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Abstract

Background: Gene expression profiling is being widely applied in cancer research to identify biomarkers for clinical

endpoint prediction. Since RNA-seq provides a powerful tool for transcriptome-based applications beyond the

limitations of microarrays, we sought to systematically evaluate the performance of RNA-seq-based and microarray-

based classifiers in this MAQC-III/SEQC study for clinical endpoint prediction using neuroblastoma as a model.

Results: We generate gene expression profiles from 498 primary neuroblastomas using both RNA-seq and 44 k

microarrays. Characterization of the neuroblastoma transcriptome by RNA-seq reveals that more than 48,000 genes

and 200,000 transcripts are being expressed in this malignancy. We also find that RNA-seq provides much more

detailed information on specific transcript expression patterns in clinico-genetic neuroblastoma subgroups than

microarrays. To systematically compare the power of RNA-seq and microarray-based models in predicting clinical

endpoints, we divide the cohort randomly into training and validation sets and develop 360 predictive models on

six clinical endpoints of varying predictability. Evaluation of factors potentially affecting model performances reveals

that prediction accuracies are most strongly influenced by the nature of the clinical endpoint, whereas technological

platforms (RNA-seq vs. microarrays), RNA-seq data analysis pipelines, and feature levels (gene vs. transcript vs.

exon-junction level) do not significantly affect performances of the models.
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Conclusions: We demonstrate that RNA-seq outperforms microarrays in determining the transcriptomic characteristics

of cancer, while RNA-seq and microarray-based models perform similarly in clinical endpoint prediction. Our findings

may be valuable to guide future studies on the development of gene expression-based predictive models and their

implementation in clinical practice.

Background

Microarray-based gene expression profiling is being widely

applied in cancer research to identify biomarkers for clin-

ical endpoint prediction, such as diagnosis, prognosis, or

prediction of treatment response [1–5]. The clinical value

of some of these classifiers is currently being examined in

prospective trials [6]. Within the MicroArray Quality

Control (MAQC)-II study [7], we observed, however, that

the performance of gene expression models in predicting

clinical outcome was limited and largely dependent on the

respective clinical endpoint.

The advent of next-generation sequencing technolo-

gies has revolutionized eukaryotic transcriptome analysis.

RNA deep-sequencing (RNA-seq) provides a powerful

tool to decipher global gene expression patterns far be-

yond the limitations of microarrays, including an unprece-

dented capability to discover novel genes, alternative

transcript variants, chimeric transcripts, and expressed

sequence variants as well as allele-specific expression

[8–12]. RNA-seq data have also been used to develop

gene expression-based predictive models in cancer re-

search [13, 14]. Considering the vast amount of add-

itional information provided by RNA-seq in comparison

to microarrays, it is tempting to speculate that RNA-

seq-based models may outperform microarray-based

models for clinical endpoint prediction. A comprehen-

sive comparison of RNA-seq and microarray-based pre-

dictive models, however, is lacking to date.

In this study of the Sequencing Quality Control (SEQC)

consortium, we therefore aimed to systematically investi-

gate the potential of RNA-seq-based classifiers in predict-

ing clinical endpoints in comparison to microarrays.

To this end, we selected neuroblastoma as a model, a

pediatric malignancy arising from the developing sympa-

thetic nervous system [15]. The clinical courses of neuro-

blastoma are remarkably heterogeneous ranging from

spontaneous regression to relentless progression. Accord-

ing to its diverse clinical presentations, patients are strati-

fied into different prognostic subgroups, with therapeutic

strategies ranging from ‘wait-and-see’ approaches to inten-

sive multimodal treatments. Thus, accurate prediction of

the natural course of the disease is an essential prerequis-

ite for risk estimation and tailoring therapy intensities in

individual patients. Treatment stratification in neuroblast-

oma is currently based on a combination of clinical and

molecular parameters, including tumor stage, patient age

at diagnosis, and the genomic amplification status of

the MYCN proto-oncogene. In addition, a number of

microarray-based gene expression models have been

proposed to predict neuroblastoma patient outcome

[16, 17]. However, while predictive models were highly

accurate in risk assessment of current low- and

intermediate-risk patients [18], the prediction of high-risk

patient outcome has remained challenging [18–20].

Here, we determined global gene expression profiles

from 498 primary neuroblastoma samples using both

RNA-seq and Agilent’s 44 k oligonucleotide-microarrays

to compare the performance of RNA-seq and microarray-

based models in predicting clinical endpoints. We gener-

ated 360 gene expression-based models using a broad

range of algorithms to predict six different endpoints with

a varying degree of predictability, and analyzed the effects

of a range of variables on the prediction performances.

