of our 34-month study indicate

that these same locations received between 79 and 135% of rainfall

recorded at Mt. Kaʻala. We compared the long-term average rainfall

map obtained from the gridded rainfall data with the OK map for

Table 4. Model Fitting, Cross-Validation, and Semivariogram Parameters

Semivariogram model Cross-validation

Parameter R2 Nugget (mm2) Sill (mm2) Range (m) R2 RMSE RSR

Ordinary kriging

Winter 2006 0.89 100 162,700 7,220 0.76 170.1 0.49

Summer 2006 0.58 3,390 24,390 7,680 0.67 75.0 0.58

Winter 2007 0.84 100 177,800 9,140 0.90 122.2 0.36

Summer 2007 0.70 10 24,130 8,920 0.70 67.5 0.55

Winter 2008 0.74 1,800 133,500 7,930 0.71 162.5 0.55

2006 0.87 100 304,700 7,240 0.81 205.2 0.44

2007 0.81 1,000 328,000 9,090 0.88 172.2 0.38

Aug 2005–May 2008 0.74 1,000 2,478,000 7,630 0.87 505.6 0.38

Simple kriging with varying local means (elevation)

Winter 2006 0.40 100 59,900 2,540 0.76 174.4 0.51

Summer 2006 0.43 10 10,830 1,774 0.74 66.3 0.51

Winter 2007 0.55 100 60,530 2,233 0.71 184.7 0.55

Summer 2007 0.62 10 10,860 2,424 0.60 79.1 0.65

Winter 2008 0.48 100 43,550 1,928 0.70 164.3 0.55

2006 0.51 100 123,900 2,412 0.79 220.4 0.47

2007 0.70 100 129,200 2,414 0.70 255.8 0.56

Aug 2005–May 2008 0.51 1,000 997,000 1,950 0.75 665 0.50

Simple kriging with varying local means (distance to regional maximum)

Winter 2006 0.76 100 52,680 4,520 0.72 183 0.53

Summer 2006 0.68 10 10,520 3,200 0.59 82.3 0.63

Winter 2007 0.64 100 34,300 2,660 0.81 143.7 0.43

Summer 2007 0.71 10 6,873 3,270 0.63 74.3 0.61

Winter 2008 0.49 100 33,670 2,660 0.68 165 0.55

2006 0.87 100 102,700 4,490 0.72 244.7 0.53

2007 0.72 100 68,910 2,930 0.77 208.1 0.46

Aug 2005–May 2008 0.81 1,000 688,200 3,580 0.77 635.5 0.48

Fig. 8. Relative root mean square error (RMSE) of prediction by

season, water year, and entire 34-month monitoring period; results are

expressed as proportions of the prediction error of the ordinary kriging

method
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the 34-month period to further investigate the differences in spatial

distribution. The gridded rainfall data clearly show a rainfall

maximum at Mt. Ka‘ala with anisotropic variation centered along

the northwest-southeast trend of the northern portion of the

Waiʻanae Mountain ridgeline [Fig. 10(a)]. Similar to earlier results,

the OKmap suggests that the wettest area occurs west of Mt. Kaʻala

and largely within the upper Mākaha Valley [Fig. 10(b)]. Thus,

these results suggest that long-term isohyet maps that show a rain-

fall maximum around Mt. Kaʻala may need to be adjusted to reflect

a rainfall maximum centered west of Mt. Kaʻala and within the

upper Mākaha Valley.
The difference between these two maps suggests that most of

west Oʻahu received less than the long-term average rainfall

for this period [Figs. 10(c) and 10(d)]. The greatest differences

occurred in the area east-southeast of Mt. Kaʻala, where spatially

interpolated rainfall was more than 1,800 mm below or 51–65% of

the long-term average. A small area to the west along the Makua

coast also received substantially less rainfall than long-term aver-

ages. Most of the areas that show the greatest difference from long-

term averages (i.e., drier conditions) are located at higher eleva-

tions, which is consistent with greater observed reduction in

long-term rainfall at higher elevations over the past 30 years (Mair

and Fares 2010a). The lack of rain gauge data in the southeast por-

tion of west Oʻahu makes it difficult to assess whether the com-

puted differences from long-term averages are valid or merely a

reflection of low gauge density in this area. Despite the aforemen-

tioned dry conditions, two areas received more than long-term

average rainfall: (1) the southern perimeter of the upper Mākaha

Valley, and (2) a portion to the north along the Waialua coastline.

