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0 Introduction

The study of relative homological algebra was initiated by Butler and Horrocks [9] and
Eilenberg and Moore [12] and has been revitalized recently by a number of authors, nota-
bly, Enochs and Jenda [14] and Avramov and Martsinkovsky [7]. The basic idea behind this
construction is to consider resolutions of a module M over a ring R, where the modules in
the resolutions are taken from a fixed class X . One restricts focus to those resolutions X ,
called proper X -resolutions, with good enough lifting properties to make them unique up to
homotopy equivalence, and this yields well-defined functors

Extn
X R(M,−) = H−n(HomR(X,−)).

Dually, one considers proper X -coresolutions to define the functors Extn
RX (−, M). Consult

Sect. 1 for precise definitions.
In this article we investigate relative cohomology theories that arise from dualities with

respect to semidualizing modules: when R is commutative and noetherian, a finitely gener-
ated R-module C is semidualizing when Ext�1

R (C, C) = 0 and HomR(C, C) ∼= R. Examples
include projective R-modules of rank 1 and, when R is a Cohen–Macaulay ring of finite Krull
dimension that is a homomorphic image of a Gorenstein ring, a dualizing module.

A semidualizing R-module C gives rise to several distinguished classes of modules. For
instance, one has the class PC of C-projective modules and the class GPC of GC -projec-
tive modules, which we use for resolutions. For coresolutions, we consider the class IC

of C-injective modules and the class GIC of GC -injective modules. As there is no risk
of confusion in these cases, the corresponding relative cohomology functors are denoted
Extn

PC
(−,−), Extn

GPC
(−,−), Extn

IC
(−,−) and Extn

GIC
(−,−). Detailed definitions can be

found in Sect. 3.
Our investigation into these functors focuses on two questions: What conditions on a pair

of modules (M, N ) guarantee that the corresponding outputs of two of these functors are
isomorphic? And when are these functors different?

As to the first question, Sect. 5 focuses on the issue of balance, motivated by the fact
that one can compute the “absolute” cohomology Extn

R(M, N ) in terms of a projective res-
olution of M or an injective resolution of N . This section begins with Example 5.3 which
shows that the naive version of balance for relative cohomology fails in general: even if
PC - pdR(M) and IC - idR(N ) are both finite, one can have Extn

PC
(M, N ) � Extn

IC
(M, N )

and Extn
GPC

(M, N ) � Extn
GIC

(M, N ). It turns out that the correct balance result in this

setting, stated next, uses coresolutions with respect to the semidualizing module C† =
HomR(C, D) where D is a dualizing module. This result is contained in Proposition 5.4
and Theorem 5.7.

Theorem A Let R be a Cohen–Macaulay ring with a dualizing module, and let C, M and
N be R-modules with C semidualizing.

(a) If PC - pdR(M) <∞ and IC† - idR(N ) <∞, then there is an isomorphism

Extn
PC

(M, N ) ∼= Extn
IC†

(M, N )

for each integer n.
(b) If GPC - pdR(M) <∞ and GIC† - idR(N ) <∞, then there is an isomorphism

Extn
GPC

(M, N ) ∼= Extn
GIC†

(M, N )

for each integer n.
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Comparison of relative cohomology theories

In addition, Sect. 4 gives conditions that yield isomorphisms Extn
PC

(M, N ) ∼=
Extn

GPC
(M, N ) and Extn

IC
(M, N ) ∼= Extn

GIC
(M, N ). See Propositions 4.2 and 4.4.

Section 6 deals with the even more interesting question of the differences between these
functors. The next result summarizes our findings from this section and shows that each
reasonably comparable pair of relative cohomology functors is distinct.

Theorem B Let (R, m) be a local ring, and let B, C be semidualizing R-modules.

(a) Assume C � R. Then one has

ExtPC (−,−) � ExtR(−,−) � ExtGPC (−,−)

ExtIC (−,−) � ExtR(−,−) � ExtGIC (−,−).

If there exist y, z ∈ m such that AnnR(y) = z R and AnnR(z) = y R, then

ExtPC (−,−) � ExtGPC (−,−) ExtIC (−,−) � ExtGIC (−,−).

(b) Assume GPC - pdR(B) <∞ and C � B. Then one has

ExtPC (−,−) � ExtPB (−,−) � ExtGPC (−,−)

ExtGIB (−,−) � ExtIC (−,−) � ExtIB (−,−) � ExtGIC (−,−).

If depth(R) � 1, then

ExtGPC (−,−) � ExtGP B (−,−) ExtGIC (−,−) � ExtGIB (−,−).

If C admits a proper GP B-resolution, then

ExtPC (−,−) � ExtGP B (−,−).

As an aid for some of the computations in Theorem B we utilize a Yoneda-type charac-
terization of relative cohomology modules. This is the subject of Sect. 2. In particular, the
following result is contained in Theorem 2.3.

Theorem C Let M and N be R-modules.

(a) If M admits a proper X -resolution, then ExtX R(M, N ) is in bijection with the set
of equivalence classes of sequences 0 → N → T → M → 0 that are exact and
HomR(X ,−)-exact.

(b) If N admits a proper Y-coresolution, then ExtRY (M, N ) is in bijection with the set
of equivalence classes of sequences 0 → N → T → M → 0 that are exact and
HomR(−, Y)-exact.

1 Categories, resolutions, and relative cohomology

We begin with some notation and terminology for use throughout this paper.

Definition/Notation 1.1 Throughout this work R is a commutative ring. Write M =M(R)

for the category of R-modules, and write P = P(R), F = F(R) and I = I(R) for the
subcategories of projective, flat and injective R-modules, respectively. We use the term “sub-
category” to mean a “full, additive, and essential (closed under isomorphisms) subcategory.”
If X is a subcategory of M, then X f is the subcategory of finitely generated modules in X .
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Definition 1.2 We fix subcategories X , Y , W , and V of M such that W ⊆ X and V ⊆ Y .
Write X ⊥ Y if Ext�1

R (X, Y ) = 0 for each module X in X and each module Y in Y . For a

module M in M, write M ⊥ Y (resp., X ⊥ M) if Ext�1
R (M, Y ) = 0 for each module Y in Y

(resp., if Ext�1
R (X, M) = 0 for each module X in X ). We say that W is a cogenerator for X

if, for each module X in X , there exists an exact sequence 0→ X → W → X ′ → 0 such
that W is in W and X ′ is in X . The subcategory W is an injective cogenerator for X if W is
a cogenerator for X and X ⊥W . The terms generator and projective generator are defined
dually.

Definition 1.3 An R-complex is a sequence of R-module homomorphisms

X = · · · ∂ X
n+1−−→ Xn

∂ X
n−→ Xn−1

∂ X
n−1−−→ · · ·

such that ∂ X
n−1∂

X
n = 0 for each integer n; the nth homology module of X is Hn(X) =

Ker(∂ X
n )/ Im(∂ X

n+1). We frequently identify R-modules with complexes concentrated in
degree 0. The suspension (or shift) of X , denoted �X , is the complex with (�X)n = Xn−1

and ∂�X
n = −∂ X

n−1.
The complex X is HomR(X ,−)-exact if the complex HomR(X ′, X) is exact for each

module X ′ in X . Dually, it is HomR(−, X )-exact if the complex HomR(X, X ′) is exact for
each module X ′ in X . It is −⊗R X -exact if the complex X ′ ⊗R X is exact for each module
X ′ in X .

Definition 1.4 Let X, Y be R-complexes. The Hom-complex HomR(X, Y ) is the R-complex
defined as HomR(X, Y )n = ∏

p HomR(X p, Yp+n) with nth differential ∂
HomR(X,Y )
n given

by { f p} 	→ {∂Y
p+n f p − (−1)n fn−1∂

X
p }. A morphism is an element of Ker(∂HomR(X,Y )

0 ).
Two morphisms α, α′ : X → Y are homotopic, written α ∼ α′, if the difference α − α′
is in Im(∂

HomR(X,Y )
1 ). The morphism α is a homotopy equivalence if there is a morphism

β : Y → X such that βα ∼ idX and αβ ∼ idY .
A morphism of complexes α : X → Y induces homomorphisms on homology modules

Hn(α) : Hn(X)→ Hn(Y ), and α is a quasiisomorphism when each Hn(α) is bijective. The
mapping cone of α is the complex Cone(α) defined as Cone(α)n = Yn ⊕ Xn−1 with nth dif-

ferential ∂
Cone(α)
n =

(
∂Y

n αn−1

0 −∂ X
n−1

)
. Recall that α is a quasiisomorphism if and only if Cone(α)

is exact.

Definition 1.5 An R-complex X is bounded if Xn = 0 for |n| � 0. When X−n = 0 =
Hn(X) for all n > 0, the natural map X → H0(X) ∼= M is a quasiisomorphism. In this
event, X is an X -resolution of M if each Xn is in X , and the exact sequence

X+ = · · · ∂ X
2−→ X1

∂ X
1−→ X0 → M → 0

is the augmented X -resolution of M associated to X . We write “projective resolution” in lieu
of “P-resolution”. The X -projective dimension of M is the quantity

X - pd(M) = inf{sup{n � 0 | Xn �= 0} | X is anX -resolution ofM}.
The modules of X -projective dimension 0 are the nonzero modules in X . We let res X̂
denote the subcategory of R-modules M with X - pd(M) <∞. One checks easily that res X̂
is additive and contains X .
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The terms Y-coresolution and Y-injective dimension are defined dually. The augmented
Y-coresolution associated to a Y-coresolution Y is denoted +Y , and the Y-injective dimen-
sion of M is denoted Y- id(M). The subcategory of R-modules N with Y- id(N ) < ∞ is
denoted cores Ŷ; it is additive and contains Y .

Following much of the literature, we write “injective resolution” in lieu of “I-coresolu-
tion” and set pd = P- pd and id = I- id.

Definition 1.6 An X -resolution X is proper when the augmented resolution X+ is
HomR(X ,−)-exact. We let res X̃ denote the subcategory of R-modules admitting a proper
X -resolution. One checks readily that res X̃ is additive and contains X . Proper coresolu-
tions are defined dually. The subcategory of R-modules admitting a proper Y-coresolution
is denoted cores Ỹ; it is additive and contains Y .

The next lemmata are standard or have standard proofs: for 1.7 see [4, pf. of (2.3)]; for 1.8
see [4, pf. of (2.1)]; for 1.9 argue as in [7, (4.3)] and [20, (1.8)]; and for the “Horseshoe
Lemma” 1.10 see [7, (4.5)] and [14, pf. of (8.2.1)].

Lemma 1.7 Let 0→ M1 → M2 → M3 → 0 be an exact sequence of R-modules.

