

Comparison of reweighted message passing

algorithms for LDPC decoding

Henk Wymeersch, Federico Penna, Vladimir Savic and Jun Zhao

Linköping University Post Print

N.B.: When citing this work, cite the original article.

©2013 IEEE. Personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or for creating new

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works must be obtained from the IEEE.

Original Publication:

Henk Wymeersch, Federico Penna, Vladimir Savic and Jun Zhao, Comparison of reweighted

message passing algorithms for LDPC decoding, 2013, IEEE International Conference on

Communications (ICC), 2013.

IEEE International Conference on Communications (ICC 2013), 9-13 June 2013, Budapest,

Hungary

Postprint available at: Linköping University Electronic Press

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-88545

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-88545
http://twitter.com/?status=OA Article: Comparison of reweighted message passing algorithms for LDPC decoding http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-88545 via @LiU_EPress %23LiU

Comparison of Reweighted Message Passing
Algorithms for LDPC Decoding
Henk Wymeersch∗, Federico Penna†, Vladimir Savic‡, and Jun Zhao∗

∗ Chalmers University of Technology, Gothenburg, Sweden, {henkw@,zjun@student.}chalmers.se
† Fraunhofer Heinrich Hertz Institute, Berlin, Germany, federico.penna@hhi.fraunhofer.de

‡ Linköping University, Linköping, Sweden, vladimir.savic@liu.se

Abstract—Low density parity check (LDPC) codes can be de-
coded with a variety of decoding algorithms, offering a trade-off in
terms of complexity, latency, and performance. We describe seven
distinct LDPC decoders and provide a performance comparison
for a practical regular LDPC code. Our simulations indicate that
the best performance/latency trade-off is achieved by one version of
the reweighted max-product decoder. When latency is not an issue,
the traditional sum-product decoder yields the best performance.

I. INTRODUCTION

Low density parity check (LDPC) codes [1] exhibit capacity-
approaching performance with polynomial decoding and encod-
ing complexity. Since the introduction of message-passing de-
coders [2], LDPC codes have entered many wireless standards,
and are the main competitor of turbo codes.
Standard decoding algorithms over the additive white Gaus-

sian noise (AWGN) channel are based on belief propagation,
including the sum-product algorithm and the max-product algo-
rithm (or, equivalently, the min-sum algorithm when formulated
in the negative logarithmic domain). These are message passing
decoders operate by exchanging messages, often in the form
of log-likelihood ratios (LLRs), on the Tanner graph of the
code. While message passing decoders offer a good perfor-
mance/complexity trade-off, they have a number of drawbacks:
(i) they offer no convergence guarantees; (ii) even when the
decoder converges, there are no guarantees on the quality of
the final decision; (iii) they have variable decoding latency.
The first and second issue are addressed by the more recent
linear programming (LP) decoder, albeit at a cost in terms of
complexity [3]. A reduced-complexity tree-reweighted method
[4] was compared to LP decoding in [5] for repeat-accumulate
codes, and analyzed for the binary symmetric channel in [6].
A detailed treatment on LP decoding and reweighted message-
passing decoders can be found in [7] and references therein.
However, no comparison of the various decoders for a high-
rate standardized LDPC code over the AWGN channel was
performed.
In this paper, we compare seven distinct decoders: the LP

decoder and six message passing decoders. For each decoder,
we quantify the complexity and provide numerical performance
results for a binary LDPC code used in the IEEE 802.3an 10
Gb/s Ethernet standard. Our results indicate that the choice of
“best” decoder depends on the performance criterion, affordable
complexity, and affordable latency.
Notation: Vectors are column vectors and will be written

in bold. The binary field will be denoted by B,
∑

∼{xn}
f(x)

(resp.max∼{xn} f(x)) denotes summation (resp. maximization)

over all possible x with the n-th component fixed to the value
xn, and p(xn|y) is shorthand for p(Xn = xn|Y = y).

