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Microbial fuel cells (MFCs) constitute a novel power generation technology that

converts organic waste to electrical energy using microbially catalyzed electrochemi-

cal reactions. Since the power output of MFCs changes considerably with varying

operating conditions, the online optimization of electrical load (i.e., external resist-

ance) is extremely important for maintaining a stable MFC performance. The applica-

tion of several real-time optimization methods is presented, such as the perturbation

and observation method, the gradient method, and the recently proposed multiunit

method, for maximizing power output of MFCs by varying the external resistance.

Experiments were carried out in two similar MFCs fed with acetate. Variations in sub-

strate concentration and temperature were introduced to study the performance of

each optimization method in the face of disturbances unknown to the algorithms. Ex-

perimental results were used to discuss advantages and limitations of each optimiza-

tion method. VVC 2010 American Institute of Chemical Engineers AIChE J, 56: 2742–2750, 2010

Keywords: maximum power point tracking, real-time optimization, perturbation and

observation method, microbial fuel cell, multiunit optimization

Introduction

Resource availability and environmental concerns have

increased the urgency to search for renewable energy sour-

ces. Besides photovoltaic and wind energy systems, fuel cell

technology is emerging as a viable option. However, the

main drawback of traditional hydrogen based fuel cells is

the need for the generation of hydrogen and its transporta-

tion to the point of use. On the other hand, microbial fuel

cells (MFCs) can be used to generate electrical energy from

a variety of carbon sources, including wastewater with vary-

ing concentrations of organic matter.

In a MFC, anodophilic microorganisms degrade organic

matter and transfer electrons to the anode.1–3 Since the late

90s, when intensive MFC research began, power density in

MFCs has increased by several orders of magnitude.4 Yet,

the attainable power density of a single MFC is low and the

working voltage is limited to 0.3–0.5 V. Consequently,

active research is on-going to increase the electrical power

delivered by MFCs. This research involves improved reactor
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design such as an air cathode,5 tubular,6,7 and upflow

MFCs,8,9 improved electrode design,10,11 and improved sys-

tem design where a stack of MFCs is used to increase output

voltage and/or power.12–14

One of the simplest ways of increasing the power output

of an electric power source is to always maintain an electri-

cal load that corresponds to the maximum power output. As

a higher current is drawn the voltage drops and the maxi-

mum power output is obtained when the external resistance

equals the internal resistance of the power source. More than

50% of the power can be lost if the electrical load is not

matched with the internal resistance. This problem has been

addressed for several types of electric power sources such as

photovoltaic (PV) systems15 and hydrogen fuel cells16 by

online optimization of the electrical load. Often a DC/DC

converter and a buffer are inserted between the PV array,

and the electrical load and the duty cycle ratio or the current

drawn by the DC/DC converter is optimized using a maxi-

mum power point tracking (MPPT) method.16,17

Several MPPT methods for photovoltaic systems have

been reported in the literature. One class of MPPT methods

uses a mathematical model of the solar panel to compute the

impedance.18 The main drawback of such an approach is

that the model is too complex and a lot of parameters can

vary. In the context of MFCs, this approach is difficult to

implement because of the complexity, the nonlinearity and

the nonstationarity of microbial kinetics.19,20 Another class

of methods does not use a fundamental model for optimiza-

tion purposes. Perturbation and observation (P/O) and gradi-

ent methods are nonmodel based real-time optimization

methods used as MPPT in photovoltaic systems.21 These

methods consider the system dynamics to be fast, which is

justified for photovoltaic systems where the time of conver-

gence to the optimum is in the order of seconds. P/O method

is widely used due to its simplicity and robustness, while

fast convergence was reported for the gradient method.22

Power output of a MFC depends on many operational

parameters like carbon source (fuel) composition and con-

centration, temperature, and pH.23,24 Furthermore, voltage

reversal was observed in a stack of MFCs operated at a non-

optimal electrical load.13 Large variations in wastewater con-

centration and flow rate make the optimization of electrical

load a prerequisite for practical MFC applications.

The main difference between photovoltaic systems and

MFCs is that the latter exhibit a time-dependent response

with relatively slow dynamics with characteristic times in

the order of minutes to dozens of minutes, which might

affect performance of MPPT methods. This study presents a

comparison of the P/O method, the gradient method and the

recently developed multiunit (MU) optimization method25,26

for optimizing external resistance of a MFC.