The above-average rainfall in the upper Mākaha Valley is likely

Fig. 9. Winter 2008 rainfall maps obtained by the interpolation of 21 observations: (a) observations; (b) Thiessen polygon; (c) inverse distance

weighted (b ¼ 4:8); (d) ordinary kriging; (e) linear regression of rainfall with elevation; (f) simple kriging with varying local means by using eleva-

tion; (g) linear regression with distance to the regional rainfall maximum; (h) simple kriging with varying local means by using distance to the regional

rainfall maximum

JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / APRIL 2011 / 381

 J. Hydrol. Eng., 2011, 16(4): 371-383 

D
o
w

n
lo

ad
ed

 f
ro

m
 a

sc
el

ib
ra

ry
.o

rg
 b

y
 P

ra
ir

ie
 V

ie
w

 A
&

M
 U

n
iv

er
si

ty
 o

n
 0

9
/2

1
/2

1
. 
C

o
p
y
ri

g
h
t 

A
S

C
E

. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

; 
al

l 
ri

g
h
ts

 r
es

er
v
ed

.



attributable to the location of the rainfall maximums, and may not

actually reflect above-average rainfall in the area.

Conclusions

Rainfall data recorded from 2005 to 2008 from a network of

21 gauges located across west Oʻahu were analyzed to compare

rainfall interpolation methods and investigate patterns of spatial

variability. Rainfall occurs in a distinct seasonal pattern, consisting

of a wet winter season from October to March and a dry summer

season from April to September. Wet seasonal rainfall accounts for

76–84% of annual rainfall. Results indicate that the local monthly,

seasonal, and annual rainfall maximum consistently occurs in the

upper Mākaha Valley located west of Mt. Kaʻala and leeward of the

Waiʻanae Mountain’s ridgeline. The location of the rainfall maxi-

mum in Mākaha Valley is contrary to long-term isohyet maps that

show a consistent maximum at Mt. Kaʻala. Long-term isohyet maps

may need to be adjusted to reflect the location of a regional maxi-

mum west of Mt. Kaʻala.
Traditional methods (Thiessen, IDW, regression) were com-

pared with geostatistical methods (OK, SKlm) for rainfall interpo-

lation. Exhaustive secondary information (elevation, distance to the

regional rainfall maximum) were used to improve estimates. The

Thiessen polygon method produced the highest prediction error

while OK produced the lowest error across all but one time period.

The SKlm method outperformed linear regression and IDW

methods in all time periods. Our results confirm prior findings

(Goovaerts 2000) that geostatistical interpolation (i.e., OK) outper-

forms traditional methods that ignore the pattern of spatial depend-

ence. However, the incorporation of secondary information did

not improve prediction accuracy over OK except when the corre-

lation between rainfall and elevation reached 0.82. Despite a

correlation as strong as �0:86 between rainfall and distance to

the regional maximum, OK consistently outperformed SKlm and

linear regression.

Fig. 10. (a) Gridded rainfall isohyet data for August 2005 to May 2008; (b) rainfall interpolation map obtained by ordinary kriging for August 2005 to

May 2008; (c) difference between gridded rainfall data and ordinary kriging map; (d) ordinary kriging map expressed as a fraction of gridded rainfall

isoyhet data
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Comparison of an OK interpolation map to gridded long-term
isohyet data for the entire 34-month period indicates that the area
east-southeast of Mt. Kaʻala received well below-average rainfall
(51–65% of normal). The driest areas during the monitoring period
are generally confined to higher elevations, which is consistent
with the more rapid rainfall decline observed at higher elevations
in the Waiʻanae Mountains over the previous 30 years. The lack
of rain gauge data for the southeast portion of west Oʻahu, particu-
larly at higher elevations, makes it difficult to assess spatial vari-
ability in that area. The addition of a rain gauge in the southern
Waiʻanae Mountains would help minimize uncertainty in rainfall
spatial variability.
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