(a) If M3 ⊥ X , then M1 ⊥ X if and only if M2 ⊥ X . If M1 ⊥ X and M2 ⊥ X , then
M3 ⊥ X if and only if the given sequence is HomR(−, X )-exact.

(b) If X ⊥ M1, then X ⊥ M2 if and only if X ⊥ M3. If X ⊥ M2 and X ⊥ M3, then
X ⊥ M1 if and only if the given sequence is HomR(X ,−)-exact.

Lemma 1.8 If X ⊥ Y , then X ⊥ res Ŷ and cores X̂ ⊥ Y .

Lemma 1.9 Let M, M ′, N , N ′ be R-modules.

(a) Let P
ρ−→ M be a projective resolution. Assume that M admits a proper W-resolution

W
γ−→ M and M ′ admits a proper X -resolution X ′ γ ′−→ M ′. For each homomorphism

f : M → M ′ there exist morphisms f : W → X ′ and f̃ : P → X ′ unique up to ho-
motopy such that f γ = γ ′ f and fρ = γ ′ f̃ . If f is an isomorphism, then f and f̃
are quasiisomorphisms. If f is an isomorphism and X = W , then f is a homotopy
equivalence.

(b) Let N ′ φ′−→ I ′ be an injective resolution. Assume that N admits a proper Y-coresolution

N
δ−→ Y and N ′ admits a proper V-coresolution N ′ δ′−→ V ′. For each homomorphism

g : N → N ′ there exist morphisms g : Y → V ′ and g̃ : Y → I ′ unique up to homotopy
such that gδ = δ′g and g̃δ = φ′g. If g is an isomorphism, then g and g̃ are quasiiso-
morphisms. If g is an isomorphism and V = Y , then g is a homotopy equivalence.

Lemma 1.10 Let 0→ M ′ → M → M ′′ → 0 be an exact sequence of R-modules.

(a) Assume that M ′ and M ′′ have proper X -resolutions X ′ 
−→ M ′ and X ′′ 
−→ M ′′ and
that the given sequence is HomR(X ,−)-exact. Then M admits a proper X -resolution

X

−→ M such that there exists a commutative diagram

0 �� X ′ ��



��

X ��



��

X ′′ ��



��

0

0 �� M ′ �� M �� M ′′ �� 0

whose top row is degreewise split exact.
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(b) Assume that M ′ and M ′′ have proper Y-coresolutions M ′ 
−→ Y ′ and M ′′ 
−→ Y ′′ and
that the given sequence is HomR(−, Y)-exact. Then M admits a proper Y-coresolution

M

−→ Y such that there exists a commutative diagram

0 �� M ′ ��



��

M ��



��

M ′′ ��



��

0

0 �� Y ′ �� Y �� Y ′′ �� 0

whose bottom row is degreewise split exact.

Definition 1.11 Let M, M ′, N , N ′ be R-modules with homomorphisms f : M → M ′ and

g : N → N ′. Assume that M admits a proper X -resolution X
γ−→ M , and for each integer n

define the nth relative X R-cohomology module as

Extn
X R(M, N ) = H−n(HomR(X, N )).

If M ′ also admits a proper X -resolution X ′ γ ′−→ M ′, then let f : X → X ′ be a chain map
such that f γ = γ ′ f as in Lemma 1.9 and define

Extn
X R( f, N ) = H−n(HomR( f , N )) : Extn

X R(M ′, N )→ Extn
X R(M, N )

Extn
X R(M, g) = H−n(HomR(X, g)) : Extn

X R(M, N )→ Extn
X R(M, N ′).

The nth relative RY-cohomology Extn
RY (−,−) is defined dually.

Remark 1.12 Lemma 1.9 shows that Definition 1.11 yields well-defined bifunctors

Extn
X R(−,−) : res X̃ ×M→M and Extn

RY (−,−) :M× cores Ỹ →M
and one checks the following natural equivalences readily.

Ext�1
X R(X ,−) = 0 = Ext�1

RY (−, Y)

Ext0
X R(−,−) ∼= HomR(−,−)|res X̃×M

Ext0
RY (−,−) ∼= HomR(−,−)|M×cores Ỹ

Extn
PM(−,−) ∼= Extn

R(−,−) ∼= Extn
MI(−,−).

Definition 1.13 Let M, N be R-modules. Let P
ρ−→ M be a projective resolution. Assume

that M admits a proper W-resolution W
γ−→ M and a proper X -resolution X

γ ′−→ M . Let
idM : W → X and ĩdM : P → X be quasiisomorphisms such that γ = γ ′idM and ρ =
γ ′̃idM , as in Lemma 1.9 (a), and set

ϑn
XW R(M, N ) = H−n(HomR(idM , N )) : Extn

X R(M, N )→ Extn
W R(M, N )


n
X R(M, N ) = H−n(HomR (̃idM , N )) : Extn

X R(M, N )→ Extn
R(M, N ).

On the other hand, if N admits a proper Y-coresolution and a proper V-coresolution, then
the following maps are defined dually

ϑn
RYV (M, N ) : Extn

RY (M, N )→ Extn
RV (M, N )


n
RY (M, N ) : Extn

RY (M, N )→ Extn
R(M, N ).
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Remark 1.14 Lemma 1.9 shows that Definition 1.13 describes well-defined natural transfor-
mations

ϑn
XW R(−,−) : Extn

X R(−,−)|(res W̃∩res X̃ )×M→ Extn
W R(−,−)|(res W̃∩res X̃ )×M


n
X R(−,−) : Extn

X R(−,−)→ Extn
R(−,−)|res X̃×M

ϑn
RYV (−,−) : Extn

RY (−,−)|M×(cores Ṽ∩cores Ỹ) → Extn
RV (−,−)|M×(cores Ṽ∩cores Ỹ)


n
RY (−,−) : Extn

RY (−,−)→ Extn
R(−,−)|M×cores Ỹ

independent of resolutions and liftings. Note that the left-exactness of HomR(−,−) implies
that each of these transformations is a natural isomorphism when n ≤ 0.

Lemma 1.10 yields the following long exact sequences as in [7, (4.4),(4.6)].

Lemma 1.15 Let M and N be R-modules, and consider an exact sequence

L = 0→ L ′ f ′−→ L
f−→ L ′′ → 0.

(a) Assume that the sequence L is HomR(X ,−)-exact. If M is in res X̃ , then L induces a
functorial long exact sequence

· · · → Extn
X R(M, L ′)

ExtnX R(M, f ′)−−−−−−−−→ Extn
X R(M, L)

ExtnX R(M, f )−−−−−−−→

Extn
X R(M, L ′′)

ð
n
X R(M,L)−−−−−−→ Extn+1

X R (M, L ′)
Extn+1

X R(M, f ′)−−−−−−−−→ · · · .
(b) Assume that the sequence L is HomR(X ,−)-exact. If the modules L ′, L , L ′′ are in

res X̃ , then L induces a functorial long exact sequence

· · · → Extn
X R(L ′′, N )

ExtnX R( f,N )−−−−−−−→ Extn
X R(L , N )

ExtnX R( f ′,N )−−−−−−−−→

Extn
X R(L ′, N )

ð
n
X R(L,N )−−−−−−→ Extn+1

X R (L ′′, N )
Extn+1

X R( f,N )−−−−−−−→ · · · .
(c) Assume that the sequence L is HomR(−, Y)-exact. If N is in cores Ỹ , then L induces a

functorial long exact sequence

· · · → Extn
RY (L ′′, N )

ExtnRY ( f,N )−−−−−−−→ Extn
RY (L , N )

ExtnRY ( f ′,N )−−−−−−−→

Extn
RY (L ′, N )

ð
n
RY (L,N )−−−−−−→ Extn+1

RY (L ′′, N )
Extn+1

RY ( f,N )−−−−−−−→ · · · .
(d) Assume that the sequence L is HomR(−, Y)-exact. If the modules L ′, L , L ′′ are in

cores Ỹ , then L induces a functorial long exact sequence

· · · → Extn
RY (M, L ′)

ExtnRY (M, f ′)−−−−−−−−→ Extn
RY (M, L)

ExtnRY (M, f )−−−−−−−→

Extn
RY (M, L ′′)

ð
n
RY (M,L)−−−−−−→ Extn+1

RY (M, A′)
Extn+1

RY (M, f ′)−−−−−−−−→ · · · .

2 Relative cohomology and extensions

In this section, we compare relative cohomology modules with sets of equivalence classes
of module extensions, as in the classical Yoneda setting.
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Definition/Notation 2.1 Let N and M be R-modules. An extension of M by N is an exact
sequence

0→ N → T → M → 0

and this is equivalent to a second extension 0 → N → T ′ → M → 0 if there exists a
homomorphism τ : T → T ′ making the following diagram commute

0 �� N ��

idN

��

T ��

τ

��

M ��

idM

��

0

0 �� N �� T ′ �� M �� 0.

We set

eR(M, N ) = {equivalence classes of extensions ofM byN }
eX R(M, N ) = {equivalence classes of HomR(X ,−)− exact extensions ofM byN }
eRY (M, N ) = {equivalence classes of HomR(−, Y)-exact extensions ofM byN }.

Remark 2.2 Because of the containments W ⊆ X and V ⊆ Y there are inclusions
eW R(M, N ) ⊆ eX R(M, N ) ⊆ e(M, N ) and eRV (M, N ) ⊆ eRY (M, N ) ⊆ e(M, N ).

There exists a bijection ξRM N : Ext1
R(M, N )→ eR(M, N ) whose construction we recall

from [24, Ch. 7]. Let P

−→ M be a projective resolution. Each element in Ext1

R(M, N ) is
represented by a homomorphism α : P1 → N such that α∂ P

2 = 0, and each such α induces
a map α : P1/ Im(∂ P

2 ) → N . Taking a pushout yields the following commutative diagram
with exact rows

0 �� P1/ Im(∂ P
2 )

∂ P
1 ��

α

�� �

P0 ��

τ

��

M ��

idM

��

0

0 �� N �� T �� M �� 0

and ξRM N ([α]) is the equivalence class of the bottom row of this diagram.
Dually, one constructs a bijection ξ ′RM N : Ext1

R(M, N )→ eR(M, N ) using an injective
resolution of N .

The next result extends the construction of Remark 2.2 to the relative setting and contains
Theorem C from the introduction. The connecting maps 
1

X R , ϑ1
XW R , 
1

RY and ϑ1
RYV are

described in Definition 1.13.

Theorem 2.3 Let M and N be R-modules.