II. PROBLEM FORMULATION
A. Transmission Model
We consider an error-correcting code of rate K/N , with

sparse parity check matrix H. At the transmitter, we encode
a sequence of K bits, leading to a codeword x ∈ C ⊂ BN ,
N > K , where C is the set of all binary sequences of length N
satisfying the parity check constraints

x ∈ C ⇐⇒ Hx = 0. (1)

Assuming binary phase shift keying and transmission over an
AWGN channel, we observe

y = 2x− 1+ n, (2)

where n is a sequence of N i.i.d. AWGN samples with variance
σ2. The observation is transformed to a sequence of N log-
likelihood ratios λch ∈ RN , with

λch,n = log
p(yn|xn = 1)

p(yn|xn = 0)
(3)

= 2
yn
σ2

. (4)

The objective of the receiver is to recover x from y, or
equivalently, from λch. We will assume p(x) is constant in C,
and zero elsewhere.

B. Decoding Strategies
Ideally, we aim for a decoder that minimizes the word error

probability (WEP). The optimal decoder is the maximum a
posteriori (MAP) decoder, given by

x̂W(y) = arg max
x∈BN

p(x|y) (5)

= argmax
x∈C

N
∏

n=1

p(yn|xn). (6)

In practice, we are often satisfied with a decoder that minimizes
the bit error probability (BEP). The optimal decoder is the bit-
wise maximum a posteriori decoder, given by

x̂B(y) = [x̂B,1(y), x̂B,2(y), . . . , x̂B,N (y)]T , (7)

where
x̂B,n(y) = arg max

xn∈B
p(xn|y). (8)

For most practical codes (with the exception of very short codes
and convolutional codes), both (5) and (8) are mathematically

ψ1 ψ2 ψ3

X1 X2 X3 X4

p(y1|X1) p(y2|X2) p(y3|X3) p(y4|X4)

λch,1

λX1→ψ2

λψ3→X4

Figure 1. Factor graph corresponding to the parity check matrix H =
[h1 h2 h3]T , with hT

1
= [11 1 0], hT

2
= [1 0 0 1], and hT

3
= [0 0 1 1].

Hence, check 1 involves variables X1, X2, and X3, so that x1 = [x1 x2 x3]T ,
x2 = [x1 x4]T , and x3 = [x3 x4]T .

intractable, due to the high-dimensional optimization in (5) or
the high-dimensional marginalization in (8). For this reason, one
must resort to practical, sub-optimal decoders, as described in
the next section.

III. PRACTICAL DECODERS

Many practical decoders can be interpreted as message pass-
ing algorithm on a factor graph representation of p(x|y) [8].
This distribution can be factorized as

p(x|y) ∝ p(y|x)p(x)

∝
N
∏

n=1

p(yn|xn)
N−K
∏

l=1

I
{

hT
l x = 0

}

︸ ︷︷ ︸
.
=ψl(xl)

, (9)

where hT
l is the l-th row of H. Since H is sparse, the factor

I
{

hT
l x = 0

}

, referred to as a check, only depends on very
few of the entries in x, denoted by xl. The factor graph
corresponding to (9) for a small matrix H is shown in Fig. 1.
We denote by N (Xn) the indices of the checks in which the
variable Xn appears. Similarly, we denote by N (ψl) the indices
of the variables that appear in the l-th check. Finally, we denote
by dc the average check node degree (the average size ofN (ψl))
and by dv the average variable node degree.
We now describe seven distinct decoders, and explicitly

describe the decoding algorithms.

A. Sum-Product Decoder (SPD)

The sum-product algorithm is a message passing algorithm
on a factor graph that aims to compute the marginals used in
(8), i.e.,

p(xn|y) =
∑

∼{xn}

p(x|y), ∀n. (10)

The message from variable vertex Xn to factor vertex ψl is
given by

µXn→ψl
(xn) = p(yn|xn)

∏

k∈N (Xn)\{l}

µψk→Xn
(xn), (11)

where the messages µψk→Xn
(xn) are initialized to be uniform

distributions. The message from factor vertex ψl to variable

vertex Xn is given by

µψl→Xn
(xn) ∝

∑

∼{xn}

ψl(xl)
∏

m∈N (ψl)\{n}

µXm→ψl
(xm).

