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Abstract

To demonstrate the benefits of RNA-Seq over microarray in transcriptome profiling, both RNA-Seq and microarray analyses
were performed on RNA samples from a human T cell activation experiment. In contrast to other reports, our analyses
focused on the difference, rather than similarity, between RNA-Seq and microarray technologies in transcriptome profiling.
A comparison of data sets derived from RNA-Seq and Affymetrix platforms using the same set of samples showed a high
correlation between gene expression profiles generated by the two platforms. However, it also demonstrated that RNA-Seq
was superior in detecting low abundance transcripts, differentiating biologically critical isoforms, and allowing the
identification of genetic variants. RNA-Seq also demonstrated a broader dynamic range than microarray, which allowed for
the detection of more differentially expressed genes with higher fold-change. Analysis of the two datasets also showed the
benefit derived from avoidance of technical issues inherent to microarray probe performance such as cross-hybridization,
non-specific hybridization and limited detection range of individual probes. Because RNA-Seq does not rely on a pre-
designed complement sequence detection probe, it is devoid of issues associated with probe redundancy and annotation,
which simplified interpretation of the data. Despite the superior benefits of RNA-Seq, microarrays are still the more common
choice of researchers when conducting transcriptional profiling experiments. This is likely because RNA-Seq sequencing
technology is new to most researchers, more expensive than microarray, data storage is more challenging and analysis is
more complex. We expect that once these barriers are overcome, the RNA-Seq platform will become the predominant tool
for transcriptome analysis.
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Introduction

Since the invention of DNA microarrays in the 1990s, it has

been the technology of choice for large-scale studies of gene

expression. The ability of these arrays to simultaneously interro-

gate tens of thousands of transcripts has led to important advances

in tackling a wide range of biological problems, including the

identification of genes that are differentially expressed between

diseased and healthy tissues, new insights into developmental

processes, pharmacogenomic responses, and the evolution of gene

regulation in different species [1–4]. Currently, microarrays

remain the most popular approach for transcript profiling and

can be readily afforded by many laboratories. Nonetheless, array

technology has several limitations. For example, background

hybridization limits the accuracy of expression measurements,

particularly for transcripts present in low abundance. Further-

more, probes differ considerably in their hybridization properties,

and arrays are limited to interrogating only those genes for which

probes are designed.

RNA-Seq is the direct sequencing of transcripts by high-

throughput sequencing technologies. It has shown strong potential

to become a replacement to microarrays for whole-genome

transcriptome profiling [5–9]. RNA-Seq has considerable advan-

tages for examining transcriptome fine structure such as the

detection of novel transcripts, allele-specific expression and splice

junctions. RNA-Seq does not depend on genome annotation for

prior probe selection and avoids the related biases introduced

during hybridization of microarrays. However, RNA-Seq poses

novel algorithmic and logistical challenges for data analysis and

storage. Despite the fact that many computational methods have

been developed for alignment of reads, quantification of gene and/

or transcripts, and identification of differentially expressed genes

[10], there is great variability in the maturity of these available

computational tools.

To date, several studies comparing RNA-Seq and hybridiza-

tion-based arrays have been performed [11–15]. Marioni, et al.

estimated technical variance associated with Illumina RNA-Seq

sequencing and compared its ability to identify differentially

expressed genes with existing array technologies [14]. They found

that RNA-Seq data on the Illumina platform was highly

reproducible, with relatively little technical variation. The

differentially expressed genes identified from RNA-Seq overlapped

well with those identified by microarray. Fu et al. designed a study

in which they used protein expression measurements to evaluate
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the accuracy of microarrays and RNA-Seq for mRNA quantifi-

cation [15]. In that study, they used gene expression levels

measured by a third technology – shotgun mass spectroscopy – to

assess the relative accuracy of the two transcriptome quantification

approaches with respect to absolute transcript level measurements,

and found that RNA-Seq provided better estimates of absolute

transcript levels. Details on RNA-Seq technology and the

challenges and benefits associated with its technology and

application were reviewed elsewhere [16–20]. Many recent studies

were performed to run RNA-Seq and microarray in parallel with a

focus on the concordance between them [11–13]. Our study

focused on the differences, rather than consistencies, between the

technologies and further investigated the reasons for observed

discrepancies.