Materials and Methods

Experiments were carried out in two continuous flow air-

cathode membraneless MFCs. A schematic diagram of the

experimental setup is shown in Figure 1. Each MFC was

constructed with a series of polycarbonate plates.27 The an-

odic chamber volume of each cell was 50 mL. The anode

was made of a 5 mm thick graphite felt measuring 10 � 5

cm (GFA5, Speer Canada, Kitchener, ON, Canada). The

cathode was made of a 10 � 5 cm gas diffusion electrode

with a Pt load of 0.5 mg cm�2 (GDE LT 120EW, E-TEK

Division, PEMEAS Fuel Cell Technologies, Somerset,

NJ, USA). The distance between the anode and cathode was

0.5 cm.

The MFCs were inoculated with 5 mL of homogenized

anaerobic sludge (Lassonde Industries, Inc., Rougemont, QC,

Canada) and operated at the same temperature and organic

load. A stock solution of carbon source containing 40 g L�1

of acetate was fed using an infusion pump (model PHD

2000, Harvard Apparatus, Canada) at a rate of 0.1–0.2 mL

Figure 1. Experimental setup showing two simultaneously operated MFCs.
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h�1. One mL of trace metals stock solution was added to 1

L of the dilution water. The stock solutions of acetate and

trace metals were prepared according to Tartakovsky et al.27

All solutions were sterilized and maintained at 4�C until use.

The dilution water was fed to each MFC at a rate of 6.08

mL h�1 using peristaltic pumps (Cole-Parmer, Chicago, IL,

USA), and providing a retention time of 10 h. Peristaltic

pumps also were used for liquid recirculation at a rate of

0.57 L h�1 in the external recirculation loop. Heating plates

(5 � 10 cm) located on the anodic chamber sides of the

MFCs and thermocouples placed in the anodic chamber and

connected to temperature controllers (Model JCR-33A,

Shinko Technos Co., Ltd. Osaka, Japan) maintained preset

temperatures. For each MFC, a computer controlled digital

potentiometer with a data acquisition board (Innoray, Mon-

treal, QC, Canada) provided a resistor variation range from 8

to 252 X.

Acetate concentration was determined using a gas chroma-

tograph (Sigma 2000, Perkin-Elmer, Norwalk, Connecticut,

USA) equipped with a 91 cm � 4 mm i.d. glass column

packed with 60/80 Carbopack C/0.3% Carbopack 20

NH3PO4 (Supelco, Mississauga, Ontario, Canada). More

details on analytical methods and media composition are

provided in Tartakovsky et al.27

Polarization curves (voltage vs current) were acquired by

periodically changing MFC external resistance, measuring

the resulting voltage and calculating current (I, in mA) as I
¼ V/R, where V is the voltage (mV), and R is the external

resistance. A time interval of 10 min was allowed before

each measurement. Power output (P, mW) was calculated as

P ¼ I�V. MFC performance was visualized by plotting the

resulting power output vs. current (power curve) or vs.

external resistance. Slope of the linear part of the polariza-

tion curve was used to estimate the internal resistance of

MFCs.

Problem Definition and Method Description

Optimization problem

The problem addressed in this article is the maximization

of power output of a MFC by adjusting external resistance.

The optimization problem can be formulated as follows

max
R

P ¼ max
R

V2

R
(1)

where P is the power delivered by the microbial fuel cell

through the external variable resistance R and V is the

measurable MFC voltage. A real-time optimization method

will be used to adjust the value of the external resistance in

order to maximize the electrical power delivered through the

external resistances at each moment.

The problem definition presented previously is slightly dif-

ferent from that commonly used in PV systems, where a

DC/DC converter and a buffer are used to control the electri-

cal load. In this case, the manipulated variable of the optimi-

zation method is the duty cycle ratio or the current drawn by

the DC/DC converter.17 Here, external resistance (R) is cho-

sen as the manipulated variable to simplify the experimental

procedure.

Maximum Power Point Tracking Methods

Perturbation and observation method

The P/O method is commonly used in MPPT.28 Herein,

the amplitude of each resistance change is fixed and is equal

to a predetermined offset DR. The direction of resistance

change depends on the sign of gradient, which is determined

using the finite difference method, that is, by comparing the

value of the objective function (after the resistance change)

with that at the previous resistance. Due to the influence of

process dynamics, it is important to attain a pseudo steady

state after each resistance change. The method can be

expressed as follows

Rðk þ 2Þ ¼ Rðk þ 1Þ þ DR sign
Pðk þ 1Þ � PðkÞ

Rðk þ 1Þ � RðkÞ

� �

(2)

where DR is the perturbation on the input R, P is the power

output, and k is iteration number. As k ! 1, due to the

presence of a fixed perturbation DR, the resistance values

will oscillate around an average point Req, with amplitude of

DR

RðkÞ ¼
Req þ DR

or

Req � DR

8

<

:

(3)

Also, since DR is the minimum step that is taken, the

maximum distance between the average of the oscillation

(Req), and the true optimum (R*) is DR/2

Req � R� �
DR

2
(4)

A higher DR can be used to increase the speed of convergence,

but will result in a larger error in estimating optimal external

resistance and in more oscillations. Thus, a compromise

between the convergence rate and the method accuracy might

be required.