(12)
At any iteration, we also have approximations of the marginals

bXn
(xn) ∝ p(yn|xn)

∏

k∈N (Xn)

µψk→Xn
(xn). (13)

The quality of the approximation (i.e., how well bXn
(xn) ap-

proximates p(xn|y)) depends mainly on the girth of the LDPC
code. For numerical stability, messages are often computed in
the logarithmic domain, replacing µA→B(x) with logµA→B(x).
The message passing rules are found by replacing products by
sums, and sums by the max∗-operation1 in (11)–(13) [9], [10].
Gains in storage can be achieved by representing the messages
as LLRs λA→B = logµA→B(1)− logµA→B(0), leading to the
following message passing rules. The message from variable
vertex Xn to factor vertex ψl is given by

λXn→ψl
= λch,n +

∑

k∈N (Xn)\{l}

λψk→Xn
, (14)

where λψk→Xn
is initialized to zero (the LLR equivalent of

a uniform distribution). The message from factor vertex ψl to
variable vertex Xn is given by

λψl→Xn
= fmax∗

(

{λXm→ψl
}m &=n

)

, (15)

where, since logµXm→ψl
(xm)=(−1)(1−xm)λXm→ψl

/2,

fmax∗

(

{λXm→ψl
}m &=n

)

= (16)

max∗
xl:xn=1






logψl(xl) +

1

2

∑

m∈N (ψl)\{n}

(−1)1−xmλXm→ψl







− max∗
xl:xn=0






logψl(xl) +

1

2

∑

m∈N (ψl)\{n}

(−1)1−xmλXm→ψl






,

and the beliefs become

λb,n = λch,n +
∑

k∈N (Xn)

λψk→Xn
. (17)

A decision on the n-th bit is made as x̂n = 1 when λb,n ≥ 0
and x̂n = 0 otherwise.
Complexity: The decoding complexity per iteration scales as

O(Ndv) additions for (14), andO((N−K)dc) max∗-operations
for (15).2 Each max∗-operation requires a maximization, an
addition, and a look-up operation.

1The max∗-operation, sometimes referred to as the Jacobian logarithm,
is given by max∗i Li

.
= log

∑M
m=1

eLm . If z is binary vector with B
bits and f a generic function of z, we use the notation max∗

z

f(z)
.
=

max∗ [f(z1), . . . , f(zM)], where z1 through zM are all possible (M =
2B) values of z. The max∗-operation can be implemented recursively as
max∗[L1, L2, . . . , LM] = max∗[max∗[L1, L2, . . . , LM−1], LM], with
max∗[L1, L2] = max[L1, L2] + log(1 + e−|L1−L2|).
2At first glance, (15) requires O((N −K)2dc) max∗-operations. However,

using an internal trellis representation of ψl(xl) and running a forward-
backward algorithm, this complexity can be reduced to O((N −K)dc) [10, p.
161].

B. Max-Product Decoder (MPD)
The max-product algorithm is a message passing algorithm

on a factor graph that aims to compute approximations of the
max-marginals of the function p(x|y) [11]:

q(xn|y) = max
∼{xn}

p(x|y), ∀n. (18)

Assuming that p(x|y) has a unique maximum, then x̂n =
argmaxxn

q(xn|y) is equal to the n-th component of x̂W(y),
allowing us to solve (5). In the LLR-domain, the message
passing rules are the same as (14)–(17), but with max∗ replaced
with max, so that λψl→Xn

= fmax

(

{λXm→ψl
}m &=n

)

.
Complexity: The decoding complexity per iteration scales as

O(Ndv) additions for (14), and O((N−K)dc) max-operations
for (15). Note that a max-operation is less complex than a
max∗-operation.