We found that prediction accuracies were most strongly

influenced by the nature of the clinical endpoint, whereas

neither the expression profiling technology nor the RNA-

seq data analysis pipeline affected prediction accuracy sys-

tematically. To our knowledge, we present the first study

on the evaluation of predictive models using RNA-seq

in comparison to microarrays, which may provide valu-

able information for designing future experiments on

gene expression-based classifiers using high-throughput

technologies.

Results
Characterization of the neuroblastoma transcriptome

using RNA-seq

To comprehensively characterize the neuroblastoma

transcriptome, we sequenced 30,753,066,000 reads from

498 primary neuroblastoma samples covering the entire

spectrum of the disease (Table 1). Discontinuous align-

ment of sequence reads to the genome revealed that 98.86

% of the reads mapped to the reference (Additional file 1:

Figure S1; Additional file 2). We found that 348.5 Mbp

(11.26 %) of the genome were expressed in neuroblastoma

at a coverage threshold of 200, 197.7 Mbp (6.39 %) of

which represented exonic regions (Additional file 1:

FigureS2a). Within the expressed exome, 130.9 Mbp

covered annotated genes (coding, 40.5 Mbp; non-coding,

90.3 Mbp), while 66.8 Mbp of the genome represented

exonic regions not annotated in any of the databases

RefSeq/EntrezGene [21], AceView [22], or Gencode [23]

Zhang et al. Genome Biology  (2015) 16:133 Page 2 of 12



(coding regions, 6.8 Mbp; non-coding regions, 60.0 Mbp;

Additional file 1: Figure S2b), corresponding to 39,052

novel exons supported by 118.4 Gbp (4.42 %) of the entire

sequence information of our study (Additional file 1:

Figure S2c).

In total, 88.75 % of the aligned reads mapped to genes

annotated in either of the reference databases RefSeq

(total number of genes annotated in the database, n =

24,536), AceView (n = 55,836), or Gencode (n = 56,071),

while 4.52 % of the reads mapped to newly discovered

exons or exon-junctions, 5.91 % to intronic and 0.65 %

to intergenic sequences (Fig. 1a). In the entire neuro-

blastoma cohort, we identified 48,415 genes expressed

above the background threshold when using AceView as

a reference database (Fig. 1b), corresponding to an aver-

age of 28,490 (±1,399) expressed genes per sample (Add-

itional file 1: Figure S3). By contrast, a total of 21,101

AceView genes were represented by the 44 k microarray

used in this study. Among all genes detected in neuro-

blastoma, 21,933 represented genes encoding conserved

proteins, 10,815 represented genes encoding mammalian-

specific proteins, 1,427 genes were classified as marginally

coding (that is, spliced genes with multiple alternative var-

iants, of which only a minority appear to be protein-

coding), and 14,240 represented non-coding genes. Fur-

thermore, the mapped reads supported a total of 204,352

transcripts annotated in AceView, comprising 319,231 an-

notated exon-junctions (Fig. 1b; mapping results using the

RefSeq and Gencode databases as references are given in

Additional file 1: Figure S4).

Analysis of differentially expressed genes (DEGs) in four

neuroblastoma subgroups

Since gene expression-based prediction of clinical end-

points depends on differing mRNA levels in clinically

relevant disease subgroups, we evaluated how analysis of

Table 1 Clinical characteristics of neuroblastoma patients

Number Percent of total

MYCN status

Normal 401 80.5 %

Amplified 92 18.5 %

N.A. 5 1.0 %

INSS stage

1 121 24.3 %

2 78 15.7 %

3 63 12.7 %

4 183 36.7 %

4S 53 10.6 %

Age at diagnosis

<18 months 300 60.2 %

>18 months 198 39.8 %

Sex

Male 278 55.8 %

Female 205 41.2 %

N.A. 15 3.0 %

High-risk patients 176 35.3 %

NA, not available

Fig. 1 Characteristics of the neuroblastoma transcriptome according to RNA-seq data using the Magic-AceView pipeline. a Percentage of reads

mapped to distinct targets. b Number of genes, transcripts, and exon-junctions expressed in the entire neuroblastoma cohort according to their

annotation by AceView. c Absolute numbers and overlap of differentially expressed genes (DEGs) identified by RNA-seq (red) and microarrays

(blue) in four disease subgroups (see main text)
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RNA-seq data compares to microarrays in determining

differential gene expression in four major clinico-genetic

subtypes of neuroblastoma (Additional file 1: Table S1).