Gradient method

The Gradient method29 also uses a constant perturbation

DR to estimate the gradient. The main difference from the P/

O method is that the amplitude of the move is proportional

to the value of the estimated gradient

Rðk þ 1Þ ¼ RðkÞ þ DR

Rðk þ 2Þ ¼ RðkÞ þ agrad
Pðk þ 1Þ � PðkÞ

Rðk þ 1Þ � RðkÞ

� �

(5)

where agrad is an appropriately chosen gain. Note that every

iteration of this method has two steps: (1) a constant amplitude

step to evaluate the gradient, and (2) a variable amplitude step

based on the value of the gradient. Assuming that the method

is well tuned, and at k ! 1 it converges to the true optimum

R*, the R values will oscillate between the point resulting from

the constant perturbation at an amplitude DR, and the other

point resulting from the optimization step, which depends on

the gradient value. At k ! 1 these two points should be

placed at each side of the oscillation average Req, where Req ¼

2744 DOI 10.1002/aic Published on behalf of the AIChE October 2010 Vol. 56, No. 10 AIChE Journal



R*, with a distance of DR between them. Thus, the first point is

placed at Req�DR/2, and the second point at Req þ DR/2 with

no additional error, that is, Req ¼ R*, as opposed to what was

discussed for the P/O method. The maximum amplitude of

oscillation is also halved.

The convergence rate of this method can be improved by

choosing a higher value for the gain. However, too high a

gain could lead to a behavior where the system does not

converge to an equilibrium point, thus, the main difficulty

lies in the proper choice of this parameter. Also, the value

of the gain depends very much on the second derivative

(curvature) of the power curve, which could change in time.

Multiunit optimization method

The multiunit (MU) optimization method assumes the

presence of two identical MFCs.25 These two units are oper-

ated with an offset DR between them. The gradient is esti-

mated by finite differences between the values of the objec-

tive function obtained for each MFC. The two units follow

the same control law and always keep the DR difference

from each other.

In practice, the units are similar but not perfectly identical,

and the multiunit optimization method can force the system to

converge far away from the optimum. If the differences in the

static characteristics b and c are defined as in Figure 2A, correc-

tors can be inserted into the multiunit loop in order to compen-

sate for the differences in the static characteristics26 as shown

in Figure 2B, where b̂ and ĉ are the correctors introduced.

In this work, since the difference between the optimal

resistances of the MFCs do not vary significantly, b̂ is kept

at a constant preset value and ĉ is re-evaluated online by

periodically removing the offset of DR between the units.

Thus, two intervals are present: the optimization interval,

where the adaptation law given in the following Eqs. 6–8 is

used, and the parameter estimation interval, where the adap-

tation law given in Eqs. 9–11 is used

ĝðkÞ ¼
P2ðkÞ � P1ðkÞ

R2ðkÞ � R1ðkÞ

� �

¼
P2ðkÞ � ĉ� P1ðkÞ

DR

� �

(6)

R1 k þ 1ð Þ ¼ R1ðkÞ þ amuðĝðkÞÞ (7)

R2ðk þ 1Þ ¼ R1ðk þ 1Þ þ DR� b̂ (8)

ĉðk þ 1Þ ¼ ðP2ðkÞ � P1ðkÞÞ (9)

R1ðk þ 1Þ ¼ R1ðkÞ (10)

R2ðk þ 1Þ ¼ R1ðk þ 1Þ � b̂ (11)

where amu is the MU method gain.

Since the perturbation DR is not time-dependent, the slow

dynamics of the MFC will not affect the gradient estimation.

The influence of MFC dynamics is eliminated by calculating

the finite differences while estimating the gradient. Thus, the

adaptation could be relatively fast. However, the time used

for the ĉ corrector has to be chosen in accordance with the

response time of the MFC. During the correction period, the

MFCs exhibit different dynamics, and it is important to wait

until the transient period is finished and the systems reach a

new steady-state.