(a) Assume that M admits a proper X -resolution. There is then a bijective map
ξX M N :Ext1

X R(M, N )→ eX R(M, N ) making the following diagram commute

Ext1
X R(M, N )

ξX M N ��


1
X R(M,N )

��

eX R(M, N )

��
Ext1

R(M, N )
ξRM N �� e(M, N ),

where the rightmost vertical arrow is the natural inclusion. In particular, the comparison
map 
1

X R(M, N ) : Ext1
X R(M, N )→ Ext1

R(M, N ) is injective.
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(b) Assume that M admits a proper X -resolution and a proper W-resolution. The following
diagram commutes

Ext1
X R(M, N )

ξX M N ��

ϑ1
XW R(M,N )

��

eX R(M, N )

��
Ext1

W R(M, N )
ξW M N �� eW R(M, N ),

where the rightmost vertical arrow is the natural inclusion. In particular the comparison
map ϑ1

XW R(M, N ) is injective.
(c) Assume that N admits a proper Y-coresolution. There is then a bijective map

ξ ′Y M N :Ext1
RY (M, N )→ eRY (M, N ) making the following diagram commute

Ext1
RY (M, N )

ξ ′Y M N ��


1
RY (M,N )

��

eRY (M, N )

��
Ext1

R(M, N )
ξ ′RM N �� e(M, N ),

where the rightmost vertical arrow is the natural inclusion. In particular, the comparison
map 
1

RY (M, N ) : Ext1
RY (M, N )→ Ext1

R(M, N ) is injective.
(d) Assume that N admits a proper Y-coresolution and a proper V-coresolution. The fol-

lowing diagram commutes

Ext1
RY (M, N )

ξ ′Y M N ��

ϑ1
RYV (M,N )

��

eRY (M, N )

��
Ext1

RV (M, N )
ξ ′V M N �� eRV (M, N ),

where the rightmost vertical arrow is the natural inclusion. In particular the comparison
map ϑ1

RYV (M, N ) is injective.

Proof Our proof is modeled on the arguments of [24, Ch. 7]; instead of rewriting much of the
work there, we simply sketch the proof, indicating how HomR(X ,−)-exactness is detected
and used.

(a) Let X

−→ M be a proper X -resolution and set X = X1/ Im(∂ X

2 ). Each element
[α] ∈ Ext1

X R(M, N ) is represented by a homomorphism α : X1 → N such that α∂ X
2 = 0,

and each such α induces a map α : X → N . Taking a pushout yields the following commu-
tative diagram with exact rows

0 �� X
∂ X

1 ��

α

�� �

X0 ��

τ

��

M ��

idM

��

0

ζ = 0 �� N �� T
π �� M �� 0.

(2.3.1)

We claim that the bottom row of this diagram is HomR(X ,−)-exact. To see this, first

note that the properness of the resolution X

−→ M implies that the top row of (2.3.1) is
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HomR(X ,−)-exact. Fix an R-module X ′ in X and apply HomR(X ′,−) to the diagram (2.3.1)
to yield the next commutative diagram with exact rows

0 �� HomR(X ′, X) ��

��

HomR(X ′, X0)
��

��

HomR(X ′, M) ��

idHomR (X ′,M)

��

0

0 �� HomR(X ′, N ) �� HomR(X ′, T )
HomR(X ′,π) �� HomR(X ′, M).

An easy diagram chase shows that the map HomR(X ′, π) is surjective, as desired.
We define ξX M N ([α]) to be the equivalence class [ζ ] of the bottom row of the dia-

gram (2.3.1). One now verifies readily (as in the proof of the classical result in [24, Ch. 7])
that this yields a well-defined function Ext1

X R(M, N )→ eX R(M, N ).
To show that ξX M N is bijective, we construct an inverse. Fix a HomR(X ,−)-exact

sequence ζ = (0→ N → T → M → 0). A standard lifting procedure as in Lemma 1.9 (a)
yields the next commutative diagram with exact rows

X2
∂ X

2 ��

��

X1
∂ X

1 ��

α

��

X0 ��

��

M ��

idM

��

0

0 �� N �� T �� M �� 0.

The map α is thus a degree-1 cycle in HomR(X, N ) and so gives rise to a cohomology class
[α] ∈ Ext1

X R(M, N ). Again, one verifies that the assignment [ζ ] 	→ [α] describes a well-
defined function eX R(M, N )→ Ext1

X R(M, N ), and that this function is a two-sided inverse
for ξX M N ; the reader may find [24, (7.18)] to be helpful.

The proof of part (a) will be compete once we verify ξRM N 
1
X R = ξX M N . Let P


−→ M be
a projective resolution and set P = P1/ Im(∂ P

2 ). Lemma 1.9 (a) yields the next commutative
diagram with exact rows

· · · ∂ P
3 �� P2

∂ P
2 ��

f2

��

P1
∂ P

1 ��

f1

��

P0 ��

f0

��

M ��

idM

��

0

· · · ∂ X
3 �� X2

∂ X
2 �� X1

∂ X
1 �� X0 �� M �� 0,

which in turn induces another commutative diagram with exact rows

0 �� P
∂ P

1 ��

f1

��

P0 ��

f0

��

M ��

idM

��

0

0 �� X
∂ X

1 �� X0 �� M �� 0.

(2.3.2)

Given [α] ∈ Ext1
X R(M, N ), construct the extension ζ as above. The diagram (2.3.2) com-

bines with (2.3.1) to yield the next diagram
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0 �� P
∂ P

1 ��

α f1

��

P0 ��

τ f0

��

M ��

idM

��

0

ζ = 0 �� N �� T
π �� M �� 0.

(2.3.3)

It follows from Definition 1.13 that 
1
X R([α]) = [α f1]. From [24, (7.18)] one concludes

ξRM N ([α f1]) = [ζ ], and this yields the first equality in the following sequence

ξRM N (
1
X R([α])) = [ζ ] = ξX M N ([α])

while the second equality is by definition. This completes the proof of part (a).
Part (b) is proved as in the previous paragraph, using a proper W-resolution in place of

the projective resolution P → M . The proofs of (c) and (d) are dual. ��

3 Categories of interest

In this section we discuss the categories whose relative cohomology theories are of primary
interest in this paper. Each category is defined in terms of a semidualizing module, the study
of which was initiated independently (with different names) by Foxby [16], Golod [19], and
Vasconcelos [28].

Definition/Notation 3.1 An R-module C is semidualizing if it satisfies the following con-
ditions:

(1) C admits a (possibly unbounded) resolution by finite rank free R-modules,
(2) the natural homothety map R→ HomR(C, C) is an isomorphism, and
(3) Ext�1

R (C, C) = 0.

A finitely generated projective R-module of rank 1 is semidualizing. If R is Cohen–Macau-
lay, then D is dualizing if it is semidualizing and idR(D) is finite. If C is semidualizing and D
is dualizing, then [11, (2.12)] says that the R-module C† = HomR(C, D) is semidualizing,
Ext�1

R (C, D) = 0 and C†† ∼= C ; see also [28, (4.11)].

Based on the work of Enochs and Jenda [13], the following notions were introduced and
studied in this generality by Holm and Jørgensen [21] and White [29].

Definition 3.2 Let C be a semidualizing R-module. An R-module is C-projective (resp.,
C-flat or C-injective) if it is isomorphic to a module of the form P ⊗R C for some pro-
jective R-module P (resp., F ⊗R C for some flat R-module F or HomR(C, I ) for some
injective R-module I ). We let PC , FC and IC denote the categories of C-projective, C-flat
and C-injective R-modules, respectively.

A complete PPC -resolution is a complex X of R-modules satisfying the following:

(1) X is exact and HomR(−, PC )-exact, and
(2) Xi is projective when i � 0 and Xi is C-projective when i < 0.

An R-module G is GC -projective if there exists a complete PPC -resolution X such that
G ∼= Coker(∂ X

1 ), in which case X is a complete PPC -resolution of G. We let GPC denote
the subcategory of GC -projective R-modules and set GP = GPR . Projective R-modules and
C-projective R-modules are GC -projective.
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The terms complete ICI-coresolution and GC -injective are defined dually, and GIC is
the subcategory of GC -injective R-modules. An R-module that is injective or C-injective is
GC -injective.

Assume that R is noetherian. A complete FFC -resolution is a complex X of R-modules
satisfying the following conditions:

(1) X is exact and −⊗R IC -exact, and
(2) Xi is flat when i � 0 and Xi is C-flat when i < 0.

An R-module G is GC -flat if there exists a complete FFC -resolution X such that G ∼=
Coker(∂ X

1 ), in which case X is a complete FFC -resolution of G. We let GFC denote the
subcategory of GC -flat R-modules and set GF = GFR . Flat R-modules (hence, projective
R-modules) and C-flat R-modules are GC -flat.

The GC -flats are only used in this paper as a tool for verifying certain relations between
GC -projectives and GC -injectives. These relations are contained in the next result which is
essentially an assemblage of facts from [21].

Lemma 3.3 Assume that R is noetherian. Let C, E and M be R-modules with C semidual-
izing and E faithfully injective.

(a) There is an inequality GFC - pdR(M) ≤ GPC - pdR(M), and so GPC ⊆ GFC .
(b) If M is GC -flat, then HomR(M, E) is GC -injective.
(c) If R has finite Krull dimension, then the quantities GIC - idR(HomR(M, E)),

GPC - pdR(M) and GFC - pdR(M) are simultaneously finite.

Proof (a) Let R � C denote the trivial extension of R by C and view M as an R � C-module
via the natural surjection R � C → R. In the next sequence

GFC - pdR(M) = GF- pdR�C (M) ≤ GP- pdR�C (M) = GPC - pdR(M)

the equalities are from [21, (2.16)] and the inequality is from [10, (5.1.4)].
(b) Assume M ∈ GFC . From [21, (2.16)] we know that G is Gorenstein flat over R�C , and

so [21, (2.15)] implies that HomR(M, E) is Gorenstein injective over R � C . An application
of [21, (2.13.1)] implies HomR(M, E) ∈ GIC .

(c) Set (−)∨ = HomR(−, E). Using [21, (2.1),(2.16)] we have equalities

GIC - idR(M∨) = GI- idR�C (M∨) = GF- pdR�C (M) = GFC - pdR(M)

GP B - pdR(C) = GP- pdR�B(C).

From [15, (3.4)] we conclude that GF- pdR�C (M) and GP- pdR�C (M) are simultaneously
finite, and hence so are the six displayed quantities. ��

The following equalities are taken from [27, (2.11)].

Fact 3.4 Let C and M be R-modules with C semidualizing.

(a) pdR(M) = PC - pdR(C ⊗R M) and PC - pdR(M) = pdR(HomR(C, M)).
(b) IC - idR(M) = idR(C ⊗R M) and idR(M) = IC - idR(HomR(C, M)).