We first restricted our analysis to the gene level consid-

ering only genes that were common to both platforms.

DEGs were identified from both platforms using two dif-

ferent analytical methods: (1) a method based on the

recommendations of the MAQC-I project utilizing a

fold-change ranking and a non-stringent P value cutoff

(MAQC-I) [7, 24, 25]; and (2) a novel method developed

within the MAQC-III project utilizing the expression

distributions, corrected for noise and batch effects, and

assisted by random resampling, to compute DEG scores

related to the Wilcoxon U test (Magic, see Additional

file 1: Supplementary Note 2). On the platform level, we

found that RNA-seq detected 5,488 (69.2 %) and 7,827

(67.0 %) of the DEGs identified by microarrays using the

MAQC-I and Magic methods, respectively (Additional

file 1: Figure S5). On the analytical method level, Magic

detected 7,423 (93.5 %) and 6,728 (80.4 %) of the DEGs

identified by the MAQC-I method using microarray and

RNA-seq data, respectively (Additional file 1: Figure S5).

Together, these results demonstrate that both the differ-

ent platforms and the different analytical methods pro-

vide largely comparable results, indicating the validity of

the methods used in our study.

To appreciate the comprehensive information provided

by RNA-seq for differential gene expression analysis, we

performed a second approach in which we applied the

Magic pipeline on the full AceView-annotated transcript

information in the four neuroblastoma subgroups. In total,

we detected 54,164 differentially expressed transcripts

corresponding to 21,315 DEGs using RNA-seq (RefSeq,

n = 14,251; AceView only, n = 7,064; Additional file 3).

By contrast, the 16,245 microarray probes found to be

differentially represented in the four subgroups corres-

pond to 11,688 DEGs (RefSeq, n = 10,308; AceView

only, n = 1,380). Notably, RNA-seq analysis identified

80.1 % of the DEGs detected by microarrays (Fig. 1c),

but in addition many more genes (annotated both in the

RefSeq database and in the AceView database only) than

microarrays (Additional file 1: Figure S6a). Furthermore,

the power of RNA-seq in discovering tumor subtype-

specific expression patterns became evident by detect-

ing genes with discordant expression patterns, that is,

genes with multiple transcript variants, of which at least

one variant was differentially expressed while at least

one other was not. We noted that 65.9 % of the 21,315

DEGs identified by RNA-seq showed such discordant

expression patterns. As an example, we detected differ-

entially expressed transcript variants of the cancer genes

NF1 and MDM4 (Additional file 1: Figure S7 and S8).

Both variants have been previously described to be of

functional relevance in other cancer entities [26, 27],

and were identified by the transcript-based approach

only, while the gene-level analysis failed to report the

two genes as DEGs. As a particular subgroup of genes

with discordant expression patterns, we also determined

DEGs of which at least one transcript variant was upreg-

ulated while at least one other variant was downregu-

lated in the same subgroup. In this category, we

identified 1,073 DEGs by RNA-seq, as opposed to 129

DEGs by microarrays (Additional file 1: Figure S6b). Fo-

cusing on cancer census genes [28], we observed such

complex expression patterns for 26 of the current 513

cancer census genes (Additional file 1: Table S2). To-

gether, our findings substantiate that RNA-seq is a

powerful tool to determine the complex transcriptomic

characteristics of cancer.

Generation of predictive models from RNA-seq and micro-

array expression data

Given the comprehensive transcriptomic information

provided by RNA-seq and its power to identify DEGs,

we hypothesized that RNA-seq may improve gene

expression-based clinical endpoint prediction over mi-

croarrays. To evaluate this hypothesis, we utilized RNA-

seq and microarray-based expression data of all 498 pri-

mary neuroblastoma samples to predict six clinical end-

points: patients’ sex (SEX); the belonging to a patient

subgroup with extreme disease outcome (referred to as

CLASS LABEL, that is, event-free survivors without

chemotherapy for at least 1,000 days post diagnosis [fa-

vorable], or patients died from disease despite chemo-

therapy [unfavorable]); the occurrence of events, that is,

progression, relapse, or death (EFS ALL); the occurrence

of death from disease (OS ALL); and the occurrence of

events (EFS HR) and death from disease (OS HR) in the

subset of current high-risk patients (that is, patients with

stage 4 disease >18 months at diagnosis and patients of

any age and stage with MYCN-amplified tumors;

Table 2).