Applying the MU method to a process with identical units

(i.e., without any correctors) brings the two units to converge

to a distance of DR/2 from the optimum without any oscilla-

tions around these points. If the two units are not perfectly

identical, the adaptation of ĉ corrector requires that the two

units are periodically operated at the same operating point

for ĉ correction. During normal operation the MU method

needs a DR offset between the operational points of the two

units. In this work, MFC 1 is chosen as the reference unit

and always remains at the same reference point (R1), while

MFC 2 external resistance is changed from R1 þ DR� b̂

(for MU adaptation, see Eq. 8) to R1 � R1 � b̂ (for ĉ adapta-

tion, see Eq. 11). In the best case, when the correctors have

converged to their true values, MFC 1 will converge to

R�
1�DR/2, and MFC 2 will oscillate between R�

2�DR/2 and

R�
2þDR/2, with R�

1 and R�
2 being the real optima of MFC 1

and MFC 2, respectively.

Results and Discussion

MFC startup and characterization

At the startup, the anodic chambers were inoculated with

anaerobic sludge and acetate was fed at a rate of 200 mg

d�1. The startup external resistances for both MFCs were set

at 250 X. A voltage increase was observed after five days of

MFC operation. A period of two weeks was required to

achieve a steady state, and then MFC performance was

assessed by acquiring polarization and power curves. These

curves were obtained for each MFC by varying the external

resistances as described in the Materials and Methods sec-

tion. Results are presented in Figure 3. The linear parts of

Figure 2. (A) An example of two MFCs with different

static characteristics, and (B) diagram of a

multiunit optimization loop with correctors.

[Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]
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the polarization curves in Figure 3A represent ohmic losses.

These losses are caused by ionic transport resistance in the

electrolyte, the resistance of the electrode material, and con-

tact losses.30 Although the two MFCs were identically con-

structed, a comparison of the polarization and power curves

in Figure 3 suggest higher ohmic losses and a mass-transfer

limitation in MFC 2. Perhaps different distances between the

electrodes and/or variations in biofilm thickness contributed

to a higher ohmic resistance and a higher mass-transfer limi-

tation in MFC 2. Estimation of MFC internal resistances

using linear parts of the polarization curves yielded values

of 15 and 23 X for MFC 1 and MFC 2, respectively. To

optimize power output of each MFC, the MPPT method

should change the external resistance of the corresponding

MFC so that it is equal to the internal resistance. The differ-

ence in MFC performances highlighted the importance of

optimal resistance control, as the operation of both MFCs at

the same external resistance would lead to either underload

of MFC 1, or poor performance of MFC 2.

Overall, polarization tests led to the following conclu-

sions: (1) The optimal resistances and maximum power out-

puts of the MFCs are different (R1 � 15 X, R2 � 23 X, and

P1 � 3.5 mW, P2 � 2.2 mW), and (2) the curvature of the

P vs. R curves are not the same and are not constant for all

values of R. In addition, ‘‘bump’’ tests showed that the

response times are similar for both MFCs and are approxi-

mately 1 min (results not shown).

Optimization tests

The P/O method described previously was tested using a

time interval of 1 min between resistor changes and a pertur-

bation DR of 2.5 X. The test was simultaneously carried out

for both MFCs. Before the optimization test the two potenti-

ometers were set to a value of 70 X. The results given in

Figure 4A show that the maximal power is reached in about

25 min.

Tests of external resistance optimization using Gradient

method were performed simultaneously for two MFCs with

the same initial conditions and intervals between resistance

changes as in the P/O test. The gains were adjusted by trial

and error to values of 150 and 200 for MFC 1 and MFC 2,

respectively. Figure 4B shows that MFC 2 converged to its

optimal point of operation in 30 min, while MFC 1 failed to

converge despite several attempts to tune the gain. If a

Figure 4. Online optimization with DR 5 2.5 X and a

time interval between resistance changes Dt

5 1 min.

(A) P/O method, (B) gradient method, and (C) MU method
with Dt ¼ 1 min for evaluation.

Figure 3. Polarization (A), and power (B) curves obtained for the two MFCs.
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smaller gain was used, the system stayed near the initial

value, while a larger gain caused instability around the opti-

mum. Large variations in the curvature of the polarization

curve of MFC 1 resulted in a very narrow range of gains for

which this method could converge.