C. Linear Programming Decoder (LPD)
Due to the Gaussian nature of the noise we can express

x̂W(y) as

x̂W(y) = argmin
x∈C

‖y − (2x− 1)‖2 (19)

= argmax
x∈C

xT
λch. (20)

This is an integer LP. By relaxing the set C to a set P , where
P ⊂ [0, 1]N and P ∩ {0, 1}N = C, we obtain a standard
linear program, which can be solved using a standard LP solver.
Implementation details are deferred to the Appendix. The LP
decoder has the property that when the solution x∗ ∈ C, we are
guaranteed to have found the MAP solution x̂W(y).
Complexity: The optimization variable of the LP decoder is

of dimensionality O(N2dc) with O(Ndc) equality constraints
and O(N2dc) inequality constraints (see (25)). For large dc, ex-
plicit enumeration of the constraints is intractable, and suitable
implicit methods can be used [12].

D. Reweighted Sum-Product Decoder (R-SPD)
From the tree-reweighted sum-product (TRW-SP) algorithm

[13], an alternative decoding algorithm can be constructed
that also computes the (sum-)marginals of p(x|y). The TRW-
SP algorithm was originally developed for graphical models
with pairwise interactions only. Hence, we convert the factor
graph to a Markov random field with pairwise interactions (for
more details, refer to [14]). In addition, we assign a constant
reweighting factor (ρ ∈ [0, 1]) to all edges in the graph, in
contrast to original TRW-SP, where factors ρ’s are computed
as edge appearance probabilities (EAP) in the spanning tree
polytope of the graph.3 After some manipulations, we find the
following message passing rules. The message from variable
vertex Xn to factor vertex ψl is given by

λXn→ψl
= (21)

λch,n + ρ
∑

k∈N (Xn)\{l}

λψk→Xn
− (1− ρ)λψl→Xn

.

3We refer to this approach as uniformly reweighted (URW) BP, [14], [15]. The
choice of URW-BP is motivated primarily by complexity reasons (optimizing
EAPs for every single edge would be prohibitive in practice), and also by the
fact that regular LDPC codes by definition have a regular structure, hence the
assumption of constant EAP is a reasonable approximation.

The message from factor vertex ψl to variable vertex Xn is
given by

λψl→Xn
= (22)

fmax∗

(

{ρλXm→ψl
}m &=n

)

− (1 − ρ)λXn→ψl

and the final beliefs are computed as

λb,n = λch,n + ρ
∑

k∈N (Xn)

λψk→Xn
. (23)

Observe that when ρ = 1, R-SPD reverts to SPD.
Complexity: The decoding complexity per iteration is similar

to SPD: (21) requires O(N) multiplications and O(Ndv) addi-
tions; (22) requires O(N) multiplications and O((N − K)dc)
max∗-operations.

E. Reweighted Max-Product Decoder (R-MPD)

In [6], another reweighted LDPC decoder was described
to compute max-marginals. This decoder has the same struc-
ture of a tree-reweighted max-product (TRW-MP) algorithm
[4], [16] with a constant weight ρ. The final decoder is
given by (21)–(23), with fmax∗

(

{ρλXm→ψl
}m &=n

)

replaced by

fmax

(

{ρλXm→ψl
}m &=n

)

= ρfmax

(

{λXm→ψl
}m &=n

)

. When
ρ = 1, R-MPD reverts to MPD.
Complexity: The decoding complexity per iteration is similar

to MPD: O(N) multiplications and O(Ndv) additions for mes-
sages from variable nodes to factor nodes;O(N) multiplications
and O((N − K)dc) max-operations for messages from factor
nodes to variable nodes.

F. Reweighted Sum-Product Decoder – Version 2 (R-SPD-II)

In [15], we described an LDPC decoder, based on the
uniformly reweighted sum-product algorithm. Contrary to R-
SPD, we did not convert the factor graph to a graph with only
pairwise interactions. The message passing rules turn out to be
slightly different from R-SPD. The message λXn→ψl

is given
by (21), and the belief λb,n by (23), but now (22) is replaced
by

λψl→Xn
= fmax∗

(

{λXm→ψl
}m &=n

)

, (24)

which does not depend on ρ. Similar to R-SPD, R-SPD-II reverts
to SPD when ρ = 1.
Complexity: The decoding complexity per iteration is slightly

less than R-SPD: (21) requires O(N) multiplications and
O(Ndv) additions; (24) requires O((N − K)dc) max∗-
operations.