Analogous to the strategy used in the MAQC-II study

[7], the following best practice strategies were applied in

model development and validation to obtain reliable and

robust results: (1) Considering the fact that the nature of

the clinical endpoint strongly affects a classifier’s per-

formance [7, 18], we included endpoints that are known

to cover a broad range of predictive difficulties (low dif-

ficulty, SEX, and CLASS LABEL; intermediate difficulty,

EFS ALL, and OS ALL; high difficulty, EFS HR, and OS

HR). (2) We involved six data analysis teams and applied

various classification methods to take into account that

the proficiency of data analysis teams and the choice of

the classifier may impact the prediction results. (3) We

implemented a two-step modeling strategy to ensure an

unbiased validation: first, the models were developed

based on a training set and frozen; then, the validation
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set was released for evaluation of the frozen models. (4)

We decided to focus not only on RefSeq-annotated genes

being the primary source of common microarrays designs,

but also to consider more comprehensive transcriptomic

information provided by the AceView database.

We extracted gene expression profiles from raw RNA-

seq data using three different processing pipelines for

mapping and quantifying sequence reads to also take the

potential influence of RNA-seq data processing on pre-

diction performances into account (Fig. 2a): (1) mapping

reads to the AceView reference using the Magic align-

ment tool (MAV); (2) mapping reads to AceView using

TopHat2 and Cufflinks (TAV); and (3) mapping reads to

the UCSC database together with RefSeq gene annota-

tions using TopHat2/Cufflinks (TUC). From the result-

ing data, we extracted gene expression profiles on three

different feature levels: (1) gene, (2) transcript, and (3)

exon-junction levels. Accordingly, each sample was asso-

ciated with 10 different expression profiles, including

one profile derived from microarray analyses (Fig. 2a).

Neuroblastoma samples were randomly divided into train-

ing and validation sets (Table 2). Data analysis teams gen-

erated predictive models using their methods of choice,

and submitted their best model for each of the six differ-

ent endpoints on every expression profile, resulting in a

total of 360 models. Afterwards, the models were used to

predict endpoints in the validation set, and the external

performance of each model was evaluated after unblinding

the clinical information using various performance met-

rics (Additional files 4 and 5).

Clinical endpoint prediction by RNA-seq- and

microarray-based models

We determined prediction performances of all models in

terms of MCC for each endpoint in the validation set,

and compared performances of RNA-Seq and microarray-

based models. RNA-seq-based models performed signifi-

cantly better than microarray-based models in predicting

endpoint EFS ALL (P = 0.043), while models based on the

two platforms performed similarly well in predicting the

remaining five endpoints (Fig. 2b).

In line with our findings from the MAQC II study [7],

we noticed that prediction performances were strongly

influenced by the respective clinical endpoint. While pa-

tient’s SEX and CLASS LABEL were predicted accur-

ately, performances were substantially inferior for

predicting EFS and OS in the entire cohort, and even

worse in the high-risk subgroup by both RNA-seq and

microarray-based models (Fig. 2b). To assess the poten-

tial clinical value of gene expression-based outcome pre-

diction, we performed univariate Cox regression analysis

and Kaplan-Meier survival estimates for patients of the

validation set using the best performing RNA-seq and

microarray models. The models significantly discrimi-

nated patients with favorable and unfavorable outcome

in the entire cohort and in the class labeled cohort

(Additional file 1: Figure S9a-d, Table S3 and S4), which

is consistent with previous observations made by us and

others [16–18, 20]. In the high-risk cohort, the best per-

forming models were also able to predict patient outcome,

which was in contrast to the prognostic markers age, stage

and MYCN status (Additional file 1: Figure S9e and f, Fig.

S10, and Table S5). The potential relevance of gene

expression-based outcome prediction for neuroblastoma

patients was substantiated by multivariate Cox regression

analysis (Additional file 1: Table S6).

We also assessed whether performances observed in

the validation set could have been estimated from per-

formances determined in the internal cross-validation

processes (Fig. 2c and d). Strikingly, correlations of

Table 2 Definition of clinical endpoints analyzed in this study

Cohort Endpoint (bin 1/0) Training set Validation set

# Samples 1 0 # Samples 1 0

All patients (498) SEX 249 103 146 249 108 141

(Female/Male)

EFS ALL 249 89 160 249 94 155

(Event yes/no)

OS ALL 249 51 198 249 54 195

(Death yes/no)

Class labeled patients (272) CLASS LABEL 136 45 91 136 46 90

(Unfavorable/Favorable)

High-risk patients (176) EFS HR 86 55 31 90 65 25

(Event yes/no)

OS HR 86 43 43 90 49 41

(Death yes/no)

EFS, event-free survival; HR, high risk; OS, overall survival

Zhang et al. Genome Biology  (2015) 16:133 Page 5 of 12



internal and external validation performances for micro-

array- and RNA-seq-based models were almost identical

(r = 0.716 and r = 0.723, respectively), indicating that

the technical platform does not affect the reliability of

performance estimates obtained during model training.