Figure 4C shows results obtained with the MU method

using a time between multiunit adaptations of 30 s, a 1 min

parameter estimation period for ĉ corrector estimation, a

constant b̂ ¼ �8 X, an initial value of ĉ ¼ �1.45 mW, and

a gain for MU adaptation amu ¼ 40 X
2 mW�1. The offset

and the initial external resistance for these tests were the

same as in the tests described earlier. With the MU method,

the convergence time was considerably reduced: the multiu-

nit scheme without adaptation converged in about 1 min to

values of 22.6 X and 27.5 X for MFC 1 and MFC 2, respec-

tively (Figure 4C). Fine tuning of the ĉ corrector to account

for differences between two MFCs required another 8 min

after which resistances stabilized at 15.2 X and 22.6 X

(Figure 4C).

Tracking optimum in the presence of external
perturbations

As shown previously, the P/O and MU methods were able

to correctly identify the optimal external resistances. These

methods were chosen to study optimum tracking in the pres-

ence of external perturbations. The tests involved a change

in substrate concentration and a change in anodic chamber

temperature.

In the first test, 1 mL of the acetate stock solution contain-

ing 40 g L�1 of acetate was injected into anodic chambers

of each MFC. The response of the P/O method to substrate

injection is shown in Figure 5A. The substrate concentration

increased at approximately t ¼ 9 min for MFC 1 and t ¼ 12

min for MFC 2 (Figure 5A). Prior to acetate injection its

concentration in the anodic chamber was around 200 mg

L�1. Likely, at this concentration the reaction rate were not

limited by acetate availability. Consequently, the increase in

observed power output was moderate in both MFCs. Varia-

tions in power output were accompanied by small variations

in the external resistance values. However, since the sub-

strate did not limit the reaction rate, the optimal resistance

was unchanged, and the method returned the resistances

back to their original values.

Figure 5B shows the behavior of the MU method during a

similar test. Once again, acetate concentration at the test

startup was 150–200 mg L�1. It can be seen that the resist-

ance values were not changed at all. From the perspective of

the method, as power output increases in both MFCs, the

difference, that is, the gradient is not affected and no resist-

ance changes are required.

In the second perturbation test anodic chamber tempera-

tures were changed by a temperature set point increase from

25�C to 28�C for MFC 1, and from 25�C to 31�C for MFC

2. Figure 6 shows the response of both optimization methods

to this perturbation. In both MFCs the power output

increased while optimal resistance decreased with increasing

temperature. The observed increase in power output of

MFCs agrees with Arrhenius-like dependence of microbial

kinetics on temperature.31 The external resistance decrease is

less pronounced in the P/O method, partly due to oscillations

and also due to the fact that an increasing power output

leads to an oscillatory behavior of the method.

Influence of the frequency of the perturbation on the
equilibrium point

A comparison of the results showed that the time of con-

vergence of the P/O method is longer than the one obtained

with the MU optimization. This raises a question: how can

Figure 5. Optimization methods response to acetate

injection.

(A) P/O method (DR ¼ 2.5 X, Dt ¼ 1 min), (B) MU
method (DR ¼ 2.5 X, estimation at Dt ¼ 1 min, gain of 30
X
2/mW).

Figure 6. Optimization methods response to tempera-

ture variation.

(A) P/O method (DR ¼ 2.5 X, Dt ¼ 1 min), and (B) MU
method (DR ¼ 2.5 X, corrector delay Dt ¼ 1 min, a gain of
30 X

2/mW).
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the time of convergence of the PO method be reduced? One

way would be to increase the value of DR in order to make

larger resistance increments. The P/O method with a DR of

4 X, instead of 2.5 X, reduced the time of convergence from

25 min to 12.5 min (results not shown). However, this

reduction in time of convergence comes with an increase in

oscillations around the optimum. The choice of DR is then a

compromise between the rate of convergence and the accu-

racy of the optimal value of power reached.

Another way to reduce the time of convergence of the P/

O method is to reduce the delay between the perturbations,

that is, to increase the frequency of the perturbation. Figure

7A and B shows application of the P/O method at a DR of

2.5 X, and delays between each resistance change of 30 s

and 5 s, respectively. The results confirm the reduction of

the time of convergence with an increased frequency of the

perturbation. The time of convergence was decreased from

6 min to 1.3 min when the delay was decreased from 30 to

5 s.

The test described previously was repeated using the MU

method (Figure 7C and D) with an interval of 30 s and 5 s

between external resistance changes. The change of delay

did not affect the time of convergence of the MU method,

which stayed around 3 min in each test. It should be noted

that the optimal power output values shown in Figure 7

should not be compared with the values shown in Figures 4

and 5 since experiments related to the frequency of the per-

turbation were carried out one month later, and the MFC

characteristics changed over time as a result of a decrease in

cathode activity.