G. Reweighted Max-Product Decoder – Version 2 (R-MPD-II)

A natural modification to R-SPD-II is to replace max∗ by a
max. This results in a decoder with lower complexity. Similar
to R-MPD, when ρ = 1, R-MPD-II reverts to MPD.
Complexity: The decoding complexity per iteration is slightly

less than R-MPD: O(N) multiplications and O(Ndv) ad-
ditions for messages from variable nodes to factor nodes;
O((N −K)dc) max-operations for messages from factor nodes
to variable nodes.

IV. PERFORMANCE RESULTS
Among the seven decoders presented above, it is not clear

which one offers the best performance for a given number of
iterations. Since closed-form analytical performance results are
hard to obtain, we resort to Monte Carlo simulations to estimate
the BEP and WEP of all seven algorithms for a regular LDPC
code from an IEEE standard.

A. Simulation Setup
We consider a sparse H with K = 1664 and N = 2048,

with the constant variable node degree of 6 and a constant
check node degree of 32, as adopted in the IEEE 802.3an
standard [17]. Following [6], for this LDPC code, ρ ≈ 0.2
is a meaningful choice. We have always transmitted the all-
zero codeword. The six message passing decoders are run up to
1000 iterations, and a tentative decoding was performed at every
iteration. When a codeword was found, decoding was aborted.
For the LP decoder, we used a standard LP solver, so there is
no concept of iterations.

B. Results for fixed SNR
We first present the BEP and WEP after 1000 decoding

iterations, in Figs. 2 and 3, respectively, for a signal-to-noise-
ratio (SNR) of 6 dB (results for lower SNR were similar, as were
the optimal values of ρ), corresponding to σ2 = 0.2512. Recall
that the results for SPD and MPD correspond to ρ = 1, using
any of the two associated reweighted methods. In terms of the
BEP, we see that R-SPD-II offers the lowest BEP, followed by
R-SPD. These two algorithms offer better performance as ρ gets
closer to 1. R-SPD and R-SPD-II result in degraded performance
for ρ < 1. Traditional MPD offers poor performance compared
to traditional SPD. However, two reweighted methods R-MPD
and R-MPD-II perform better compared to the traditional MPD.
Especially R-MPD-II offers BEP performance improvements for
all ρ ∈ [0.1, 1]. R-MPD also offers good BEP performance
for the more limited range ρ ∈ [0.1, 0.3]. Note that in both
cases, these intervals contain the predicted value of ρ ≈ 0.2.
The conclusions are similar when we consider the WEP, except
that the gains in the interval ρ ∈ [0.1, 0.3] are smaller. For
ρ ∈ [0.3, 0.6], the R-MPD decoder exhibits oscillating behavior
resulting in poor performance. Note also that LP decoding
outperforms the MPD message passing methods in terms of
BEP, but not in WEP.
Secondly, we reduce the number of iterations to 20, which

is a more practical value for hardware implementations [18].
Figs. 4 and 5 show the BEP and WEP, respectively. For SPD,
the conclusions remain unaltered, while for SPD-II, the optimal
value of ρ is reduced to around 0.95. R-MPD-II outperforms
MPD for all ρ ∈ (0, 1), due to faster convergence of the
reweighted methods. R-MPD offers a slight improvement over
MPD for ρ ∈ [0.1, 0.3]. Overall, among the MPD methods,
MPD-II clearly has the best performance.

C. Results for varying SNR
From the results above, we can conclude that the reweighted

methods are mainly beneficial for max-product decoding at a
low number of iterations. To evaluate the effect of reweighted
message passing as a function of the SNR for fixed values of
ρ, we display the BEP as a function of SNR in Fig. 6. As

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10−4

10−3

10−2

10−1

R−SPD
R−MPD
R−SPD−II
R−MPD−II
LPD

ρ

BE
P

Figure 2. BEP after 1000 iterations as a function of ρ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−3

10−2

10−1

100

R−SPD
R−MPD
R−SPD−II
R−MPD−II
LPD

ρ

W
EP

Figure 3. WEP after 1000 iterations as a function of ρ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10−4

10−3

10−2

10−1

R−SPD
R−MPD
R−SPD−II
R−MPD−II
LPD

ρ

BE
P

Figure 4. BEP after 20 iterations as a function of ρ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10−3

10−2

10−1

100

R−SPD
R−MPD
R−SPD−II
R−MPD−II
LPD

ρ

W
EP

Figure 5. WEP after 20 iterations as a function of ρ.