It has to be noted, though, that performances of both

RNA-seq- and microarray-based models for endpoints

EFS HR and OS HR tended to be biased strongly to-

wards internal validation, which is indicative of model

overfitting on the training set. These results suggest that

the endpoint itself influences the reliability of perform-

ance estimates derived from training cohorts.

Variables affecting prediction performances of

RNA-seq-based models

We next aimed to identify additional variables that may

affect prediction performances of RNA-seq-based models.

In general, models derived from distinct processing pipe-

lines and distinct feature levels did not differ significantly

in their prediction performances with few exceptions

(Fig. 3a and b). To investigate systematically which vari-

ables may affect model performances, we performed vari-

ance component analysis using Mixed Modeling [29]. We

found that 95 % of the variation across MCC values was

caused by effects of the endpoints, with lowest variances

Fig. 2 Performances of RNA-seq- and microarray-based models to predict clinical endpoints in the validation cohorts. a Schematic overview of

gene expression profiles generated by RNA-seq (n = 9 per sample) and microarray (n = 1 per sample). CL, Cufflinks; MAV, Magic-AceView; TAV,

TopHat-AceView; TUC, TopHat-UCSC. b Distribution of MCC values of all models for each endpoint according to the technical platform (MA,

microarray). Boxes indicate the 25 % and 75 % percentiles, and whiskers indicate the 5 % and 95 % percentiles; (*), P <0.05; two-sided T-test was

performed for statistical testing. c, d Model performance of internal validation compared with external validation based on (c) microarray and

(d) RNA-seq expression data in terms of MCC
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observed for endpoints predicted most accurately (Fig. 4a;

Additional file 1: Table S7). Of the remaining 5 % of vari-

ability, 1.5 % was explained by four statistically significant

effects. The size of the model (that is, the number of fea-

tures included in the model) was the only factor that sig-

nificantly affected prediction performances independent

of the endpoint. On average, models comprising 100 to

1,000 features gave the best prediction results (Fig. 4b).

The model size effect, however, differed between the end-

points analyzed: For prediction of the two endpoints that

were easy to predict (SEX and CLASS LABEL), only one

to 10 features were required, while more complex models

improved prediction results for the remaining endpoints

(Additional file 1: Figure S11a). In addition, different

analysis teams and different modeling methods had

varying performances across the endpoints (Additional

file 1: Figure S11b and c). The remaining 3.5 % were re-

sidual variance not explained by any of the factors under

investigation (Fig. 4a). Taken together, our data demon-

strate that microarray and RNA-seq models perform

similar in clinical endpoint prediction, and that the

RNA-seq processing pipeline and the feature level do

not influence prediction performances systematically.

We finally aimed to evaluate how different parts of the

transcriptome contribute to the performance of predict-

ive models. For this purpose, we determined the fraction

of RefSeq-annotated features, protein coding features,

and spliced features in MAV and TAV models both on

the gene and transcript level. We found that the propor-

tion of coding and spliced features in the models largely

reflected the proportion of coding and spliced features

in the AceView database (Additional file 1: Figure S12

and Table S8). Similarly, the proportion of RefSeq-

annotated features in the models was in the range of

their proportion in the AceView database. Taking all

endpoints into account, however, we observed that pre-

diction accuracies were significantly correlated with the

fraction of RefSeq features, coding features, and spliced

features in the models both on the gene and the tran-

script level (Fig. 5, Additional file 1: Figure S13). These

data indicate that the composition of prediction models

depends on the predictability of the clinical endpoints in

general.

