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Abstract

The normal approach to digital control is to sample
periodically in time. Using an analog of integration
theory we can call this Riemann sampling. Lebesgue
sampling or event based sampling, is an alternative
to Riemann sampling. It means that signals are sam-
pled only when measurements pass certain limits. In
this paper it is shown that Lebesgue sampling gives
better performance for some simple systems.

1. Introduction

The traditional way to design digital control systems
is to sample the signals equidistant in time, see
Astrém and Wittenmark (1997). A nice feature of
this approach is that analysis and design becomes
very simple. For linear time-invariant processes
the closed loop system become linear and periodic.
It is often sufficient to describe the behavior of
the the closed loop system at times synchronized
with the the sampling instants. The time-varying
nature of sampled systems then disappears and the
system can be described by difference equations with
constant coefficients, The standard sampled theory
also matches the time-triggered model of real time
software, see Kopetz (2002).

There are several alternatives to periodic sampling.
One possibility is to sample the system when the
output has changed with a specified amount. Such
a scheme has many conceptual advantages. Control
is not executed unless it is required, control by ex-
ception, see Kopetz (1993). This type of sampling is
natural when using many digital sensors such as
encoders. A disadvantage is that analysis and de-
sign are complicated. This type of sampling can be
called Lebesgue sampling. Referring to to integra-
tion theory in mathematics we can also call con-
ventional sampling Riemann sampling and Lebesgue
sampling Lebesgue sampling. Much work on systems
of this type was done in the period 1960-1980. The
interest vaned but there has been a resurgence in
connection with the strong development of hybrid
systems, Branicky et al (1998), DiBenedetto and
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Sangiovanni-Vincentelli (2001} Some of the early
work is reviewed in Section 2. In Section 3 we will an-
alyze an integrator with with random disturbances
and Lebesgue sampling. The system can be viewed
as a simple model of an accelerometer with pulse
feedback. In this case it is possible to formulate and
solve sensible control problems, which makes it pos-
sible to compare Riemann and Lebesgue sampling.
The control strategy is very simple, it just resets the
state with a given control pulse whenever the out-
put exceeds the limits. The analysis indicates clearly
that there are situations where it is advantageous
with Lebesgue sampling. The mathematics used to
deal with the problem is based on classical results
on diffusion processes, Feller (1952), Feller (1954a),
Feller (1954b). An interesting conclusion is that the
steady state probability distribution of the control
error is non-Gaussian even if the disturbances are
Gaussian. There are many interesting extensions of
the problem discussed in the paper. Extensions to
systems of higher order and output feedback are ex-
amples of natural extensions. An interesting prop-
erty of systems with Lebesgue sampling is that the
control strategy is an interesting mix of feedback and
feed-forward control that often occurs in biclogical
systems, see Hobbie (1997).

2. Examples

Because of their simplicity Lebesgue sampling was
used in many of early feedback systems. An ac-
celerometer with pulse feedback is a typical example,
see Draper et al (1960). A pendulum was provided
with pulse generators that moved the pendulum to-
wards the center position as soon as a deviation was
detected. Since all correcting impulises had the same
form the velocity could be obtained simply by adding
pulses.

Lebesgue sampling occurs naturally in many con-
text. A common case is in motion control where an-
gles and positions are sensed by encoders that give a
pulse whenever a position or an angle has changed
by a specific amount. Lebesgue sampling is also a



natural approach when actuators with on-off char-
acteristic are used. Satellite control by thrusters is a
typical example, Dodds (1981). Systems with pulse
frequency modulation, Polak (1968), Pavlidis and
Jury (1965), Skoog (1968), Noges and Frank (1975),
Frank (1979) and Sira-Ramirez (1989) are other ex-
amples. In this case the control signal is restricted te
be a positive or negative pulse of given size. The con-
trol actions decide when the pulses should be applied
and what sign they should have. Other examples
are analog or real neurons whose outputs are pulse
traings, see Mead (1989) and DeWeerth et al. (1990).