Methods

Human CCR6+ CD4 memory T cell RNA preparation
Informed consent to participate in this study was obtained from

the blood donor written permission using standard informed

consent procedures and the use of human blood samples for

research purpose was prior approved by Janssen R&D IRB

(Institutional Review Board). Human PBMCs was purified from a

healthy donor by step gradient centrifugation using Ficoll Pague

(GE Healthcare Life Science). CD4+ memory T cells were purified

from PBMCs through negative selection using the memory CD4+

T cell isolation kit (Miltenyi) followed by positive selection with

anti-CCR6/biotin conjugates and anti-biotin magnetic beads

(Miltenyi). Purified CCR6+ T cells were stimulated with anti-

CD3 and anti-CD28 coated beads (Miltenyi) at 2:1 bead/cell ratio

in the presence of Th17 polarizing cytokines and antibodies

including 10 ng/ml IL1b (R&D), 10 ng/ml IL23 (R&D), 30 ng/

ml TGFb1 (R&D), 10 mg/ml of anti-IL4 and anti-IFNc

(eBioscience). Stimulated T cells were cultured in 24 well tissue

culture plate at 56106 cells/well in 1 ml of IMDM medium

containing 10% serum replacement factor (Invitrogen) and

supplemented with 2 mM glutamine, 1 mM sodium pyruvate,

10 mM HEPES, 1 mM MEM nonessential amino acid solution,

and 100 U/ml each of penicillin G and streptomycin (Life

Technologies). RNA was prepared from resting and stimulated

T cells at different time points over a time course of 3 days. There

were a total of six time points, with two biological replicates per

time point (Figure 1).

Microarray and RNA-Seq
Microarray-based transcriptome profiling was performed in the

Janssen R&D microarray core facility using Affymetrix GeneChip

HT HG-U133+ PM arrays. Gene expression was first measured at

the probe set level (n = 54,715) using the RMA (Robust Multi-

array Average) methodology on perfect match probes, followed by

quantile normalization [21,22]. Quality of the data was assessed

using principal component analysis (PCA). Probe set annotation

for the HT HG-U133+ PM array was downloaded from

Affymetrix’s website (see Dataset S1). 41,796 of the 54,714

probe sets were mapped to 20,741 genes, with 10,837 genes

having more than one representative probe set. For each of these

redundancies, the probe set with the greatest average expression

across all samples was chosen to represent each gene.

RNA-Seq based transcriptome profiling was performed by

Beijing Genomics Institute (Hong Kong), using the Illumina

HiSeqTM 2000 platform. After extracting the total RNA from

samples, mRNA was enriched by using the oligo (dT) magnetic

beads, and was fragmented into short fragments (200,500 bp)

with the fragment buffer treatment. The first-strand cDNA was

synthesized by random hexamer-primer with the mRNA frag-

ments as templates. Buffer, dNTPs, RNase H and DNA

polymerase I were used to synthesize the second strand. The

double strand cDNAs, purified with QiaQuick PCR extraction kit,

were used for end repair and base A addition. Finally, sequencing

adaptors were ligated to the fragments. The fragments were

purified by Agarose gel electrophoresis and PCR-amplified to

produce the sequencing library. All reads were pair-end sequenced

with an average insert size of 160 bp, and typical read-length of

90 bp. Primary sequencing reads produced by the Illumina

HiSeqTM 2000 were next subjected to quality control. Data

analysis was accomplished in two sequential tasks: (1) map all raw

reads to the human reference genome hg19 using RefGene as the

gene model, and (2) count the read fragments mapped to each

individual gene and quantify expression by the corresponding

RPKM (Reads Per Kilobase per Million mapped reads). The

alignment algorithm was OmicSoft Sequence Aligner (OSA), a fast

and accurate alignment tool for RNA-Seq [23].

In summary, RNA-Seq based transcriptome expression was

measured as RPKM for 36,004 transcripts, representing 22,300

unique genes. The median RPKM in all 12 samples was 0.49, and

28.6% to 32.5% (average = 30.3%) of genes had RPKM value of 0

in each sample. In order to make the transcriptome profiling

comparable between both platforms (RNA-Seq vs. Microarray),

the RPKM values were floored at 0.047, followed by log2

transformation. After the transformation, the difference between

Figure 1. Experimental design. Human CCR6+ CD4 memory T cells were stimulated with anti-CD3/anti-CD28 coated beads under Th17 condition
as described in Materials and Methods. RNA samples were prepared from cells collected at 0, 2, 4, 6, 24 and 72 hour post-stimulation. Gene
expressions of these samples were studied with both Affymetrx microarray and RNA-Sequencing technologies.
doi:10.1371/journal.pone.0078644.g001
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the median expression and the floored (minimal) expression by

RNA-Seq is equal to the difference between the median expression

and the minimal expression by microarray.

Differential expression profiling of transcriptome
Affymetrix probe design is based mainly upon the sequence

clusters in the UniGene database [24], therefore the probe-sets

don’t cover all known genes in RefGene. In order to make a

meaningful comparison, we only analyzed those genes common to

both RefGene and the Affymetrix HT HG-U133+ PM array. As

of October 2012, when our analysis was performed, there were

22,300 unique genes in the RefGene model, and 20,741 unique

gene annotations for the Affymetrix HT HG-U133+ PM array.