Discussion

Here, we evaluated the potential of RNA-seq to predict

clinical endpoints in comparison to microarrays. We

generated gene expression profiles from 498 primary

neuroblastoma samples using RNA-seq and microarrays,

which represents, to the best of our knowledge, the most

comprehensive description of a single cancer entity’s

transcriptome. We demonstrate that gene expression

profiles of neuroblastoma are tremendously complex,

corresponding to findings on the transcriptomic land-

scape of other human cells published recently [9, 12,

30]. In the entire neuroblastoma cohort, we found

48,415 genes and 204,352 transcripts to be expressed,

comprising 86.7 % and 77.3 % of all features annotated

in the AceView database, respectively. We also identified

>39,000 novel exons to be expressed in neuroblastoma,

Fig. 3 Analysis of factors potentially affecting prediction performances of RNA-seq-based models. a Distribution of MCC values of all models for

each endpoint according to RNA-seq data processing pipelines (MAV, Magic-AceView; TAV, TopHat-AceView; TUC, TopHat-UCSC). b Distribution of

MCC values of all models for each endpoint according to feature levels, that is, gene, transcript (TS), and exon-junction (Jct) levels
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providing further evidence that the human transcrip-

tome still exceeds the complexity reflected by current

reference databases such as RefSeq, Gencode, and Ace-

View. The comparison of gene expression profiles of

four major clinico-genetic subgroups revealed that RNA-

seq identified almost twice as many DEGs as microar-

rays. Of note, DEGs determined by RNA-seq comprised

80.1 % of the DEGs detected by microarrays, pointing

towards the reliability of identifying DEGs by either

method. One reason for the discrepant numbers re-

ceived by RNA-seq and microarrays derives from the

fact that 6,939 DEGs identified by RNA-seq were not

represented by a probe on the microarray. In addition,

4,776 DEGs were not detected by microarrays although

the genes were represented by a probe, which may be at

least partly attributed to our analytical approach which

was taking expression profiles at the transcript level into

account. Taken together, our study substantiates that

RNA-seq is capable of providing much more detailed in-

sights into the transcriptomic characteristics of neuro-

blastoma than microarrays.

To systematically compare the potential of RNA-seq-

and microarray-based models for clinical endpoint pre-

diction, we utilized various data annotation pipelines

and considered different feature levels to establish nine

expression profiles per sample derived from RNA-seq

data, complemented by one expression profile derived

from microarray analyses. We generated 360 predictive

models for six endpoints covering a broad range of pre-

diction difficulties. Evaluation of the prediction perfor-

mances in the validation set revealed that the endpoint

represents the most relevant factor affecting model per-

formances, which is well in line with the findings of the

MAQC-II study [7]. By contrast, neither the technical

platform (that is, RNA-seq vs. microarrays) nor the

RNA-seq data annotation pipeline significantly affected

the variability of prediction performances. Collectively,

Fig. 4 a Contribution of different factors to the variability of

prediction results as assessed by variance component analysis. (*),

P <0.05; (**), P <0.01. The factors platform, RNA-seq pipeline, feature

level, analysis team, classification method, and model size were

analyzed both independently of the endpoint (white box), and taking

a potential endpoint-dependence into account (gray box). b Best linear

unbiased predictor (BLUP) estimates for the log10(model size) as the

single factor contributing significantly to the prediction variability

independent of the endpoint. Note that BLUPs are centered around zero

and effectively average over all other effects. BLUPs for Log10(Model

Size) indicate that models with 100 to 1,000 features perform better

than those with fewer or more features

Fig. 5 Correlation of prediction performances with the feature composition of prediction models. MCC values of MAV and TAV models were

plotted against the fraction of RefSeq-annotated genes (a), the fraction of protein-coding genes (b), and the fraction of spliced genes (that is,

genes or transcripts consisting of at least two exons; (c) in the model
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our data demonstrate that RNA-seq and microarray-

based models perform similarly in clinical endpoint

prediction.

We also noticed that models based on different feature

levels predicted clinical endpoints with comparable ac-

curacies. In turn, this result implies that models based

on exon-junction levels perform equally well as models

based on gene levels. These findings may impact the

development of expression-based classifiers to be used

in clinical settings, which are frequently transferred

from high-throughput analyses to RT-qPCR-based as-

says [6, 20]: While assays based on gene expression

levels may lack specificity due to uncertainties on the

underlying relevant transcript variants, exon-junctions

identified by RNA-seq provide an unambiguous source

of expression information for developing specific diag-

nostic tests.