Systems with relay feedback are yet other exam-
ples which can be regarded as special cases of
Lebesgue sampling, see Tsypkin (1984). The sigma
delta modulator or the one-bit AD converter, Nor-
sworthy ef al {1996), which is commonly used in
audio and mobile telephone system is one example.
I is interesting to note that in spite of their wide
spread there does not exist a good theory for design
of systems with sigma delta modulators,

Analysis of systems with Lebesgue sampling are
_ related to general work on discontinuous systems,
Utkin (1981), Utkin (1987), Tsypkin (1984) and to
work on impulse control, see Bensoussan and Li-
ons (1984) and Aubin (1999). It is also relevant
in situations where control complexity has to be
weighted against execution time. It also raises other
issues such as complexity of control. Control! of pro-
duction processes with buffers is another application
area. It is highly desirable to run the processes at
constant rates and make as few changes as possible
to make sure that buffers are not empty and do not
overflow, see Pettersson (1969). Another example is
where limited communication resources put hard re-
strictions on the number of measurement and control
actions that can be transmitted.

All sampled systems run open loop between the sam-
pling instants, for systems with Riemann sampling
the control signal is typically constant or affine.
Systems with Lebesgue sampling can have a much
richer behavior which offers interesting possibilities.
Consider, for example, a regulation problem where it
is desired to keep the state of the system in a given
region in the state space. When the state leaves that
region an control signal is generated. This open loop
control signal is typically such that the state will
move into the origin and stay at a desired point. Un-
der ideal circumstances of no disturbances the state
will then reach the origin and stay there until new
disturbances occur. There are thus two issues in the
design, to find a suitable switching boundary and
to specify the behavior of the control signal after the
switch. The system can thus be regarded as a special
version of a hybrid system where the system runs
open loop between the regions.

The design of a system with Lebesgue sampling in-
volves selection of an appropriate region and design
of the control signal to be used when the state leaves
the region. It is also possible to use several different
control regions, for example, one can deal with nor-
mal disturbances and another larger region can deal
with extreme disturbances. The design of such sys-
tems lead to many interesting new problems.

3. Integrator Dynamics

We will first consider a simple case where all calcula-
tions can be performed analytically. For this purpose
it is assumed that the system to be controlled is de-
scribed by the equation

dx = udt + dv,

where the disturbance v(t) is a Wiener process
with unit incremental variance and z the control
signal. The problem of controlling the system so that
the state is close to the origin will be discussed.
Conventional periodic sampling will be. compared
with Lebesgue sampling where control actions are
taken only when the output is outside the interval
—d < x < d. We will compare the distribution of x(2)
and the variances of the outputs for both sampling
schemes.

Periodic Sampling

First consider the case of periodic sampling with
peried A. The output variance is then minimized by
the minimum variance controller, see Astrom (1970).
The sampled system becomes

x(t+ h) = x(2) + u(t} + e(t)

and the mean variance over one sampling period is
v = & fk Ex2(t)dt = LJ,(h)
A T RS
+ % (ExTQ1(R)x + 22T Qu2(h)u + u” Qa{h)u)
: 1
= 5 (RiB)S(R) + J.(h)), (D

where Q1(h) = h, Quz(h) = k%/2, @:(h) = K%/3,

h ¢
Je(h)=f0 Q1c/0 Ry drdt = h%/2. (2)

The Riccati equation for the minimum variance
strategy gives S(h) = V3k/6, and the control law

becomes
__13+v3,
h2+v3
and the variance of the cutput is
Ve =213, )



Lebesgue Sampling

In this case it is natural to choose the control region
as an interval that contains the region. It is also
very easy to find good control signals when the
system reaches the region. One possibility is simply
to apply an impulse that drives the state of the
systemn to the origin, another is to use an pulse of
finite width. The case of impulse control Bensoussan
and Lions (1984), is the simplest so we will start
with that, Control actions are taken thus ¢nly taken
when |x(¢;}{ = . When this happens, an impulse
control that makes x(z + 0) = 0 is applied to the
system. With this control law the closed loop system
becomes a Markovian diffusion process of the type
investigated in Feller (1954a).