The number of genes common to both was 18,306 (see Dataset
S2). In both platforms, differential expression of each common

gene was first evaluated as an F-score generated by one-way

ANOVA, with the underlying null (H0) hypothesis that the

expression levels of the tested gene was identical among all six time

points. Differential expression of each gene at any one of the five

time points after Th17 activation was further determined as a log2

transformed ratio, using Dunnett’s test, with the samples at 0 hour

selected as the control group for all comparisons. All p values,

associated with F scores or log2 ratios, were adjusted for

multiplicity of testing by the Benjamini-Hochberg method [25].

The microarray expression data (see Dataset S3) after RMA

normalization and the differential expression analysis results (see

Dataset S4) are provided in supplementary materials. For RNA-

Seq data, Table S1 summarizes the metrics of read mapping for

all 12 samples, and the corresponding read counts and RPKM are

tabulated in Dataset S5 and Dataset S6, respectively. The

differential expression analysis result for RNA-Seq is provided in

Dataset S7.

Results

Comparison of gene expression profiles between the two
platforms
The expression profiles of 18,306 common genes were

compared between the two platforms, at individual time points

(Figure 2). While high correlations (r = 0.88–0.90) were observed

between the gene expression profiles generated by the two

platforms at all six time points (similar results observed at

T= 72 hour, data not shown), differences in expression profiles

were also apparent between the two platforms, with a number of

genes exhibiting relatively higher expression values in either

platform.

The overall dynamic range was much broader in RNA-Seq

(2.66105) than that in microarray (3.66103), especially at both the

lower (with relative expression level less than 0.55) and the upper

(with relative expression level greater than 0.95) ends. Note the

relative expression level of each gene in the last plot in Figure 2
was determined based on the average of log2 transformed

expression values in all 12 samples. A relative expression level of

0.5 represents an underlying expression value in the middle of the

range for all expression values. The vertical lines in the last plot of

Figure 2 indicate the relative expression levels at 0.30, 0.55 and

0.95 respectively. About 30% of expression values generated by

the RNA-Seq platform were wither zero or below the floored level

(0.047 RPKM). A broader dynamic range was observed in RNA-

Seq compared to microarray at both ends, i.e. with relative

expression level either less than 0.55 or greater than 0.95. A

similar dynamic range was displayed in both platforms for genes

with relative expression level between 0.55 and 0.95. Due to

background hybridization or noise, all genes had an expression

value in microarray, regardless of whether it was truly expressed or

not.

The correlation coefficients between biological replicates range

from 0.995 to 0.997 in microarray (see Figure S1), and the

associated p-values with sample size of 18,306 genes are 0 (less

than 1e-300). The corresponding correlation coefficients are 0.997

to 0.998 in RNA-Seq (Figure S2). Note that the correlation was

calculated using log2 transformed expression values. For those

genes with low expression levels, variability is higher in RNA-Seq.

Clearly, RNA-Seq has a better correlation than microarray, as

shown in Figure S1 and Figure S2.

Comparison of ANOVA results between the two
platforms
The variances, both between and within treatment group at all

six time points, in log2 transformed expression values of the 18,306

common genes were analyzed by one-way ANOVA for both

platforms (Figure 3). Within-group variances reflect data

reproducibility, while between-group variances represent the

sensitivity of platform to detect differential gene expression in

response to T cell activation. For most genes, the between-group

variances were larger than the within-group variances in both

platforms (Figure 3, A–C), which is consistent with the

expectation that many genes should be differentially expressed

during the process of T cell activation. For genes with relatively

low expression (relative expression level ,0.47), within-group

variances were higher in RNA-Seq than in microarray, repre-

senting lower reproducibility between the biological replicates. For

genes with relatively high expression, within-group variances were

lower in RNA-Seq, representing higher reproducibility

(Figure 3C). The between-group variances exhibited similar

patterns for genes with high expression in both platforms, whereas

higher variances were observed in RNA-Seq for those genes with

low expression (Figure 3C).

The capability to detect differential gene expression in both

platforms was evaluated as an F-score generated by one-way

ANOVA. Similar differential gene expression profiles were

obtained in both platforms, as illustrated by high correlation

coefficient (r = 0.718) between two sets of log-transformed F-scores

(Figure 3D). 75.5% of genes exhibited higher F-scores in RNA-

Seq, as compared to microarray. Positive correlations between F-

scores and relative expression levels were observed in both

platforms, indicating greater power in the detection of differential

expression for genes with higher expression levels (Figure 3E).