Definition 3.5 Let M and N be R-modules such that GPC - pdR(M) <∞ and GIC - idR(N )

<∞. From [29, (3.6) and its dual] there are exact sequences

0→ K → G0 → M → 0 0→ N → H0 → L → 0
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such that PC - pdR(K ) and IC - idR(L) are finite, G0 is GC -projective, and H0 is GC -injective.
The first exact sequence is called a GPC -approximation of M , and the second one is called
a GIC -coapproximation of N .

Augmenting the GPC -approximation with a bounded PC -resolution of K yields a bounded

GPC -resolution G

−→ M such that Gn ∈ PC for each n � 1. Such a resolution is called a

bounded strict GPC -resolution. Dually, N admits a bounded strict GIC -coresolution.

The next definition was first introduced by Auslander and Bridger [2,3] in the case C = R,
and in this generality by Golod [19] and Vasconcelos [28].

Definition 3.6 Assume that R is noetherian, and let C be a semidualizing R-module.
A finitely generated R-module H is totally C-reflexive if

(1) Ext�1
R (H, C) = 0 = Ext�1

R (HomR(H, C), C), and
(2) the natural biduality map H → HomR(HomR(H, C), C) is an isomorphism.

A finitely generated module that is projective or C-projective is totally C-reflexive. Let GC

denote the subcategory of totally C-reflexive R-modules and set G = GR .

Fact 3.7 The category PC is an injective cogenerator for GPC by [21, (2.5),(2.13)] and [29,
(2.2),(2.9)], and IC is a projective generator for GIC by [21, (2.6),(2.13)] and results dual
to [29, (2.2),(2.9)]. Lemma 1.8 yields the relations GPC ⊥ res P̂C and cores ÎC ⊥ GIC .
From [21, (5.6)] there is an equality cores G̃IC =M.

Let M and N be R-modules such that GPC - pdR(M) <∞ and GIC - idR(N ) <∞. The
proof of [29, (3.6)] shows that M admits a bounded strict GPC -resolution such that Gn = 0
for each n > GPC - pdR(M), and [29, (3.4)] shows that every bounded strict GPC -resolution
of M is GPC -proper and hence PC -proper. In particular, every bounded PC -resolution is
GPC -proper and every GPC -approximation is HomR(GPC ,−)-exact. Dually, N admits a

bounded strict GIC -coresolution N

−→ H such that H−n = 0 for each n > GIC - idR(M),

every bounded strict GIC -coresolution is GIC -proper, and every bounded IC -coresolution
is GIC -proper.

Assuming that R is noetherian, the equality GC = GP f
C is by [29, (4.4)], and P f

C is an
injective cogenerator for GC by [29, (2.9),(4.3),(4.4)].

Notation 3.8 We simplify our notation for the relative cohomologies

Extn
PC

(−,−) = Extn
PC R(−,−) Extn

GPC
(−,−) = Extn

GPC R(−,−)

Extn
IC

(−,−) = Extn
R IC

(−,−) Extn
GIC

(−,−) = Extn
R GIC

(−,−)

and for the various connecting maps from Definition 1.13

ϑn
GPC PC

= ϑn
GPC PC R ϑn

GIC IC
= ϑn

RGIC IC


n
GPC
= 
n

GPC R 
n
GIC
= 
n

RGIC


n
PC
= 
n

PC R 
n
IC
= 
n

RIC
.

Fact 3.7 implies that each bifunctor Extn
GIC

(−,−) is defined on M×M.

The next properties are from [27, (4.1)].

Fact 3.9 Let C , M and N be R-modules with C semidualizing.

(a) If M ∈ res P̃C , then there is an isomorphism for each n

Extn
PC

(M, N ) ∼= Extn
R(HomR(C, M), HomR(C, N )).
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(b) If N ∈ cores ĨC , then there is an isomorphism for each n

Extn
IC

(M, N ) ∼= Extn
R(C ⊗R M, C ⊗R N ).

The following is for use in Propositions 6.1 and 6.4.

Lemma 3.10 Assume that R is noetherian and let C, M and N be finitely generated R-mod-
ules with C semidualizing.

(a) A PC -resolution X

−→ M is proper if and only if HomR(C, X+) is exact.

(b) Assume M ∈ res P̃C . Then Extn
PC

(M, N ) ∼= ExtnP f
C
(M, N ) is finitely generated and

Supp(Extn
PC

(M, N )) ⊆ Supp(M) ∩ Supp(N ) for each n. Hence, if Supp(M) ∩
Supp(N ) ⊆ m- Spec(R), then Extn

PC
(M, N ) has finite length.

(c) Assume GPC - pdR(M) < ∞. Then Extn
GPC

(M, N ) ∼= Extn
GC

(M, N ) is finitely gen-
erated and Supp(Extn

GPC
(M, N )) ⊆ Supp(M) ∩ Supp(N ) for each n. If Supp(M) ∩

Supp(N ) ⊆ m- Spec(R), then Extn
GPC

(M, N ) has finite length.

Proof (a) This is immediate from Hom-tensor adjointness.
(b) The proof of [22, (5.3.b)] shows that P f

C is precovering for the category of finitely
generated R-modules. In other words, there is an R-module homomorphism τ : X0 → M
such that X0 ∈ P f

C and the sequence

X0
τ−→ M → 0 (3.10.1)

is HomR(P f
C ,−)-exact. In particular, this sequence is HomR(C,−)-exact. Since M admits

a proper PC -resolution, the map τ is surjective. It follows from part (a) that the sequence
(3.10.1) is HomR(PC ,−)-exact. Using [27, (2.3.a)], we conclude that Ker(τ ) has a proper

PC -resolution. Inductively, this process yields a P f
C -resolution X


−→ M that is PC -proper.
This yields the isomorphism Extn

PC
(M, N ) ∼= ExtnP f

C
(M, N ) and the finite generation of

ExtnPC
(M, N ).

Fix a prime p ∈ Spec(R). It is straightforward to check that the localization Cp is

Rp-semidualizing and, using part (a), that the PCp -resolution Xp

−→ Mp is proper. This yields

an isomorphism Extn
PC

(M, N )p ∼= Extn
PCp

(Mp, Np) for each integer n. If p �∈ Supp(M),

then the complex Xp is exact and hence split-exact by [22, Prop. 5.2]; it follows easily
that Extn

PC
(M, N )p ∼= Extn

PCp
(Mp, Np) = 0. If p �∈ Supp(N ), then one derives the same

vanishing.
(c) Using [29, (4.7)], the assumption GPC - pdR(M) <∞ implies that M admits a bounded

strict GPC -resolution G such that Gn is finitely generated for each n � 0. It follows that
the localized complex Gp is a bounded strict GPCp -resolution of Mp for each p ∈ Spec(R),
and hence it is a proper GPCp -resolution by Fact 3.7. Furthermore, if Mp = 0, then Gp is a
bounded augmented PCp -resolution of (G0)p, and it follows from [22, Prop. 5.2] that Gp is
split-exact. The proof now concludes as in part (b). ��

Over a noetherian ring, the next categories were introduced by Avramov and Foxby [6]
when C is dualizing, and by Christensen [11] for arbitrary C . (Note that these works (and
others) use the notation AC and BC for certain categories of complexes, while our categories
consist precisely of the modules in these other categories.) In the non-noetherian setting,
these definitions are from [22,29].

Definition 3.11 Let C be a semidualizing R-module. The Auslander class of C is the sub-
category AC of R-modules M such that
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(1) TorR
�1(C, M) = 0 = Ext�1

R (C, C ⊗R M), and
(2) The natural map M → HomR(C, C ⊗R M) is an isomorphism.

The Bass class of C is the subcategory BC of R-modules M such that

(1) Ext�1
R (C, M) = 0 = TorR

�1(C, HomR(C, M)), and
(2) The natural evaluation map C ⊗R HomR(C, M)→ M is an isomorphism.

Fact 3.12 Let C be a semidualizing R-module, and set G(PC ) = GPC ∩ BC and G(IC ) =
GIC ∩AC . The category PC is an injective cogenerator and a projective generator for G(PC )

by [26, (5.3)]. Dually, the category IC is an injective cogenerator and a projective generator
for G(IC ) by [26, (5.4)].

Assume that R is noetherian and set G(P f
C ) = GC ∩ BC = G(PC ) f . The category P f

C is

an injective cogenerator and a projective generator for G(P f
C ) by [26, (5.5)]. If R is Cohen–

Macaulay with a dualizing module, then there are containments GPC ⊆ AC† and GIC ⊆ BC†

by [21, (4.6)], and we conclude G(P f
C ) ⊆ G(PC ) ⊆ AC† ∩ BC and G(IC ) ⊆ BC† ∩AC .

Fact 3.13 Let C be a semidualizing R-module. If any two R-modules in a short exact
sequence are in AC , respectively BC , then so is the third; see [22, Cor. 6.3]. The class
AC contains all modules of finite projective dimension and those of finite IC -injective
dimension, and the class BC contains all modules of finite injective dimension and those of
finite PC -projective dimension by [22, Cor. 6.1]. If M is in BC , then M admits a proper
PC -resolution; if M is in AC , then M admits a proper IC -injective coresolution;
see [27, (2.3),(2.4)].

Using the containment G(PC ) ⊆ BC and a GPC -approximation, one checks readily that
G(PC )- pdR(M) is finite if and only if GPC - pdR(M) is finite and M is in BC . Consequently,
if G(PC )- pdR(M) is finite (e.g., if PC - pdR(M) is finite), then M admits a proper PC -reso-
lution, and G(PC )- pdR(M) = GPC - pdR(M).

Dually, G(IC )- idR(M) is finite if and only if GIC - idR(M) is finite and M is in AC . If
G(IC )- idR(M) is finite (e.g., if IC - idR(M) is finite), then M admits a proper IC -coresolu-
tion, and G(IC )- idR(M) = GIC - idR(M).

If R is Cohen–Macaulay with a dualizing module, then Fact 3.12 yields

res P̂C ⊆ res Ĝ(PC ) ⊆ AC† ∩ BC ⊇ cores Ĝ(IC†) ⊇ cores ÎC† .

The following relations between semidualizing modules are for use in Sect. 6.

Lemma 3.14 Assume that R is noetherian, and let B and C be semidualizing R-modules.
The following conditions are equivalent.

(i) GPC - pdR(B) is finite.
(ii) B is totally C-reflexive.

(iii) Ext�1
R (B, C) = 0 and HomR(B, C) is R-semidualizing.

(iv) C is in BB.

Proof (i) �⇒ (ii) If GPC - pdR(B) is finite then GC - dimR(B) < ∞ and so [17, (3.1)]
provides the equality GC - dimR(B) = 0 and hence the desired conclusion.