Let T.y denote the exit time i.e. the first time the
process reaches the boundary |x(£)| = J when it
starts from the origin. The mean exit time can be
computed from the fact that ¢ — x? is a martingale
between two impulses and hence

hy = E(Tsa) = E(x%, ) = d*.

The average sampling period thus equals h; = dZ.

The stationary probability distribution of x is given
by the stationary solution to the Kolmogorov forward
equation for the Markov process, i.e.

! a2f
T3 axz( )=
with f(—d} = f(d} = 0 This ordinary differential

equation has the solution

fx) = (4)

The distribution is thus symmetric and triangular
with the suppert —d < x < d. The steady state
variance is

1af 1af

(d)5x ( d)8;.

(d — jxl)/d®

d2
Vi=g

Comparison

To compare the results obtained with the different
sampling schemes it is natural to assume that the
average sampling rates are the same in both cases,
i.e. A = h. This implies that d% = A and it follows
from equations (3) and (3} that

Ve

v, =3+vV3=47

Another way to say this is that one must sample 4.7
times faster with Riemann sampling to get the same
mean error variance.

Notice that we have compared Lebesgue sampling
with impulse control with periodic sampling with

conventional sampling and hold. A natural question
is if the improvement is due to the impulse nature
of control or to the sampling scheme. To get some
insight into this we observe that periedic sampling
with impulse control gives and error which is a
Wiener process which is periodically reset to zero.
The average variance of such a process is

v h
Vi = =%Ef0 ez(t)dt:%/;tdt=g (5)

Periodic sampling with impulse contrel thus gives

Ve

v, =2

(6)

The major part of the improvement is thus due to
the sampling scheme.

Approximate Lebesgue Sampling
In the analysis it has been assumed that sampling is

~ instantaneous. It is perhaps more realistic to assume

2013

that that sampling is made at a high fast rate but
that no control action is taken if x(¢) < 4. The
variance then becomes

5 hg
2

=d ( *35 6h, + dz)

The second term is negligible when &, << d% =
Approximate Lebesgue sampling is hence good as
long as d is relatively large.

The results are illugtrated with the simulation in
Figure 1. The simulation was made by rapid sam-
pling (h=0.001). The parameter values used were
d =01, hg = 0012 and ¢, = Vd. In the partic-
ular realization shown in the Figure there were 83
switches with Riemann sampling and 73 switches
with Lebesgue sampling. Notice also the clearly vis-
ible decrease in output variance.

4, A First Order System

Consider now the first order system

dx = axdt + udf + dvi {7
Periodic Sampling
Sampling the system (7) with period k gives
x(t+h) = ehx(t) + < (e~ ult) +et)  (8)
where the variance of e is given by
J.(h) = foh At &% drdt = (521;10__1)2 =R, 9
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Figure 1 Simulation of an integrator with Riemann
{left) and Lebesgue sampling (right).

The sampled loss function is characterized by

gZah _ 1

Q= 5
ethah — 8t 41

Q12=—a‘2'-——
h3

Qz_—{;

The minimum variance control law is obtained by
solving a Riccati equation for S(%). The formula
which is complicated is omitted. The variance of the
output is shown in Figure 2 for different values of the
parameter a. Notice that the increase of the variance

Jo
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o J/ ;
az} / ! ,//
4 =0~
08 a= 1 // /,’
A sl // ///
e 7
o4t ! P a=-1__1
/ - ) -
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o .
01 =
0.15 08 o7 [-X:] (3 1
h
Figure 2 Variance Vz (k) as a function of sampling time
for a = —1,0,1 for a system with Riemann sampling.

with the sampling period increases much faster for
unstable systems a > 0.

Lebesgue Sampling
For Lebesgue sampling we assume as in Section 2
that the variable x is reset to zero when |x(2:)] = d.

Figure 3 Mean exit time E{T.g) = hy(0) as a function
of d for a = —1,0, 1 for a system with Lebesgue sampling.

The closed loop system obtained is then a diffu-
sion process. The average sampling period is the
mean exit {ime when the process starts at x = 0.
This can be computed from the following result in
Feller (1954a).