Using the F-score based, False Discovery Rate (FDR) adjusted P-

value of 0.05, as a cut off, microarray and RNA-Seq selected

56.0% and 71.5% of genes, respectively, as differentially expressed

among the six time points (Figure 3F).

Comparison of differential gene expression profiles
between the two platforms
Selection criteria for differential expression required genes to

have fold-change greater than 2.0, FDR-adjusted p less than 0.05,

and expression value greater than the median of values in all

common genes (RPKM of 0.49 for RNA-Seq, and intensity of 40.2

for microarray) in at least one condition. Table 1 summarized the

differentially expressed genes at five time points after Th17

activation. Despite the high overlap between microarray and

RNA-Seq results, there are also many differentially expressed

genes that are unique to either platform. Our selection criterion

for whether a gene is differentially expressed is very sensitive to a

2-fold change cut off. The overall similarity between the two

platforms becomes more evident if we draw a heat map of fold

RNA-Seq and Microarray in Transcriptome Profiling

PLOS ONE | www.plosone.org 3 January 2014 | Volume 9 | Issue 1 | e78644



change for those differentially expressed genes which are close to,

but lower than, 2-fold.

As displayed in Table 1, more genes were detected as

differentially expressed in RNA-Seq as compared to microarray,

especially for those that were down-regulated. The pattern of the

number of differentially expressed gene across time points for

RNA-Seq was interesting. It was noted that at late time points, i.e.

24 and 72 hours, the number of up-regulated genes increased,

while the number of down-regulated genes decreased in RNA-Seq

(compared to the expression changes at 4 or 6 hours). In contrast,

in microarrays no apparent increase or decrease was observed if

we compare the differentially expressed genes at 24 or 72 hours

with those at 4 or 6 hours.

Differential gene expression profiles of 18,306 common genes at

each of the five time points following Th17 activation were

compared between the two platforms (Figure 4, and data not

shown). Similar differential gene expression profiles were obtained

in both platforms at each time point, as illustrated by high

correlation coefficient (r = 0.78–0.80) between the two sets of log-

transformed ratios. However, the magnitude of differential

expression was greater in RNA-Seq than in microarray, as

indicated by the slopes (m= 1.18–1.27) at each time point. The

distribution of differentially expressed genes, either platform

specific or common to both platforms, was independent of their

expression levels (Figure 4). Also, while a large number of genes

were identified as differentially expressed in both platforms

(colored in blue in Figure 4), there were still a number of genes

specifically detected as differentially expressed in only one

platform (colored in red and green, respectively, in Figure 4).

There are several reasons for platform-dependent measurement of

differentially expressed genes. First, as shown in Figure 2, the

differences in expression profiles for some genes were apparent

between the two platforms, and accordingly, different fold changes

are calculated and reported. Second, for genes with very low or

very high expression levels, RNA-Seq is more likely to detect the

changes at two different conditions, as we will demonstrate later.

Third, a microarray probe might hit some, but not all, isoforms of

a gene, and as a result the reported fold change of the probe set

does not necessarily represent the expression change of the entire

gene. Probe set 205277_PM_at is a case in point, which we will

discuss in the Discussion section, as well as all of the inherit biases

of microarray and RNA-Seq in detection of differential expression.

Figure 2. Comparison of expression profiles of 18,306 common genes between both platforms. Scatter plots show the averages
(between biological duplicates) of log2 transformed expression values between two platforms, at each individual time point. The relationship
between the expression profiles generated in both platforms is depicted as either a smoothing spline (black) or a linear regression line (red). The
intercept (b) and the slope (m) of the linear regression line, and the correlation coefficient (r) are reported at the top-left corner in each plot
corresponding to each time point. The plots show that the overall dynamic range of the 18,306 common genes generated by the two platforms is
much broader in RNA-Seq (2.66105) than in microarray (3.66103). Similar dynamic ranges are displayed in both platforms for genes with relative
expression level between 0.55 and 0.95. In each platform, the relative expression level of each gene was determined based on the average of log2
transformed expression values in all 12 samples.
doi:10.1371/journal.pone.0078644.g002
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Additional benefits achieved by RNA-Seq
Multiple transcripts generated from the same gene via

alternative splicing is a common phenomenon in evolution and

some of these variant transcripts have been shown provide

differential functions which may have important implications to

the survival and physiological response of the organisms. One of

Figure 3. Comparison of ANOVA results between both platforms. Between-group (BG) and within-group (WG) variances are presented as the
square root of the mean difference for each gene, and are plotted against the relative expression levels on both platforms, microarray (MA, panel A)
and RNA-Seq (RS, panel B). The averages of variances (in square root, panel C) for between- and within-groups are plotted (panel C). The F-scores of
18,306 common genes are compared between two platforms (panel D), and the averages of F-scores (in square root, panel E) are also presented
along with the relative expression levels by using smoothing spline for both platforms. The distributions of FDR-adjusted p-values, based on F-scores
in both platforms are presented (panel F).
doi:10.1371/journal.pone.0078644.g003

Table 1. Comparison of differentially expressed genes identified from RNA-Seq and microarray.