(ii) �⇒ (iii) This is in [11, (2.11)].
(iii) �⇒ (iv) Let P


−→ B and C

−→ I be projective and injective resolutions, respec-

tively. The condition Ext�1
R (B, C) = 0 implies that HomR(P, I ) is an injective resolution
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of HomR(B, C). Consider the next commutative diagram

R
X ′ ��

X 

��

HomR(HomR(P, I ), HomR(P, I ))

� ∼=
��

HomR(I, I )
HomR(�,I ) �� HomR(P ⊗R HomR(P, I ), I ),

(3.14.1)

where X and X ′ are the homothety homomorphisms, � is Hom-tensor adjunction, and � is
tensor-evaluation. Our assumptions imply that X ′ is a quasiisomorphism, and so the same is
true of HomR(�, I ). Using [10, (A.8.11)] we conclude that � is also a quasiisomorphism;
this uses the equality SuppR(C) = Spec(R) which holds because C is semidualizing. In
particular, we have

TorR
n (B, HomR(B, C)) ∼= Hn(HomR(P, I )⊗R P) ∼= Hn(C),

which is 0 when n � 1. The isomorphism H0(�) is exactly the natural evaluation map
B ⊗R HomR(B, C)→ C , and so we have C ∈ BB .

(iv) �⇒ (iii) Assume that C is in BB and employ the notation from the previous paragraph.
It follows that the morphism � is a quasiisomorphism, and hence so is X ′. This implies that
HomR(B, C) is semidualizing. The Bass class conditions then conspire with [17, (3.1.c)] to
imply GPC - pdR(B) <∞. ��
Fact 3.15 If B and C be semidualizing R-modules such that GPC - pdR(B) is finite, then
there is a containment PB ⊆ GPC , and C admits a proper PB -resolution by Fact 3.13 and
Lemma 3.14. For example, the semidualizing module B = R is always totally C-reflexive;
if R is Cohen–Macaulay and C is dualizing, then B is totally C-reflexive. For discussions
of methods for generating other nonisomorphic semidualizing modules B and C such that
GPC - pdR(B) <∞, the interested reader is encouraged to peruse [17,18,25].

Lemma 3.16 Assume that (R, m, k) is local and let B and C be semidualizing R-modules
with GPC - pdR(B) <∞. Let E be the R-injective hull of k, and set (−)∨ = HomR(−, E).
The following conditions are equivalent.

(i) B ∼= C. (v) PC - pdR(B) <∞.

(ii) PB- pdR(C) <∞. (vi) IB- idR(C∨) <∞.

(iii) GP B- pdR(C) <∞. (vii) GIB- idR(C∨) <∞.

(iv) pdR(HomR(B, C)) <∞. (viii) IC - idR(B∨) <∞.

Proof The implication (i) �⇒ (n) is straightforward for n = ii, . . . , viii, as are (ii) �⇒ (iii)
and (vi) �⇒ (vii). The implication (iii) �⇒ (i) is in [1, (5.3)], and (ii) ⇐⇒ (iv) is from
Fact 3.4 (a), while (vii)⇐⇒ (iii) is in Lemma 3.3 (c).

(v) �⇒ (iii) If PC - pdR(B) < ∞, then B is in BC and so Lemma 3.14 implies
GP B - pdR(C) <∞.

(viii) �⇒ (v) Assume IC - idR(B∨) <∞. Hom-evaluation yields an isomorphism

HomR(C, B)∨ ∼= C ⊗R (B∨)

and hence the first equality in the following sequence

idR(HomR(C, B)∨) = idR(C ⊗R (B∨)) = IC - idR(B∨) <∞.

The second equality is by Fact 3.4 (b). It follows that HomR(C, B) has finite projective
dimension and so Fact 3.4 (a) implies PC - pdR(B) <∞. ��
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4 Comparison isomorphisms

The results of this section document situations where different relative cohomology theories
agree. The notation for the comparison homomorphisms is given in 3.8. The next result is a
more precise version of [27, (4.2)].

Proposition 4.1 Let C, M and N be R-modules with C semidualizing.

(a) If M and N are in BC , then the natural map


n
PC

(M, N ) : Extn
PC

(M, N )→ Extn
R(M, N )

is an isomorphism for each integer n.
(b) If M and N are in AC , then the natural map


n
IC

(M, N ) : Extn
IC

(M, N )→ Extn
R(M, N )

is an isomorphism for each integer n.

Proof (a) Let P
γ−→ HomR(C, M) and P ′ γ ′−→ C be projective resolutions. Because M is

in BC , we have TorR
�1(C, HomR(C, M)) = 0 and so the complex P ′ ⊗R P is a projective

resolution of C ⊗R HomR(C, M) ∼= M , and the complex C ⊗R P is a PC -resolution of M .
The following diagram commutes

P ′ ⊗R P
γ ′⊗R P ��



��

C ⊗R P



��

M
idM �� M

and so it suffices to show that the induced map

HomR(P ′ ⊗R P, N )
HomR(γ ′⊗R P,N )−−−−−−−−−−→ HomR(C ⊗R P, N )

is a quasiisomorphism. The following standard isomorphisms

Cone(HomR(γ ′ ⊗R P, N )) ∼= � HomR(Cone(γ ′ ⊗R P), N )

∼= � HomR(Cone(γ ′)⊗R P, N )

imply that it suffices to show that the complex HomR(Cone(γ ′)⊗R P, N ) is exact.
Observe that Cone(γ ′) is exact and bounded below and each module Cone(γ ′)n is a direct

sum of a projective R-module and a C-projective R-module. Since N is in BC , we know that
Ext�1

R (C, N ) = 0, and it follows that Ext�1
R (Q ⊗R C, N ) = 0 for each projective R-mod-

ule Q. Since we also have Ext�1
R (Q, N ) = 0, it follows that Ext�1

R (Cone(γ ′)n, N ) = 0 for
each n. Breaking up Cone(γ ′) into short exact sequences and applying HomR(−, N ) to each
piece yields the desired conclusion.

The proof of (b) is dual. ��

The next result compares to [7, (4.2.3)].

Proposition 4.2 Let C and M be R-modules with C semidualizing.
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(a) If PC - pdR(M) is finite, then the following natural transformations are isomorphisms
for each n

ϑn
GPC PC

(M,−) : Extn
GPC

(M,−)
∼=−→ Extn

PC
(M,−)

and so Extn
GPC

(M,−) = 0 for each n > PC - pd(M).
(b) If IC - idR(M) is finite, then the following natural transformations are isomorphisms

for each n

ϑn
GIC IC

(−, M) : Extn
GIC

(−, M)
∼=−→ Extn

IC
(−, M)

and so Extn
GIC

(−, M) = 0 for each n > IC - id(M).

Proof We prove part (a); the proof of (b) is dual. Let W

−→ M be a PC -resolution such that

Wn = 0 for each n > PC - pdR(M). The resolution W is GPC -proper and PC -proper by
Fact 3.7, so both Extn

GPC
(M,−) and Extn

PC
(M,−) are defined. Further, in the notation of

Definition 1.13, we can take idM = idW , and so the natural isomorphisms follow from the
next equalities

ϑn
XW R(M,−) = H−n(HomR(idW ,−)) = idH−n(HomR(W,−)) .

The vanishing conclusion follows readily since Wn = 0 for each n > W- pd(M). ��
The next lemma is a tool for the proofs of Propositions 4.4 and 4.5. Note that we do not

assume that the complexes satisfy any properness conditions.

Lemma 4.3 Let C, M, and N be R-modules with C semidualizing.

(a) Let α : G → G ′ be a quasiisomorphism between bounded below complexes in GPC . If
PC - pd(N ) < ∞, then the morphism HomR(α, N ) : HomR(G ′, N )→ HomR(G, N )

is a quasiisomorphism.
(b) Let β : H → H ′ be a quasiisomorphism between bounded above complexes in GIC . If

IC - id(M) <∞, then the morphism HomR(M, β) : HomR(M, H)→ HomR(M, H ′)
is a quasiisomorphism.

Proof We prove part (a); the proof of part (b) is dual.
It suffices to show that Cone(HomR(α, N )) is exact. From the next isomorphism

Cone(HomR(α, N )) ∼= � HomR(Cone(α), N )

we need to show that HomR(Cone(α), N ) is exact. Note that Cone(α) is an exact, bounded
below complex in GPC . Set M j = Ker(∂Cone(α)

j ) for each integer j , and note M j−1 ∈ GPC

for j � 0. Consider the exact sequences

0→ M j → Cone(α) j → M j−1 → 0. (∗ j )

Lemma 1.8 and Fact 3.7 imply GPC ⊥ N . Hence, induction on j using Lemma 1.7 (a)
implies Ext�1

R (M j , N ) = 0 for each j and so each sequence (∗ j ) is HomR(−, N )-exact. It
follows that HomR(Cone(α), N ) is exact. ��

The next two results compare to [7, (4.2.4)]. Notice that the condition M is in
res G̃PC∩res P̃C of Proposition 4.4 (a) is satisfied when G(PC )- pdR(M) <∞; see Fact 3.12.
Also, part (b) uses the equality cores G̃IC =M from Fact 3.7.
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Proposition 4.4 Let C, M, and N be R-modules with C semidualizing.

(a) If M is in res G̃PC ∩ res P̃C and N is in res P̂C , then the following natural map is an
isomorphism for each n

ϑn
GPC PC

(M, N ) : Extn
GPC

(M, N )
∼=−→ Extn

PC
(M, N ).

(b) If M is in cores ÎC and N is in cores ĨC , then the following natural map is an isomor-
phism for each n

ϑn
GIC IC

(M, N ) : Extn
GIC

(M, N )
∼=−→ Extn

IC
(M, N ).

Proof We prove part (a); the proof of part (b) is dual.
The module M has a proper PC -resolution γ : W → M and a proper GPC -resolution

γ ′ : G → M . Lemma 1.9 (a) yields a quasiisomorphism idM : W → G such that γ = γ ′idM ,
and Lemma 4.3 (a) implies that HomR(idM , N ) is a quasiisomorphism. The result now fol-
lows from the definition of ϑn

GPC PC
(M, N ). ��

The next result is proved like Proposition 4.4 using the containment P ⊆ GPC .

Proposition 4.5 Let C, M, and N be R-modules with C semidualizing.

(a) If M is in res G̃PC and N is in res P̂C , then the following natural map is an isomorphism
for each n


n
GPC

(M, N ) : Extn
GPC

(M, N )
∼=−→ Extn

R(M, N ).

(b) If M is in cores ÎC , then the next natural map is an isomorphism for each n


n
GIC

(M, N ) : Extn
GIC

(M, N )
∼=−→ Extn

R(M, N ).