Our results do not support the hypothesis that the

more extensive transcriptomic information provided by

RNA-seq in comparison to microarrays may improve

gene expression-based prediction performances in gen-

eral. A possible explanation for this finding might be

that the inherent complexity of RNA-seq data may

promote over-fitting effects in the model development

process, leading to over-optimistic internal prediction

performances that cannot be reproduced in external

validation cohorts [31]. We noted, however, that the

correlation of internal and external validation perfor-

mances was almost identical for RNA-seq and microarray-

based models, indicating that over-fitting effects are inde-

pendent of the technological platform. An alternative

explanation for our results may be inferred from the obser-

vation that the proportion of RefSeq-annotated features in

the prediction models was in the range of, or even above

their proportion in the AceView database for most end-

points. This finding may suggest that the predictive infor-

mation of RefSeq-annotated genes represented by standard

microarrays is saturated, and that predictive information of

more complex transcriptomic data provided by RNA-seq

is largely redundant. It has to be noted, though, that

models for endpoints that were difficult to predict (that is,

EFS HR, OS HR) tended to disproportionately recruit fea-

tures that are not annotated in RefSeq, suggesting that

these features may considerably contribute to the predic-

tion accuracy in these endpoints.

Both gene expression-based models derived from

RNA-seq and microarray analyses were capable of pre-

dicting patient outcome in the entire neuroblastoma co-

hort accurately, thereby validating results from previous

studies and underscoring their potential clinical utility

for risk estimation in neuroblastoma [16–18, 20]. Not-

ably, we observed that models containing 100 to 1,000

features on average performed better than models con-

taining fewer features. This finding may argue against

ambitious efforts to minimize feature numbers in predict-

ive models, as has been done in the past [20, 32]. In

addition, we found that the best performing models

were able to predict outcome of high-risk patients with

a similar precision as previously published multigene

signatures [18, 20, 33], and independently from current

prognostic markers. While the prognostic value of

such multigene signatures needs to be validated in in-

dependent high-risk neuroblastoma cohorts, these

findings may represent a starting point to establish

biomarker-based risk assessment in this challenging

patient subgroup.

Conclusions

Our study demonstrates that RNA-seq based models are

suitable for clinical endpoint prediction, and that pre-

diction performances are similar to those of microarray-

based models. Our findings may be used to guide the

design of future studies for developing gene expression-

based predictive models as well as their implementation

in clinical practice. The key advantage of RNA deep-

sequencing, however, resides in its ability to characterize

transcriptomes at an unprecedented level of detail, which

may lead to new insights into the molecular mechanisms

of disease, thereby providing starting points for the devel-

opment of rational targeted therapeutic strategies.

Methods
Patient samples

This project comprised tumor samples of 498 neuro-

blastoma patients from seven countries: Belgium (n = 1),

Germany (n = 420), Israel (n = 11), Italy (n = 5), Spain

(n = 14), United Kingdom (n = 5), and United States

(n = 42). All patients were registered in respective clinical

trials with informed consent. The patients’ age at diagnosis

varied from 0 to 295.5 months (median age, 14.6 months).

Tumor stage was classified according to the International

Neuroblastoma Staging System (INSS): stage 1 (n = 121;

MYCN-amplified (MNA), n = 3), stage 2 (n = 78; MNA,

n = 5), stage 3 (n = 63; MNA, n = 15), stage 4 (n = 183;

MNA, n = 65), stage 4S (n = 53; MNA, n = 4). Events

were defined according to a revised version of the Inter-

national Neuroblastoma Response Criteria [34].

Gene expression analysis using oligonucleotide

microarrays and RNA-sequencing

Tumor material preparation was performed as described

previously [16]. For microarray analysis, gene expression

profiles were generated using customized 4x44k oligo-

nucleotide microarrays (Agilent Technologies). Sample

preparation, labeling, and hybridization were performed

according to the manufacturer’s protocol. Microarray

expression profiles were generated using Agilent’s Fea-

ture Extraction software (Version 9.5.1) [35]. For RNA
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sequencing, Dynabeads® mRNA Purification Kit (Invitro-

gen) was used to purify mRNA from total RNA, and

ERCC RNA spike-in was added according to the user

guide. Library construction was performed according to

the non-stranded TruSeqs™ protocol. Clusters were gen-

erated according to the TruSeq PE cluster Kit v3 reagent

preparation guide (for cBot-HiSeq/HiScanSQ). High-

throughput shotgun sequencing was performed on the

Illumina HiSeq 2000 platform. Paired-end reads with

lengths of 90 and 100 nucleotides were generated for 12

samples and 486 samples, respectively.

Raw data preprocessing, read mapping, and gene

expression quantification

In addition to the microarray expression profiles, three

different RNA-seq processing pipelines were applied to

generate expression profiles from the sequencing raw

data.