Comparison Gene Expression RNA-Seq unique Common Microarray unique

2 hr vs 0 hr Increased 911 602 801

4 hr vs 0 hr Increased 1439 983 1325

6 hr vs 0 hr Increased 1680 1135 1460

24 hr vs 0 hr Increased 2290 1258 1480

72 hr vs 0 hr Increased 2696 1441 1668

2 hr vs 0 hr Decreased 2172 551 608

4 hr vs 0 hr Decreased 3920 1545 1611

6 hr vs 0 hr Decreased 3818 1597 1677

24 hr vs 0 hr Decreased 2442 1282 1547

72 hr vs 0 hr Decreased 2396 1374 1712

Note: Selection criteria for differential expression required genes to have fold-change greater than 2.0, FDR-adjusted p less than 0.05, and expression value greater than
the median of values in all common genes (RPKM of 0.49 for RNA-Seq, and intensity of 40.2 for microarray) in at least one condition.
doi:10.1371/journal.pone.0078644.t001
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the key advantages of RNA-Seq is that it can differentiate the

expression of individual isoforms in transcriptome profiling.

RORct is an orphan nuclear receptor playing an important

regulatory role in promoting differentiation of CD4 T cells into

pro-inflammatory T helper 17 (Th17) cells [26]. RORct and

RORc are two isoforms derived from the same gene RORC by

alternative splicing. In contrast to the functional role of RORct in

T cells, RORc is involved in metabolism and expressed in other

cell types such as adipocytes and hepatocytes. In the microarray

platform, probe sets 228806_PM_at and 206419_PM_at hybridize

to the RORC gene in regions that are common for both RORct

and RORc transcripts and therefore cannot differentiate the

expression of these isoforms. As shown in Figure 5, it is evident

from RNA-Seq results that RORct was the dominant isoform

expressed in CCR6+ memory CD4 T cells.

Comparing to microarray platform, RNA-Seq seems to be more

sensitive in direct measurement of low abundant transcripts

(Figure 2) as well as in detection of changes in expression of these

transcripts under different conditions (Figure 3E). An example of

a low abundant transcript MYCL1 in T cells was demonstrated in

Figure 4. Comparing differential expression profiles of 18,306 common genes between microarray and RNA-Seq. Scatter plots of log2
transformed ratios (vs. baseline at T = 0 h) between both platforms at selected time points (T = 2, 6, and 72 hour) show similar results are observed at
T = 4 and 24 hour. Genes that are specifically differentially expressed in microarray or RNA-Seq are colored in red and green respectively, and genes
that are differentially expressed in both platforms are colored in blue.
doi:10.1371/journal.pone.0078644.g004
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Figure 6. RNA-Seq results showed that MYCL1 was expressed at

low levels (with a RPKM of 1.7) prior to activation. Following T

cell activation, its expression decreased further, with a level that

was only 3% of the resting T cells at 2 hour after stimulation.

Microarray failed to detect any changes in MYCL1 expression in

T cell samples at all time points. On the other hand, microarrays

are prone to ‘‘hybridization saturation’’ for highly abundant genes.

Under this circumstance, microarray cannot give reliable quan-

titative measurements of subtle changes of high abundant genes

(Figure 3E). As shown in Figure 7, ACTB was expressed at high

levels in all conditions as measured by both RNA-Seq and

microarray (Figure 7). b-actin (ACTB) is a highly conserved

protein that is involved in cell motility, structure, and integrity,

and has been used extensively for normalization of gene expression

data. Microarray studies showed a stable level of ACTB expression

among all samples tested, whereas RNA-Seq clearly demonstrated

that ACTB expression was increased 2 to 4-fold in activated T

cells when compared to resting cells at 0 hour. The fold-change in

our RNA-Seq data was consistent with previous reports indicating

that ACTB expression was 5.3-fold up-regulated in activated

lymphocytes detected by quantitative polymerase chain reactions

(qPCR) [27].

In addition to differential expression studies, RNA-Seq is also

capable of identifying single nucleotide variants (SNV) in human

populations and genetic polymorphism have been shown to be

important information in identification of defective genes associ-

ated with inherited diseases. Compared to array-based genotyping

platforms, sequencing-based technology such as RNA-Seq have

two key advantages in detecting genetic variants: (1) no prior

knowledge on potential variants is required; and (2) detection is

genome-wide even for rare SNPs. As shown in Figure 8, the

donor was found to have a mutation in the IL23 receptor (IL23R)

gene sequence, which resulted in a Gln to His change at the 3rd

amino acid at the N-terminal of the receptor. The change

corresponded to rs1884444 in the dbSNP database. IL23R is

expressed on a number of immune cell types including T cells and

natural killer (NK) cells (http://ghr.nlm.nih.gov/gene/IL23R).