THEOREM 1

Consider the differential equation dx = b{x)dt +
o(x)dv and introduce the backward Kolmogorov
operator

A n 2 n X
AR 255 aule)zas + Sbia) 0.

i=1 k=1
' (10)
where & € C*(R") and e = [6067};;. The mean exit
time from [—d,d], starting in x, is given by hz(x),
where

Ahy =-1
with hy(d) = hy(—d) = 0.

In our case the Kolmogorov backward equation be-
comes

L%, | Ohy
2702 " M ax
with hp(d) = hr(—d) = 0. The solution is given by

d 4 2_ 42
hi(x) = 2] fo e dr dy,

=-1

which gives

Ri(0) = > 2% (—a)t(k—1)1d%/(2k)!
k=1
2
= d'-zd'+ %ds +0 (d®).

Figure 3 shows £ (0) for a = —1,0,1,



Figure 4 Variance as a function of level d for a =
—1,0,1, for a system with Lebesgue sampling.

The stationary distribution of x is given by the
forward Kolmogorov equation

9 [(19f 18f
0= 7 (5% o) - (252 o) o
19f
+ (58_1; —ﬂ',xf)x=_d 5x-
(11)

To solve this equation we observe that the equation

] (1af anf)

= 9x\39x (12)
2 * a(sztz)
f(x) =1 +czf @ dt,
0

has the solutions

The even function
X
flx)= 16 + ¢ sign(x)f e~ gy,
0

then satisfies (11) also at x = 0. The constants ¢;, 5
are determined by the equations

d
/ f(x)dx

—d
f(d)

which gives a linear equation system to determine
C1,C2.

1,

(13)
0,

(14)

Having obtained the stationary distribution of x we
can now compute the variance of the output

d
Ve = /dxzf(x)dx.

The variance V; is plotted as a function of d in
Figure 4 for a = —1,0, 1, and as a function of mean
exit time Ay in Figure 5.
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Figure B Variance as a function of mean exit time Ty
for a = —1,0, 1, for a system with Lebesgue sampling.

Comparison

The ratio Vg/Vy as a function of % is plotted in Fig-
ure 6 for a = —1,0, 1. The figure shows that Lebesgue
sampling gives substantially smaller variances for
the same average sampling rates. For short sampling
pericds there are small differences between stable
and unstable system as can be expected. The im-
provement of Lebesgue sampling is larger for unsta-
ble systems and large sampling periods.

10 -
of
el
o 7
’ a=1 -
///
§ of o
~ 5 ---’/ a=20
s T

= S
; a=-1 R
al
1
nl) a1 [ F4 23 04 s 05 o7 08 o9 1

k or mean exit time

Figure 6 Comparison of Vi and Vi for a = ~1,0,1.
Note that the performance gain of using Lebesgue sam-
pling is larger for unstable systems with slow sampling.

Note that the results for other @ can be obtained from
these plots since the transformation (x,¢,a,v) —
(%%, at, " 'a, @'/%v) for & > 0 leaves the problem
invariant.

5. Conclusions

The standard approach to digital control using con-
stant sampling rates has been very successful. There
are, however, an increasing number of applications
where the assumption of constant sampling rate is



no longer valid, typical examples are multi-rate sam-
pling and networked systems. Lebesgue sampling
may be a useful alternative. The simple problems
solved in this paper indicate that Lebesgue sampling
may be worth while to pursue. The field of Lebesgue
sampling is still in its infancy. There are many prob-
lems that may be worth while to pursue. The signal
representation which is a mixture of analog and dis-
crete is interesting, it is a good model for signals
in biclogical systems. It would be very attractive to
have a system theory similar to the one for periodic
sampling. Particularly since many sensors that are
commonly used today have this character. The de-
sign problem in the general case is still largely an
unsolved problem. Implementation of controller of
the type discussed in this paper can be made us-
ing programmable logic arrays without any need for
AD and DA converters. There are many generaliza-
tions of the specific problems discussed in this paper
that are worthy of further studies for example higher
order systems and systems with output feedback.
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