4 4.5 5 5.5 6 6.5

10−4

10−3

10−2

10−1

SPD
R−SPD ρ=0.995
R−SPD−II ρ=0.94
MPD
R−MPD ρ=0.32
R−MPD−II ρ=0.7
LPD

SNR [dB]

BE
P

Figure 6. BEP after 20 iterations as a function of the SNR, with optimized
values of ρ.

expected, we see that there is only a small gain when sum-
product decoding is employed, while large gains are visible for
max-product decoding. In terms of the WEP, similar conclusions
hold (results not shown), and R-MPD-II achieves a performance
close to LP decoding. Note that performance of the reweighted
schemes can further be improved by adapting the value of ρ to
the SNR.

V. CONCLUSIONS
In this paper we have compared seven LDPC decoders: the LP

decoder and six message passing decoders. Four of the message
passing decoders are based on tree-reweighted message passing
(with free parameter ρ ∈ [0, 1]). We evaluated these decoders
in terms of BEP and WEP, for up to 1000 iterations. We found
that when a large number of iterations are allowed, traditional
sum-product decoding offers the best performance. However,
when only a small number of decoding iterations are feasible,
the reweighted methods offer the best performance, for a non-

trivial value of ρ, at a modest increase in complexity compared
to the standard algorithms (corresponding to ρ = 1).
Our results and conclusions turn out to hold for a wide

variety of regular LDPC codes, with shorter codes offering
additional gains for the reweighted sum-product decoders [14].
However, for irregular codes more sophisticated reweighing
methods should be employed [19], [20].

ACKNOWLEDGMENTS

This work was supported, in part, by the Swedish Research
Council, under grant No. 2010-5889; the European Research
Council, under grant No. 258418; the Swedish Foundation
for Strategic Research (SSF) and ELLIIT. Simulations were
performed on resources provided by the Swedish National
Infrastructure for Computing (SNIC) at C3SE.

APPENDIX

For short codes, our LP decoder is implemented in the primal
domain following [3, (4)–(8)], while for longer codes, we resort
to the alternating direction of multipliers method, described in
[12, Algorithm 1]. The original problem is

minimize −xT
λch

s.t. hT
l x = 0, ∀l

x ∈ {0, 1}N .

Note that every parity check constraint hT
l x = 0 is an equality

constraint in the binary field. This is changed to a constraint in
the real field by introducing an additional real variable wl ∈
{0, 1}2

dc−1 , and two real matrices, Sl ∈ Rdc×N and Cl ∈
Rdc×2dc−1 . The matrix Sl is such that Slx = xl, i.e., it picks
out the components in x involved in the l-th check. The matrix
Cl contains as columns all the codewords of the l-th check. For
example, when hT

l x = x1 + x52 + x34, then

Cl =





0 0 1 1
0 1 0 1
0 1 1 0



 .

Since xl must be equal to one of the columns in Cl, the con-
straint hT

l x = 0 can be equivalently expressed as Slx = Clwl,
with 1Twl = 1. Hence, the equivalent real integer LP is

minimize −xT
λch (25)

s.t. Slx = Clwl, ∀l

1Twl = 1, ∀l

wl ∈ {0, 1}2
dc−1

, ∀l

x ∈ {0, 1}N .

Grouping all the variables into a vector z =
[

xT wT
1 . . .wT

N−K

]T of length L = N + (N − K)2dc−1,
aggregating all the linear equality constraints into one constraint
Az = b, where A ∈ Rdc(N−K+1)×L and b ∈ Rdc(N−K+1).
We relax wl and x to be bounded between zero and
one. The decoder is finally run in MATLAB using the
command linprog(r,[],[],A,b,lb,ub); with
r=

[

−λT
ch 0

T
(N−K)2dc−1

]T

, lb= 0L and ub= 1L.