When IL23R binds to its ligand IL23, a series of signalling events

are triggered inside the cell influencing both innate and adaptive

immune responses. It would be of interest to investigate the

potential change in cellular response to IL23 in donors expressing

this IL23R variant identified from our RNA-Seq data analysis.

Our RNA-Seq data also confirmed that there existed a soluble

form of IL23R in Th17 T cells in addition to the complete trans-

membrane IL23R [12]. This new isoform is shorter, and truncated

at exon 6. The sequencing depth is almost doubled from exons #1

to #6 compared to the rest of the exon regions, and this pattern

can be easily understood when both isoforms are expressed. The

soluble isoform IL23R has been further confirmed by RACE

(rapid amplification of cDNA ends) [12].

Probe set issues: redundancy, annotation and selective
coverage
The fact that multiple probe sets correspond to the same gene is

both a blessing and a curse to data analysis. Usually, these

redundant probe sets agree with each other but it is not

uncommon when they do not yield a consensus, or even conflict

with each other, as demonstrated in Figure 9. In this figure, the

blue and green bars represent gene expression levels at 0 hour and

2 hour, respectively. Interpretation of whether the expression for

those genes increased or decreased during the early stage of T cell

Figure 5. Detection of splicing variants with RNA-Seq approach. Human RORcand RORct are the two isoforms of the RORC nuclear receptor
generated from alternative splicing of the gene. RNA-Seq results showed that RORc and RORct are encoded in the minus strand of the gene and their
mRNA transcripts share most of the exons except for one or two exons at the 59 end. RORc mRNA utilizes specific exons 1 and 2 whereas RORct
mRNA has its specific exon 1, and the two transcripts are driven by their distinct promoters. In microarray studies, these two isoforms were
indistinguishable since the two probe sets 228806_PM_at and 206419_PM_at hybridize with the exon regions that are common for these two
isoforms. In contrast, RNA-Seq showed the specific expression of RORct but not RORc in CCR6+ CD4 T cells.
doi:10.1371/journal.pone.0078644.g005
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activation is dependent upon the reporting probe sets. Since it is

biologically impossible for a gene to increase and decrease

simultaneously, at least one of the probe sets is necessarily

inaccurate.

In our microarray dataset, probe set 224321_PM_at indicated

that TMEFF2 was highly expressed at all time points (Figure 10).

However, a contradictory result was found with RNA-Seq, which

detected no expression for this gene. While investigating this

discrepancy between the two platforms, we mapped

224321_PM_at to human genome hg19. We found the probe set

224321_PM_at more accurately falls in a genomic region different

from TMEFF2, and concluded that the annotation for

224321_PM_at is in error. In fact, the other two probe sets for

TMFF2, 233910_PM_at and 223557_PM_s_at, measured only

background signal, supporting the RNA-seq finding that there was

no expression of TMFF2. Another example is the association

between probe set 227386_PM_s_at and TMEM200B, which

more accurately targets the overlapping region of genes

TMEM200B and EPB41 (Figure 11). Our RNA-Seq dataset

very clearly showed high expression of EPB41, but no expression

for TMEM200B. When using the Affymetrix annotation for

227386_PM_s_at, we therefore incorrectly assigned expression of

EPB41 to TMEM200B in our microarray dataset.

Ideally, a probe set could target all alternatively spliced isoforms

of the same gene. In practice, a probe set quite often targets only

some, but not all, of the isoforms - or worse yet, might instead

target an intron region of a gene. In such a situation, the reported

change by this probe set does not truly reflect the entire gene. For

instance, our microarray dataset detected a 5.7-fold increase for

PDE6D between 0 hour and 2 hour, but RNA-Seq detected an

insignificant decrease. The reason for this conflict is that the

microarray probe set for PDE6D, 231065_PM_at, actually targets

an intron region. Figure 12 illustrated another common scenario.