The next four lemmata are tools for the proofs of Propositions 4.10 and 4.11 and for The-
orem 5.7. Part (a) of the first one is a consequence of Proposition 4.1; parts (b) and (c) follow
from part (a). Note that Fact 3.13 gives conditions guaranteeing that M, N ∈ BC ∩AC† .

Lemma 4.6 Let R be a Cohen–Macaulay ring with dualizing module, and let C, M and N
be R-modules with C semidualizing.

(a) If M, N ∈ BC ∩AC† , then the natural map

Extn
PC

(M, N )

n
PC

(M,N )

−−−−−−→∼=
Extn

R(M, N )


n
I

C†
(M,N )

←−−−−−−−∼=
Extn

IC†
(M, N )

is an isomorphism for each n.
(b) If M ∈ BC ∩AC† and N ∈ IC† , then Ext�1

PC
(M, N ) = 0 = Ext�1

R (M, N ).

(c) If M ∈ PC and N ∈ BC ∩AC† , then Ext�1
IC†

(M, N ) = 0 = Ext�1
R (M, N ).

Lemma 4.7 Let C be a semidualizing R-module. One has AC ⊥ IC and PC ⊥ BC . If R is
Cohen–Macaulay and has a dualizing module, then GPC ⊥ IC† and PC ⊥ GIC† , and so
PC ⊥ IC† .
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Proof We verify the first orthogonality condition; the second one is verified similarly, and the
others follow immediately from the containments PC ⊆ GPC ⊆ AC† and IC† ⊆ GIC† ⊆
BC ; see Fact 3.13. Let M ∈ AC and N ∈ IC ⊆ AC . For each n � 1, the isomorphism in the
following sequence is in Proposition 4.1 (b)

Extn
R(M, N ) ∼= Extn

IC
(M, N ) = 0

and the vanishing holds because N ∈ IC . ��
Lemma 4.8 If C is a semidualizing R-module, then one has GPC ⊥ cores Î and
res P̂ ⊥ GIC .

Proof We verify the first orthogonality condition; the second one is verified similarly. Fix
modules G0 ∈ GPC and N ∈ cores Î and set j = idR(N ) <∞. For each n � 0 use the fact
that PC is a cogenerator for GPC to find exact sequences

0→ Gn → Wn → Gn+1 → 0 (∗n)

with Gn+1 ∈ GPC and Wn ∈ PC ; see Fact 3.7. From Fact 3.13 we know N ∈ BC and so
Lemma 4.7 implies PC ⊥ N . Hence, for i > 0 the long exact sequences in ExtR(−, N )

associated to (∗n) yield the isomorphism in the following sequence

Exti
R(G0, N ) ∼= Exti+ j

R (G j , N ) = 0

while the vanishing holds because i + j > j = idR(N ). ��
Lemma 4.9 Let C, M, and N be R-modules with C semidualizing. Assume that idR(N ) <∞
and pdR(M) <∞.

(a) If α : G → G ′ is a quasiisomorphism between bounded below complexes in GPC , then
HomR(α, N ) : HomR(G ′, N )→ HomR(G, N ) is a quasiisomorphism.

(b) If β : H → H ′ is a quasiisomorphism between bounded above complexes in GIC , then
HomR(M, β) : HomR(M, H)→ HomR(M, H ′) is a quasiisomorphism.

Proof We prove part (a); the proof of part (b) is dual. Set M j = Ker(∂Cone(α)
j ) for each j

and consider the following exact sequences

0→ M j → Cone(α) j → M j−1 → 0. (4.9.1)

Because Cone(α) is an exact bounded below complex in GPC , we know M j ∈ GPC for
j � 0. From [29, (2.8)] we know that GPC is closed under kernels of epimorphisms,
so an induction argument using (4.9.1) implies M j ∈ GPC for all j . Thus, Lemma 4.8
yields M j ⊥ N and Cone(α) j ⊥ N for all j . The long exact sequence in ExtR(−, N )

shows that (4.9.1) is HomR(−, N )-exact, and the conclusion now follows as in the proof of
Lemma 4.3. ��

The next two results follow from Lemma 4.9 in the same way that Propositions 4.4 and 4.5
follow from Lemma 4.3.

Proposition 4.10 Let C, M, and N be R-modules with C semidualizing.

(a) If M is in res G̃PC ∩ res P̃C and N is in cores Î, then the following natural map is an
isomorphism for each n

ϑn
GPC PC

(M, N ) : Extn
GPC

(M, N )
∼=−→ Extn

PC
(M, N ).
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(b) If M is in res P̂ and N is in cores ĨC , then the following natural map is an isomorphism
for each n

ϑn
GIC IC

(M, N ) : Extn
GIC

(M, N )
∼=−→ Extn

IC
(M, N ).

Proposition 4.11 Let C, M, and N be R-modules with C semidualizing.

(a) If M is in res G̃PC and N is in cores Î, then the following natural map is an isomorphism
for each n


n
GPC

(M, N ) : Extn
GPC

(M, N )
∼=−→ Extn

R(M, N ).

(b) If M is in res P̂ , then the following natural map is an isomorphism for each n


n
GIC

(M, N ) : Extn
GIC

(M, N )
∼=−→ Extn

R(M, N ).

5 Balance for relative cohomology

This section focuses on balance for the functors Extn
PC

(−,−) and Extn
IB

(−,−), and for
Extn

GPC
(−,−) and Extn

GIB
(−,−).

Definition 5.1 Fix subcategories X ′ ⊆ res X̃ and Y ′ ⊆ cores Ỹ . We say that ExtX R and
ExtRY are balanced on X ′ × Y ′ when the following condition holds: for each object M in

X ′ and N in Y ′, if X

−→ M is a proper X -resolution, and N


−→ Y a proper Y-coresolution,
then the induced morphisms of complexes

HomR(M, Y )→ HomR(X, Y )← HomR(X, N )

are quasiisomorphisms.

Remark 5.2 When ExtX R and ExtRY are balanced on X ′ × Y ′, there are isomorphisms
Extn

X R(M, N ) ∼= Extn
RY (M, N ) for all M ∈ X ′ and N ∈ Y ′ and n ∈ Z.

The next example shows that the naive version of balance for relative cohomology does
not hold: when D is dualizing, one can have Extn

PD
(M, N ) �∼= Extn

ID
(M, N ) and

Extn
GP D

(M, N ) �∼= Extn
GID

(M, N ), even if PD- pdR(M) <∞ and ID- idR(N ) <∞.

Example 5.3 Let (R, m, k) be a local non-Gorenstein Cohen–Macaulay ring of dimension
d > 0 with dualizing module D. Assume that R is Gorenstein on the punctured spectrum.
Fact 3.4 (b) implies that ID- idR(R) = idR(D) = d , and Proposition 4.2 provides isomor-
phisms

Extn
GP D

(D, R) ∼= Extn
PD

(D, R) Extn
ID

(D, R) ∼= Extn
GID

(D, R)

for each n. One has PD- pdR(D) = 0 because D is in PD , and so Ext�1
PD

(D, R) = 0.
Fact 3.9 (b) yields an isomorphism

Extn
ID

(D, R) ∼= Extn
R(D ⊗R D, D)

for each integer n. To complete the example, we verify

Extn
PD

(D, R) � Extn
ID

(D, R)
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for some n � 1. From the vanishing Ext�1
PD

(D, R) = 0, it suffices to find an integer n � 1
such that Extn

R(D ⊗R D, D) �= 0. We utilize the spectral sequence

E p,q
2 = Ext p

R(TorR
q (D, D), D) �⇒ Ext p+q

R (D, R).

For each prime ideal p � m, the module Dp is dualizing for the Gorenstein ring Rp, and so
Dp
∼= Rp; see [8, (3.3.7.a)]. It follows that TorR

q (D, D) has finite length for each q > 0, and

so E p,q
2 = 0 if p �= d and q > 0. For each n ≤ d , this yields

Extn
R(D ⊗R D, D) ∼= Extn

R(D, R).

Because R is not Gorenstein, we deduce from [5, (2.1)] that the displayed modules are
nonzero for some integer n such that 1 ≤ n ≤ d , as desired.

The following result contains part of Theorem A from the introduction.

Proposition 5.4 Assume that R is Cohen–Macaulay ring and admits a dualizing mod-
ule, and let C be a semidualizing R-module. Then ExtPC and ExtIC† are balanced on

res P̂C × cores ÎC† . In particular, if PC - pdR(M) < ∞ and IC† - idR(N ) < ∞, then there
are isomorphisms for each integer n

Extn
PC

(M, N ) ∼= Extn
IC†

(M, N ).

Proof Lemma 4.6 implies Ext�1
PC

(res P̂C , IC†) = 0 = Ext�1
IC

(PC , cores ÎC†) and so the
desired conclusion follows from [14, (8.2.14)]. ��

The next two lemmata are the primary tools for Theorem 5.7.

Lemma 5.5 Let R be a Cohen–Macaulay ring with dualizing module. Let C, M and N be
R-modules with C semidualizing.

(a) If N ∈ GIC† and PC - pdR(M) <∞, then Ext�1
PC

(M, N ) = 0.

(b) If M ∈ GPC and IC† - idR(N ) <∞, then Ext�1
IC†

(M, N ) = 0.

Proof We prove part (a); part (b) is dual. Set N0 = N , and for each n � 0 use the fact that
IC† is a generator for GIC† to find exact sequences

0→ Nn+1 → Vn → Nn → 0 (5.5.1)

with Vn in IC† and Nn+1 in GIC† ; see Fact 3.7. Lemma 4.7 implies PC ⊥ GIC† , and so
the long-exact sequence in ExtR(PC ,−) shows that (5.5.1) is HomR(PC ,−)-exact. Fix an
integer j � 1 and set p = PC - pd(M). Lemma 4.6 (b) implies Ext�1

PC
(M, Vn) = 0 for each

n. Lemma 1.15 (a) and Remark 1.12 yield the isomorphism in the next sequence

Ext j
PC

(M, N ) = Ext j
PC

(M, N0) ∼= Ext j+p
PC

(M, Np) = 0,

where the vanishing is from the (in)equalities j + p > p = PC - pdR(M). ��
Lemma 5.6 Let R be a Cohen–Macaulay ring admitting a dualizing module. Let C, M and
N be R-modules with C semidualizing.

(a) Assume that GPC - pdR(M) is finite and let G
α−→ M be a proper GPC -resolution. If Y is a

bounded above complex of objects in GIC† , then the induced map
HomR(M, Y )→ HomR(G, Y ) is a quasiisomorphism.
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(b) Assume that GIC† - idR(N ) is finite and let N
β−→ H be a proper GIC† -resolution. If X is

a bounded below complex of objects in GPC , then the induced map
HomR(X, N )→ HomR(X, H) is a quasiisomorphism.