(1). The Magic-AceView pipeline (MAV) is based on

the Magic analysis tool [22] (ftp://ftp.ncbi.nlm.nih.

gov/repository/acedb/Software/Magic). Magic

includes quality control, alignment, annotation,

quantification, and normalization of RNA-seq data.

Magic maps the read pairs in parallel on all

targets, including the genome (NCBI 37), the

RefSeq 37.104, the Gencode v15, and the

AceView 2011 gene models. Gene expression is

measured in sFPKM, adding to the standard

FPKM (fragments per kilobase of transcript per

million mapped reads) a gene-specific and

experiment-specific threshold of significance

(sFPKM) for low counts, together with a

number of batch effect corrections. The

Magic-AceView pipeline is described in detail as

a Supplementary Note 1 (Additional file 1).

(2). For the TopHat-AceView (TAV) pipeline, raw reads

of RNA-seq were filtered using an in-house pipeline

(BGI, Shenzhen, PR China). Clean RNA reads were

aligned to the human genome (hg19) using TopHat

[36]. Cufflinks was used to quantify the gene as

well as transcript expression [37]. FPKM values for

each annotated gene in the AceView database were

calculated.

(3). For the TopHat-UCSC pipeline (TUC), RNA-seq

reads were mapped by TopHat [36] to a

reference sequence consisting of the UCSC hg19

human genome and the RefSeq annotated genes.

The mapped reads were processed by Cufflinks

1.3.0 with default parameters to assemble

transcripts relying on RefSeq annotation [37].

Gene- and transcript-level expression values

were computed by Cufflinks in terms of FPKM

and transformed as log2(1 + FPKM) for

downstream processing. Reads that align to

known junctions were quantified by the Open

Source software bam2ssj [38].

Construction of classification models

Six data analysis teams received 10 expression profiles

(nine profiles based on RNA-seq data and one profile

based on microarray data) to predict six different end-

points as extensively described in the Results. Data ana-

lysts were asked to include a five-fold cross validation

for 10 iterations to assess model performances in the

training datasets, but were otherwise free in their choice

of modeling algorithms and statistical tests to generate

and select suitable prediction models. Models with highest

average performance metrics were selected and submitted

for testing on adequate blinded validation sets for each

endpoint. More details and an overview of the applied

classification algorithms are given in Additional file 1

(Supplementary Note 3 and Table S9).

Prediction performance evaluation and statistical analyses

Matthew’s correlation coefficient (MCC) was used to evalu-

ate the prediction performance of classification models as

described [7]. Differences in model performances were sub-

jected to variance component analysis using Mixed Model-

ing [29]. All the six major effects were assigned to random

effects for partitioning their corresponding variances from

total variance. Statistical F- and T- tests were applied for

evaluating the significance of corresponding variance com-

ponents and comparisons among the levels within each

variance component, respectively. For statistical analysis of

clinical data, IBM SPSS package release 20.0.0 and version

2.15.0 of the survival package in R was applied [39]. Overall

survival (OS) was calculated as the time from diagnosis to

death from disease or the last follow-up if the patient sur-

vived. Event-free survival (EFS) was calculated from diag-

nosis to the time of tumor progression, relapse, or death

from disease or to the last follow-up if no event occurred.

Survival curves were computed according to Kaplan-Meier

estimates and compared with the log-rank test. Univariate

Cox proportional hazards or logistic regression was applied

with respect to EFS and OS to analyze the separate prog-

nostic value of gene expression-based classification models

or clinical markers, considering P <0.05 as significant. All

analyses are regarded as explorative.

Data availability

Microarray and RNA-seq data can be accessed from the

GEO database (www.ncbi.nlm.nih.gov/geo/) with ac-

cession numbers GSE49710 and GSE49711, respect-

ively, which are included in SEQC Project SuperSeries

GSE47792.
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Additional files

Additional file 1: This file contains Supplementary Figures S1–S13,

Supplementary Tables S1–S9, and Supplementary Notes 1–3 on the

Magic-AceView pipeline, differential gene expression methods, and

methodology on the generation of prediction models.

Additional file 2: This file contains Supplementary Data: RNA-seq

information of 498 neuroblastoma samples: Read fate and mapping

targets.

Additional file 3: This file contains Supplementary Data: Genes and

transcript differentially expressed between four clinico-genetic

neuroblastoma subgroups.

Additional file 4: This file contains Supplementary Data: Internal

cross-validation performance and external validation performance

of 360 submitted prediction models.

Additional file 5: This file contains Supplementary Data: Clinical

characteristics and sample statistics for 498 neuroblastoma

patients.
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