For PRDM2, probe set 205277_PM_at reported a 6.3-fold

decrease from 0 hour to 4 hour. However, the decrease was not

supported by other probe sets targeting PRDM2. There were 4

known isoforms for this gene, and transcript NM_001007157 was

the most dominant isoform in terms of expression level according

to read mapping in RNA-Seq data. Probe set 205277_PM_at hit

minor isoforms NM_012231 and NM_001135610, and thus, the

reported 6.3-fold decrease represented only the change of the two

minor isoforms, not the entire gene. In microarray data analysis, a

Figure 6. Comparison of RNA-Seq and Affymetrix microarray in detection of genes expressed at low levels. Expression of MYCL1 was
at low levels in CD4 T cells and the subtle change in MYCL1 expression in the process of T cell activation cannot be detected by microarray approach
(center and right panels). The high sensitivity of RNA-Seq approach allows detection of a more than 32-fold decrease in MYCL1 mRNA expression
upon T cell activation (left panel).
doi:10.1371/journal.pone.0078644.g006

Figure 7. Comparison of RNA-Seq and Affymetrix microarray in detection of genes expressed at high levels. b-actin (ACTB) is
expressed at high levels in all conditions as measured by both RNA-Seq and microarray. Microarray detected similar levels of ACTB between resting
and activated T cells whereas RNA-Seq showed a 2 to 4-fold increase in activated T cells. ACTB has been reported to be 5.3-fold up-regulated in in-

vitro stimulated lymphocytes measured by quantitative polymerase chain reactions [26].
doi:10.1371/journal.pone.0078644.g007
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Figure 8. Detection of gene polymorphism with RNA-Seq approach. A single nucleotide change was identified in the IL23R gene of this
donor from sequence reads in RNA-Seq. The change results in a Gln to His mutation at the third amino acid of the N-terminal of IL23 receptor.
doi:10.1371/journal.pone.0078644.g008

Figure 9. The controversy of redundant probe sets in microarray, and inconsistent results were obtained in Affymetrix microarray.
The bars in blue represent genes expressed at 0 hour in resting T cells, while the bars in green correspond to genes expressed after 2 hour of T cell
stimulation. The y-axis indicates gene expression levels in log2 scale.
doi:10.1371/journal.pone.0078644.g009
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probe set is usually assumed to correspond to a gene, and

accordingly, the reported change is considered to reflect the gene

expression change. This assumption is reasonable for the majority

of probe sets, but not all of them.

Discussion

A reasonable approximation of the values derived by micro-

array probe sets are the composite of three signals: 1) specific

signal produced by the originally targeted labelled transcript, 2)

cross-hybridization signal produced by transcripts that have non-

perfect, but still significant, sequence similarity with the probe set,

and 3) non-specific background signal, which is present in the

absence of any significant sequence similarity. Because of

background noise and cross-hybridization, microarrays have

difficulty detecting genes with low expression level, and thus

cannot distinguish ‘‘no’’ from ‘‘low’’ expression. Microarray probe

intensity is assumed to be proportional to the concentration of the

transcript, but also depends on the affinity of the probe under the

given hybridization conditions. This affinity is determined to a

large extent by the actual nucleotide sequence stretch participating

in the binding. The sequence-affinity relationship is rather poorly

understood. Thus, we usually cannot compare gene expression

across different probes directly because signal intensity of the

probe does not necessarily correlate with gene expression. This

could be due to the cross-hybridization of the probe to a transcript

of another gene, mapping of the probe to an intron, alternative

splicing or single nucleotide polymorphism.

Affymetrix three-prime expression microarrays contain thou-

sands of redundant probe sets that interrogate different regions of

the same gene. For the cases where multiple probe sets represent

the same gene, the assumption would be that the expression level

changes should be consistent for all of those probe sets. Although

this is a general assumption with microarray technology, it is not

always the case, as demonstrated in Figure 9. Differential

expression analysis methods rarely consider probe redundancy,

which can lead to inaccurate inference about overall gene

expression, or cause investigators to overlook potentially valuable

information about differential regulation of variant mRNA

products. Multiple probe sets representing the same gene poses a

Figure 10. Inaccurate annotation of probe set 224321_PM_at resulted in conflicting results between Affymetrix microarray and
RNA-Seq approaches for TMEFF2 expression. In Affymetrix microarray studies, probe set 224321_PM_at showed high expression of TMEFF2 at
0, 2, 4 and 6 hours. However, the high expression reported by probe set 224321_PM_at is supported neither by 233910_PM_at nor by
223557_PM_s_at. In contrast, there was no detectable expression of TMEFF2 in RNA-Seq studies. As a matter of fact, the probe set 224321_PM_at is
mapped to a genomic region that is unrelated to TMEFF2, and thus this Affymetrix probe set is inaccurately annotated.
doi:10.1371/journal.pone.0078644.g010
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very practical issue for microarray data analysis and interpretation

[28–30]. As demonstrated above (Figure 10 and Figure 11), the

inaccurate annotations for some probes can lead to a wrong

conclusion in microarray data analysis. In order to correct the

annotation issue, some research groups have developed compu-

tationally efficient tools to regroup the individual probes into

consistent probe sets and then remap the probe sets to the correct

sets of mRNA transcripts [31,32]. However, it is difficult for third-

party annotations to become widely adopted in place of the more

commonly used Affymetrix annotations. Splice variants constitute

an additional dimension of difficulty in microarray data analysis,

as a single gene may have a large number of potential variants. A

given short nucleotide probe targets either a constitutive exon

(present in all splice variants) or an exon specific for certain splice

variants. In the latter case, the specific splice variant will be

measured, but other variants of the same gene will be ignored.