Proof We proof part (a); the proof of (b) is dual. To show that the induced map
HomR(α, Y ):HomR(M, Y )→ HomR(G, Y ) is a quasiisomorphism, it suffices to show that
Cone(HomR(α, Y )) is exact. From the isomorphisms of complexes

Cone(HomR(α, Y )) ∼= � HomR(Cone(α), Y ) ∼= � HomR(G+, Y )

and a standard argument, it suffices to show that HomR(G+, Y j ) is exact for each j .

The module M has a bounded strict GPC -resolution G ′ α′−→ M by Fact 3.7. From
Lemma 1.9 (a) we conclude that G+ and (G ′)+ are homotopy equivalent, and so the complex
HomR(G+, Y j ) is exact if and only if HomR((G ′)+, Y j ) is exact. Thus, we may replace G
with G ′ to assume that G is strict.

For each n, set Mn = Coker(∂G
n+2) and note that M−1 ∼= M . For each n � 0, we have

PC - pd(Mn) <∞ and we consider the following exact sequences

0→ Mn
γi−→ Gn

δn−→ Mn−1 → 0. (5.6.1)

It suffices to show that each of these sequences is HomR(−, Y j )-exact, that is, that the fol-
lowing map is surjective.

HomR(γn, Y j ) : HomR(Gn, Y j )→ HomR(Mn, Y j ).

Use the fact that IC† is a generator for GIC† to find an exact sequence

0→ Y ′ → V
τ−→ Y j → 0 (5.6.2)

such that Y ′ is in GIC† and V is in IC† ; see Fact 3.7. Lemma 4.7 implies PC ⊥ GIC† and
so Lemma 1.7 (b) guarantees that this sequence is HomR(PC ,−)-exact.

Fix an element λ ∈ HomR(Mn, Y j ). The proof will be complete once we find an element
f ∈ HomR(Gn, Y j ) such that λ = f γn . The following diagram is our guide

0 �� Mn
γn ��

λ

��

σ

���
�

�
�

Gn ��
δ

��� � � � � � � �

f

���
�

�
�

Mn−1 �� 0

0 �� Y ′ �� V
τ �� Y j �� 0,

wherein the top row is (5.6.1) and the bottom row is (5.6.2).
Since the sequence (5.6.2) is HomR(PC ,−)-exact, it gives rise to a long exact sequence

in ExtPC (Mn,−). The vanishing of Ext1
PC

(Mn, Y ′) from Lemma 5.5 (a) implies that this
long exact sequence has the form

0→ HomR(Mn, Y ′)→ HomR(Mn, V )
HomR(Mn ,τ )−−−−−−−→ HomR(Mn, Y j )→ 0.

Hence, there exists σ ∈ HomR(Mn, V ) such that λ = τσ .
Proposition 4.1 (b) implies Ext1

R(Mn−1, V ) ∼= Ext1
IC†

(M, N ) = 0, so the long exact

sequence in ExtR(−, V ) associated to (5.6.1) has the form

0→ HomR(Mn−1, V )→ HomR(Gn, V )
HomR(γn ,V )−−−−−−−→ HomR(Mn, V )→ 0.
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Hence, there exists δ ∈ HomR(Gn, V ) such that σ = δγn . It follows that we have (τδ)γn =
τσ = λ and so f = τδ ∈ HomR(Gn, Y j ) has the desired property. ��

Our main balance result for relative cohomology now follows. It contains part of Theo-
rem A from the introduction.

Theorem 5.7 Assume that R is Cohen–Macaulay and admits dualizing module, and let C be
a semidualizing R-module. The functors ExtGPC and ExtGIC† are balanced on

res ĜPC × cores ĜIC† . In particular, if GPC - pdR(M) < ∞ and GIC† - idR(N ) < ∞,
then there are isomorphisms for each integer n

Extn
GPC

(M, N ) ∼= Extn
GIC†

(M, N ).

Proof From Fact 3.7 we obtain a bounded proper GPC -resolution α : G

−→ M and a bounded

proper GIC† -coresolution β : N

−→ Y . By Lemma 5.6, the morphisms

HomR(M, Y )
HomR(α,Y )−−−−−−→ HomR(G, Y )

HomR(X,β)←−−−−−−− HomR(X, N )

are quasiisomorphisms, as desired. ��

6 Distinguishing between relative cohomology theories

From Sects. 4 and 5 we see that there are numerous situations where different relative coho-
mology theories agree. The purpose of this section is to show that these theories are almost
never identically equal. Part (a) of the next result shows Extn

PC
(−,−) � Extn

R(−,−) �

Extn
GPC

(−,−). Part (b) shows again Extn
R(−,−) � Extn

GPC
(−,−). Part (c) shows

Extn
PC

(−,−) � Extn
GPC

(−,−). Lemma 6.2 shows how one can construct modules sat-
isfying the hypotheses of part (c).

Proposition 6.1 Let (R, m, k) be a local ring and C a semidualizing R-module such that
C �∼= R.

(a) If n � 1, then Extn
PC

(C, k) = 0 = Extn
GPC

(C, k) and Extn
R(C, k) �= 0.

(b) Assume depth(R) � 1 and fix an R-regular element x ∈ m. The exact sequence

ζ = (0→ R
x−→ R → R/x R → 0) is not HomR(GPC ,−)-exact. Hence, the natural

map


1
GPC

(R/x R, R) : Ext1
GPC

(R/x R, R) ↪→ Ext1
R(R/x R, R)

is not surjective. If dim(R) = 1, then Ext1
GPC

(R/x R, R) �∼= Ext1
R(R/x R, R).

(c) If M admits a proper PC -resolution and GPC - pdR(M) < ∞ = PC - pdR(M), then
Extn

GPC
(M,−) = 0 � Extn

PC
(M,−) for each n > GPC - pdR(M).

Proof (a) Since C is in PC , we have Extn
GPC

(C, k) ∼= Extn
PC

(C, k) = 0 for each n � 1
by Proposition 4.2 (a). On the other hand, we have Extn

R(C, k) �= 0 because C is a finitely
generated module of infinite projective dimension by Lemma 3.16 using B = R.

(b) Suppose that the sequence ζ is HomR(GPC ,−)-exact. It follows that ζ is an aug-
mented proper GPC -resolution of R/x R. Lemma 1.9 (a) combines with [29, (4.10)] to show
that ζ has an exact sequence of the following form as a summand

0→ Cn → G → R/x R→ 0.
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where n � 1. It follows that C is a summand of R. Because R is local, the R-module R is
indecomposable, so this implies C ∼= R, a contradiction.

Theorem 2.3 (a) now implies that the natural inclusion 
1
GPC

(R/x R, R) is not surjec-
tive. If dim(R) = 1, then R/x R has finite length. It follows from Lemma 3.10 (c) that the
module Extn

GPC
(R/x R, R) has finite length, as does Extn

R(R/x R, R). Because the inclusion


1
GPC

(R/x R, R) is not surjective, one has

lengthR(Extn
GPC

(R/x R, R)) < lengthR(Extn
R(R/x R, R))

and so Extn
GPC

(R/x R, R) �∼= Extn
R(R/x R, R).

(c) The vanishing Extn
GPC

(M,−) = 0 when n > GPC - pdR(M) follows from Fact 3.7.
The nonvanishing Extn

PC
(M,−) �= 0 is in [27, (3.2)]. ��

Notice that the following lemma does not assume any relation between the semidual-
izing modules B and C . Also, the cases B = R and B = C imply pdR(M) = ∞ and
PC - pdR(M) = ∞.

Lemma 6.2 Let (R, m) be a local ring and let B and C be semidualizing R-modules. Assume
that there exist elements y, z ∈ m such that AnnR(y) = z R and AnnR(z) = y R, and set
M = C/yC. Then M ∈ G(PC ) = GPC ∩ BC and so M admits a proper PC -resolution.
Also, one has PB- pdR(M) = ∞.

Proof Consider the chain complex

Z = · · · y−→ C
z−→ C

y−→ C
z−→ · · · .

We shall show that this complex is exact and that it is HomR(PC ,−)-exact and
HomR(−, PC )-exact. Once this is done, we will conclude from [26, (5.2)] that M is in
G(PC ). Furthermore, we will know that the truncated complex

· · · y−→ C
z−→ C

y−→ C → 0

is a proper PC -resolution of M .
To see that the complex Z is exact, we first show AnnR(zC) ⊆ y R: If w ∈ AnnR(zC), we

have wz ∈ AnnR(C) = 0 and so w ∈ AnnR(z) = y R. From this the obvious containment
AnnR(zC) ⊇ y R implies AnnR(zC) = y R, and by symmetry we have AnnR(yC) = z R
and the desired exactness.

Next, we show that the complex Z is HomR(PC ,−)-exact and HomR(−, PC )-exact.
The isomorphism HomR(C, C) ∼= R shows that an application of either HomR(C,−) or
HomR(−, C) yields the complex

· · · y−→ R
z−→ R

y−→ R
z−→ · · · , (6.2.1)

which is exact because of the assumptions AnnR(y) = z R and AnnR(z) = y R. Hom-
tensor adjointness implies that Z is HomR(PC ,−)-exact. On the other hand, the natural
isomorphism HomR(C, C ⊗R P) ∼= HomR(C, C) ⊗R P from [29, (1.11)] implies that
HomR(Z , C ⊗R P) ∼= HomR(Z , C)⊗R P , so Z is HomR(−, PC )-exact.

The fact that M is in GP f
C yields the first two equalities in the next sequence

0 = GPC - pdR(M) = GC - dimR(M) = depth(R)− depthR(M)

while the third one is from [11, (3.14)]. Now, suppose PB - pdR(M) < ∞. Via the next
sequence, the previous display works with [29, (4.6)] to show that M is in P f

B :

PB - pdR(M) = depth(R)− depthR(M) = 0.
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This implies 0 �= M ∼= Bm for some m, and so AnnR(M) = AnnR(B) = 0. The membership
0 �= y ∈ AnnR(M) contradicts this, and so PB - pdR(M) = ∞. ��

We follow-up with an example where the assumptions of Lemma 6.2 are satisfied.

Example 6.3 Let Q be a local ring with semidualizing module A. Set R = Q[[X ]]/(X2) or
R = Q[[Y, Z ]]/(Y Z). The R-module C = R ⊗Q A is semidualizing by [11, (5.6)], and the
residues y = X = z or y = Y and z = Z satisfy the hypotheses of Lemma 6.2.

We now contrast the relative cohomology theories arising from distinct semidualizing
modules B and C . With Proposition 6.1 (a), part (a) of the next result shows Extn

PC
(−,−) �

Extn
PB

(−,−) � Extn
GPC

(−,−). Part (b) shows Extn
GP B

(−,−) � Extn
GPC

(−,−) and again
Extn

PB
(−,−) � Extn

GPC
(−,−) and part (c) shows that Extn

GP B
(−,−) � Extn

PC
(−,−).