REFERENCES
[1] R.G. Gallager, “Low density parity-check codes,” IRE Trans. Inform.

Theory, vol. IT-8, pp. 21–29, Jan. 1962.
[2] N. Wiberg, Codes and decoding on general graphs. PhD thesis, Linköping

University, Sweden, 1996.
[3] J. Feldman, M. Wainwright, and D. Karger, “Using linear programming to

decode binary linear codes,” IEEE Trans. Inform. Theory, vol. 51, no. 3,
pp. 954–972, 2005.

[4] M. Wainwright, T. Jaakkola, and A. Willsky, “MAP estimation via agree-
ment on trees: message-passing and linear programming,” IEEE Trans.
Inform. Theory, vol. 51, no. 11, pp. 3697–3717, 2005.

[5] J. Feldman, D. Karger, and M. Wainwright, “Linear programming-based
decoding of turbo-like codes and its relation to iterative approaches,” in
Proc. Allerton Conference, vol. 40, pp. 467–477, Oct. 2002.

[6] Y. Jian and H. Pfister, “Convergence of weighted min-sum decoding via
dynamic programming on trees,” preprint arXiv:1107.3177.

[7] G. Even and N. Halabi, “On decoding irregular tanner codes with local
optimality guarantees,” preprint arXiv:1107.2677.

[8] F. Kschischang, B. Frey and H.-A. Loeliger, “Factor graphs and the sum-
product algorithm,” IEEE Trans. Inform. Theory, vol. 47, pp. 498–519,
Feb. 2001.

[9] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal
and sub-optimal MAP decoding algorithms operating in the log domain,”
in Proc. IEEE International Conference on Communications, vol. 2,
pp. 1009–1013, June 1995.

[10] H. Wymeersch, Iterative Receiver Design. Cambridge University Press,
2007.

[11] S. Aji and R. McEliece, “The generalized distributive law,” IEEE Trans-
actions on Information Theory, vol. 46, pp. 325–353, Mar. 2000.

[12] S. Barman, X. Liu, S. C. Draper, and B. Recht, “Decomposition methods
for large scale LP decoding,” preprint arXiv:1204.0556.

[13] M. Wainwright, T. Jaakkola, and A. Willsky, “A new class of upper bounds
on the log partition function,” IEEE Trans. Inform. Theory, vol. 51, no. 7,
pp. 2313–2335, 2005.

[14] H. Wymeersch, F. Penna, and V. Savic, “Uniformly reweighted belief
propagation for estimation and detection in wireless networks,” IEEE
Transactions on Wireless Communications, vol. 11, pp. 1587–1595, April
2012.

[15] H. Wymeersch, F. Penna, and V. Savic, “Uniformly reweighted belief
propagation: A factor graph approach,” in IEEE International Symposium
on Information Theory, Aug. 2011.

[16] B. Frey and R. Koetter, Exact inference using the attenuated max-product
algorithm. Advanced mean field methods: Theory and Practice, MIT Press,
2000.

[17] Online at http://standards.ieee.org/about/get/802/802.3.html.
[18] G. Falcao, V. Silva, L. Sousa, and J. Marinho, “High coded data rate and

multicodeword WiMAX LDPC decoding on Cell/BE,” Electronics Letters,
vol. 44, no. 24, pp. 1415–1416, 2008.

[19] J. Liu and R. de Lamare, “Low-latency reweighted belief propagation
decoding for LDPC codes,” IEEE Communications Letters, vol. 16, no. 10,
pp. 1660–1663, 2012.

[20] J. Liu, R. de Lamare, and H. Wymeersch, “Locally-optimized reweighted
belief propagation for decoding finite-length LDPC codes,” in Proc. IEEE
Wireless Communications and Networking Conference (WCNC), Apr.
2013.

	diva-88545-TitlePage
	diva-88545