Consequently, not all probe sets on Affymetrix arrays can

represent entire genes, as shown in Figure 12.

RNA-Seq is a powerful technology that is predicted to replace

microarrays for transcriptome profiling [9]. Compared to micro-

array, RNA-Seq avoids technical issues in microarray studies

related to probe performance such as cross-hybridization, limited

detection range of individual probes, as well as non-specific

hybridization. Because it does not require probe design, it is

devoid of the issues inherent with probe annotation. However,

there are challenges involved with RNA-Seq that is currently

limiting its potential utilization. The cost of RNA-Seq is more

expensive than microarray, and thus RNA-Seq may be impractical

for large studies. RNA-Seq is relatively new to most researchers,

and the tools for RNA-Seq data analysis are far from mature. The

lag between the development of data analysis tools and the speed

with which RNA-Seq technology is advancing is already creating a

data bottleneck for many users. Sequence reads in RNA-Seq are

typically short, and do not always map uniquely to a single gene or

isoform. Paralogous gene families, low-complexity sequence and

high sequence similarity between alternatively spliced isoforms of

the same gene are primary factors contributing to mapping

uncertainty. As a consequence, a significant number of reads are

multireads: reads that have high-scoring alignments to multiple

positions in a reference genome or transcript set. How to assign

multireads to genes remains a problem in reads mapping.

RNA-Seq analysis is vulnerable to the general biases and errors

inherent in the next-generation sequencing (NGS) technology

upon which it is based. The fragments are not uniformly sampled

and sequenced, as there is variability in sequencing depth across

the transcriptome due to preferential sites of fragmentation,

variable primer and tag nucleotide composition effects [33,34]. To

address these biases, within- and between-sample correction and

normalisation procedures have to be applied to correct sequence

error, nucleotide composition, length or library preparation biases

[35–38]. These approaches yield improvements in the corre-

sponding RNA-Seq read counts with expression estimates gained

by other experimental approaches. As sequencing technology

advances, RNA-Seq experiments will continue generating larger

Figure 11. The gene expressions of EPB41 and TMEM200B are reported by microarray (top panel) and RNA-Seq (bottom panel).
Probe set 227386_PM_s_at targets the overlapping region of both gene EPB41 and TMEM200B (bottom panel). RNA-Seq clearly shows high
expression of EPB41, but no expression of TMEM200B. The high expression of EPB41 is also shown by probe set 225051_PM_at (top panel). Because
the Affymetrix library file associates probe set 227386_PM_s_at with only TMEM200B, it inaccurately reports high expression values for this gene.
doi:10.1371/journal.pone.0078644.g011
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volumes of data at lower cost, presenting increasing challenges for

data management, storage, and analysis [39,40]. The amount of

data produced by an RNA-Seq experiment can be staggering -

orders of magnitude greater than microarrays. In our study, for

instance, a typical raw CEL data file generated from Affymetrix

HT HG-U133+ PM array was 5 MB, whereas RNA-Seq sequence

data in FASTQ format was roughly 23 GB. The raw data alone

increases 4,600-fold per sample. Fortunately, in recent years, cloud

computing [41] has emerged as a viable option to quickly and

easily acquire computational resources for large-scale RNA-Seq

data storage and analysis.

RNA-Seq can detect novel transcripts and isoforms, map exon/

intron boundaries, discover sequence variations and reveal splice

variants. For the study of differential gene expression, RNA-Seq

does not suffer from hybridization-based limitations associated

with microarray such as background noise and saturation, or with

probe set issues such as incorrect annotation and isoform coverage.

RNA-Seq is more sensitive in detecting genes with very low

expression and more accurate in detecting expression of extremely

abundant genes. RNA-Seq also has a wider dynamic range than

microarray. With manufacturers predicting increased read lengths,

reduced costs and faster sequencing relative to existing platforms,

the future of RNA-Seq technology appears to be both promising

and routinely affordable for most researchers. It is expected that

once the barriers to widespread use of RNA-Seq are overcome—

higher cost, high data-storage requirements, and the absence of a

gold standard for analysis—this technique will become the

predominant tool for transcriptome analysis.

Data availability
The raw RNA-Seq data from this study has been deposited at

the NCBI sequence read archive under the accession number

SRP026389, while the raw microarray data is available at the

NCBI Gene Expression Omnibus with the accession number

GSE48978.
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