Note that Lemmas 3.14 and 3.16 contain analyses of the conditions GPC - pdR(B) <∞ and
C �∼= B.

Proposition 6.4 Let (R, m, k) be a local ring and let B and C be semidualizing R-modules
such that GPC - pdR(B) <∞ and C �∼= B.

(a) If n � 0, then Extn
PB

(C, k) �= 0.
(b) Assume depth(R) � 1 and fix an R-regular element x ∈ m. The exact sequence

ζ = (0→ B
x−→ B → B/x B → 0) is not HomR(GPC ,−)-exact, and so the natural

inclusions

ϑ1
GPC PB

(B/x B, B) : Ext1
GPC

(B/x B, B) ↪→ Ext1
PB

(B/x B, B)

ϑ1
GPC GP B

(B/x B, B) : Ext1
GPC

(B/x B, B) ↪→ Ext1
GP B

(B/x B, B)

are not onto. If dim(R) = 1, then Ext1
GPC

(B/x B, B) �∼= Ext1
PB

(B/x B, B) and

Ext1
GPC

(B/x B, B) �∼= Ext1
GP B

(B/x B, B).
(c) If C admits a proper GP B-resolution, then Extn

PC
(C,−) = 0 �= Extn

GP B
(C,−) for

each n � 1.

Proof (a) Because pdR(HomR(B, C)) = ∞ by Lemma 3.16, the nth Betti number
β R

n (HomR(B, C)) is nonzero for each n � 0. Using Fact 3.9 (a), the membership C ∈ BB

from Lemma 3.14 yields the first isomorphism in the following sequence

Extn
PB

(C, k) ∼= Extn
R(HomR(B, C), HomR(B, k))

∼= Extn
R(HomR(B, C), kβ R

0 (B)) ∼= kβ R
n (HomR(B,C))β R

0 (B) �= 0

while the others are standard.
(b) The sequence ζ is PB -proper and GP B-proper by Fact 3.7. Suppose that ζ is

HomR(GPC ,−)-exact. Because B is totally C-reflexive by Lemma 3.14, this sequence is an
augmented proper GPC -resolution of B/x B. Lemma 1.9 (a) combines with [29, (4.10)] to
show that ζ has an exact sequence of the following form as a direct summand

0→ Cn → G → B/x B → 0,

where n � 1. It follows that C is a summand of B. Because R is local, the R-module R is
irreducible, so this implies C ∼= R, a contradiction. The remainder of (b) is verified as in the
proof of Proposition 6.1 (b).

(c) Since C is in PC , we have Extn
PC

(C,−) = 0 for each n � 1. Lemma 3.16 implies
GP B - pdR(C) = ∞; arguing as in [7, (4.2.2.a)], we conclude Extn

GP B
(C,−) �= 0 for each

n � 0. ��
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Remark 6.5 In light of the hypothesis “C admits a proper GP B -resolution” in Proposi-
tion 6.4 (c), we note that this condition is satisfied when R admits a dualizing complex
and B = R by [23, (2.11)]. As of the writing of this paper, the authors do not know if this
condition holds in general.

We conclude this paper with dual versions of the above results in this section.

Proposition 6.6 Let (R, m, k) be a local ring and C a semidualizing R-module such that
C �∼= R. Let E denote the R-injective hull of k.

(a) If n � 1, then Extn
IC

(−, HomR(C, E)) = 0 = Extn
GIC

(−, HomR(C, E)) and
Extn

R(−, HomR(C, E)) �= 0.
(b) Assume that R is complete and that depth(R) � 1. Fix an R-regular element x ∈ m,

and set K = Ker(E
x−→ E) ∼= HomR(R/x R, E). Then the exact sequence

ζ = (0→ K
ι−→ E

x−→ E → 0) is not HomR(−, GIC )-exact, and so the map


1
GIC

(E, K ) : Ext1
GIC

(E, K ) ↪→ Ext1
R(E, K )

is not surjective.
(c) If M admits a proper IC -coresolution and GIC - idR(M) < ∞ = IC - idR(M), then

Extn
GIC

(−, M) = 0 �= Extn
IC

(−, M) for each n > GIC - idR(M).

Proof The proofs of (a) and (c) are dual to the parallel parts of Proposition 6.1.
(b) Because E is injective, it is divisible, so the sequence ζ is exact. As in the proof of

Proposition 6.1 (b) it suffices to show that ζ is not HomR(−, GIC )-exact.
Because R is complete, there is an isomorphism HomR(E, E) ∼= R. Applying the exact

functor HomR(−, E) to ζ yields the exact sequence

0→ R
x−→ R

π−→ R/x R→ 0. (6.6.1)

Proposition 6.1 (b) shows that there exists a module G ∈ GPC such that the following
sequence is not exact

0→ HomR(G, R)
x−→ HomR(G, R)

HomR(G,π)−−−−−−−→ HomR(G, R/x R)→ 0. (6.6.2)

Lemma 3.3 (b) implies that the R-module G∨ = HomR(G, E) is in GIC . To complete the
proof, we show that the complex

0→ HomR(E, G∨) x−→ HomR(E, G∨) HomR(ι,G∨)−−−−−−−→ HomR(K , G∨)→ 0

is not exact. The “swap” isomorphism HomR(−, G∨) ∼= HomR(G, (−)∨) shows that this
sequence is isomorphic to (6.6.2), which is not exact. ��
Lemma 6.7 Let (R, m) be a local ring and C a semidualizing R-module. Let E denote the
R-injective hull of k. Assume that there exist elements y, z ∈ m such that AnnR(y) = z R and
AnnR(z) = y R, and set M = HomR(C, E)/y HomR(C, E). Then M ∈ G(IC ) = GIC∩AC

and so M admits a proper IC -coresolution. Also, one has IC - idR(M) = ∞.

Proof The isomorphisms HomR(E, E) ∼= R̂ and C ⊗R HomR(C, E) ∼= E yield the follow-
ing containments

0 ⊆ AnnR(HomR(C, E)) ⊆ AnnR(E) ⊆ AnnR(R̂) = 0
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and so AnnR(HomR(C, E)) = 0. As in the proof of Lemma 6.2, it follows that the following
complex is exact

· · · y−→ HomR(C, E)
z−→ HomR(C, E)

y−→ HomR(C, E)
z−→ · · · . (6.7.1)

We claim that this complex is also HomR(−, IC )-exact and HomR(IC ,−)-exact. From this
it will follow that the complex

0→ HomR(C, E)
z−→ HomR(C, E)

y−→ HomR(C, E)
z−→ · · · (6.7.2)

is a proper IC -coresolution of M and M ∈ G(IC ) = GIC ∩AC . For injective R-modules I
and J , the module HomR(I, J ) is R-flat. The first isomorphism in the following sequence is
Hom-tensor adjunction

HomR(HomR(C, I ), HomR(C, J )) ∼= HomR(C ⊗R HomR(C, I ), J ) ∼= HomR(I, J )

and the second one follows from the membership I ∈ BC . Let X denote the exact com-
plex (6.2.1) from the proof of Lemma 6.2. The displayed isomorphisms show that an appli-
cation of the functor HomR(HomR(C, I ),−) to the complex (6.7.1) yields the complex
X⊗R HomR(I, E). As X is exact and HomR(I, E) is flat, the complex X⊗R HomR(I, E) is
exact, and so (6.7.1) is HomR(IC ,−)-exact. Similarly, it is HomR(−, IC )-exact, as desired.

We conclude by showing IC - idR(M) = ∞. Applying the functor C ⊗R − to the com-
plex (6.7.2) yields an injective resolution of C ⊗R M

0→ E
z−→ E

y−→ E
z−→ · · · .

This uses the memberships M, HomR(C, E) ∈ AC . The fact that this resolution is minimal
and nonterminating provides the first equality in the following sequence

∞ = idR(C ⊗R M) = IC - idR(M)

while the second equality is from Fact 3.4 (b). ��
Proposition 6.8 Let (R, m, k) be a local ring and let B and C be semidualizing R-modules
such that GPC - pdR(B) < ∞ and C �∼= B. Let E denote the R-injective hull of k, and set
(−)∨ = HomR(−, E).

(a) If n � 0, then Extn
IB

(−, C∨) �= 0.
(b) Assume that R is complete and depth(R) � 1. Fix an R-regular element x ∈ m, and

set K = (B/x B)∨. The sequence ζ = (0 → K → B∨ x−→ B∨ → 0) is exact but not
HomR(−, GIC )-exact, and so the natural inclusions

ϑ1
GIC IB

(K , B∨) : Ext1
GIC

(K , B∨) ↪→ Ext1
IB

(K , B∨)

ϑ1
GIC GIB

(K , B∨) : Ext1
GIC

(K , B∨) ↪→ Ext1
GIB

(K , B∨)

are not surjective.
(c) One has Extn

IC
(−, C∨) = 0 �= Extn

GIB
(−, C∨) for each n � 1.

Proof (a) This follows from Lemma 3.16 using [27, (3.2.b)].
(b) Consider the exact sequence

0→ B
x−→ B

π−→ B/x B → 0. (6.8.1)
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Apply the exact functor (−)∨ to show that ζ is exact. The module B∨ is in IB , so ζ is an
augmented IB-coresolution of K . As in the proof of Proposition 6.1 (b) it suffices to show
that ζ is not HomR(−, GIC )-exact.

Proposition 6.4 (b) shows that there exists a module G ∈ GPC such that the following
sequence is not exact:

0→ HomR(G, B)
x−→ HomR(G, B)

HomR(G,π)−−−−−−−→ HomR(G, B/x B)→ 0. (6.8.2)

Lemma 3.3 (b) implies G∨ ∈ GIC . To complete the proof, we show that the complex

0→ HomR(B∨, G∨) x−→ HomR(B∨, G∨) HomR(π∨,G∨)−−−−−−−−→ HomR(K , G∨)→ 0 (6.8.3)

is not exact. Because R is complete, the following natural isomorphisms are valid on the
category of finitely generated R-modules

HomR((−)∨, G∨) ∼= HomR(G, (−)∨∨) ∼= HomR(G,−)

and so the sequence (6.8.3) is isomorphic to (6.8.2), which is not exact.
(c) As in the proof of Proposition 6.4 (c), it suffices to observe that Lemma 3.16 implies

GIB- idR(C∨) = ∞. ��
Acknowledgments The authors are grateful to Hans-Bjørn Foxby, Anders Frankild and Amelia Taylor for
sharing Lemma 3.14 and to Ryo Takahashi for sharing Example 5.3.
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