In Chioua et al,32 it was demonstrated that excessively

high-perturbation frequency in the P/O method leads to an

error in optimum estimation. Results presented in Table 1

confirm this observation. This table contains the average val-

ues of external resistances to which the method converged at

different time intervals between external resistance changes

(resistor perturbation frequency). Clearly, if the perturbation

frequency was too high, the P/O method converged to a

value away from the real optimum. High-perturbation fre-

quency when using the P/O method also introduced an over-

shoot in the power curve as shown in Figure 7B. The change

of the time interval (i.e., delay) in the MU method did not

affect the value to which the method converges. However, a

very short delay resulted in variations around the optimal re-

sistance of MFC 1. This is the effect of the instantaneous

change of R at each transition from the MU adaptation pe-

riod and the adaptation period.

Method comparison

From analysis of the results previously presented, several

conclusions can be made on the comparison of the optimiza-

tion methods tested in this study. First of all, the conver-

gence of the P/O method and the MU method were not

affected by large changes in the curvature of the power

curve (objective function), while the gradient method failed

to optimize MFC 1. Considering the biological nature of

MFCs, the change in both power output and the curvature of

the power curve can be expected due to the processes of bio-

mass growth and decay, as well as due to variations in cath-

ode performance. Consequently, it might be difficult to

achieve a stable performance using the gradient method.

The time of convergence of the MU method is shorter

than the one by the P/O method. This is because the two

MFCs have similar dynamics and taking the difference

between them eliminates the transient effects allowing for a

Figure 7. Optimization using the methods with DR 5

2.5 X.

(A) P/O method with Dt ¼ 30 s, (B) P/O method with Dt ¼
5 s, (C) MU method with time intervals of 30 s and 30 s
for MU adaptation and adaptation, respectively, and (D)
MU method with time intervals of 5 s and 30 s for MU ad-
aptation and adaptation, respectively.

Table 1. Average Optimal Resistance Values Obtained for
DR 5 2.5 X and Different Time Intervals Between

Resistance Changes

Time interval (s)

Optimal external resistance (X)

P/O method MU method

R1 (X) R2 (X) R1 (X) R2 (X)

30 15.2 19.7 16.6 17.9
10 13.8 17.1 16.8 18
5 12.3 16.1 17.2 18.4
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faster adaptation. The same can be concluded based on the

fact that the MU method is capable of accurate tracking of

the optimum during a perturbation, which leads to a large

and fast change in power output without changing the exter-

nal resistance (electrical load). This was clearly demon-

strated in the substrate test, where the optimal resistance was

not changed when using the MU method. For a perturbation

leading to a significant but slow change in optimal resist-

ance, as in the temperature test, both the P/O and MU meth-

ods show excellent convergence.

The MU method showed faster convergence, but tuning of

this method was more complex. A priori information about

the differences in static characteristics is needed in order to

correctly tune the MU method. In some cases, this require-

ment of a priori knowledge can be a limitation to the appli-

cation of the MU method. The fast convergence of this

method is subject to the similarity of the units, which are

not always verified. The P/O method is simpler to tune, but

the adjustment of the frequency should be done carefully to

avoid a suboptimal solution or instability of the system.

Excessively fast frequency of perturbation in the P/O method

introduces an error of convergence on the resistance value

obtained.

Conclusion

In this article, performances of three different real-time

model-free optimization methods to maximize power output

delivered by two MFCs were compared. Results showed that

the MU optimization method converged faster than the P/O

method. Nevertheless, the performance of the P/O method

was acceptable providing relatively low-perturbation fre-

quency. The Gradient method failed to converge for one of

the two MFCs tested due to large changes in the curvature

of the power curve.

The P/O and MU methods were selected for perform-

ance testing during substrate and temperature variations

(external perturbations). The results showed that the MU

method tracks the optimum power output in the presence

of an external perturbation without an unnecessary change

in external resistance. The P/O method also tracked the

optimum, but changes in power output caused variations in

the external resistance. Overall, the P/O method can be

used in a variety of MFC applications where MFC similar-

ity is not guaranteed. On the other hand, optimal control

of a stack of identical MFCs subject to fast and simultane-

ous changes in feed properties (i.e., presence of toxicants,

pH variations, etc) can benefit from the MU optimization

method.
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