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Comparison of 6° Obtained from the Conventional
Definition with 0° Appearing in the Radar
Equation for Randomly Rough Surfaces

D. M. LEVINE

Abstract—A comparison is made of the radar cross section of rough
surfaces calculated in one case from the conventional definition and ob-
tained in the second case directly from the radar equation. The objec-
tive of the analysis is to determine how well the conventional definition
represents the cross section appearing in the radar equation. The analy-
sis is executed in the special case of perfectly conducting, tandomly
corrugated surfaces in the physical optics limit. The radar equation is
obtained by solving for the radiation scattered from an arbitrary source
back to a colocated antenna. The signal out of the receiving antenna is
computed from this solution and the result put into a form recognize-
able as the radar equation. The conventional definition is obtained by
solving a similar problem but for backscatter from an incident plane
wave. It is shown that these two forms for ¢° are the same if the ob-
server is far enough from the surface; However, the usual far-field cri-
teria are not sufficient. For the two cross sections to be the same, the
observer must be far from the surface compared to the radii of curva-
ture of the surface at the reflection (specular) points. Numerical com-
parison of the two cross sections has been made for normally distrib-
uted surfaces and the difference can be significant.

INTRODUCTION

N THE CONVENTIONAL definition of radar cross section
(see [2], [11], [12]) a limit is taken as the observer recedes
to infinity

. 2 s 'é;’:
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where & is the scattered field and e; is the incident electric
field. In this limit, all radiation has approximately plane phase
structure. Of course, in an actual radar measurement the dis-
tance between the scattering element and the observer/trans-
former is finite and the incident radiation does not have a
truly plane phase structure. The measurement is governed not
by (1) but by the radar equation, and in the radar equation the
scatterer/observer geometry and the phase structure of the in-
cident radiation must be taken into account. The validity of
the conventional definition for radar cross section and any
simplifying assumptions such as the use of incident plane
waves to calculate the scattered fields lies in their ability to
yield the same cross section as appears in the radar equation.
The objective of this paper is to seek insight into conditions
under which the conventional definition yields the same cross
section as appears in the radar equation. This will be done by
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Fig. 1. Geometry for the calculation of scattered fields.

examining a special case in which both the conventional defini-
tion and the radar equation can be obtained analytically under
an identical set of assumptions. The special case to be treated
is that of a randomly rough conducting surface in the case of
two dimensions (line sources and corrugated surfaces). This is
an idealized model relevant in a first order to scattering from
long crested ocean waves and perhaps to other rough surfaces
such as plowed fields. A solution will be obtained in the phys-
ical optics limit, adopting a Kirchoff (i.e., tangent plane) ap-
proximation to obtain the fields on the surface and then evalu-
ating the Helmholtz integral (Green’s theorem) asymptotically
in the high-frequency limit. This procedure has proven to be
reasonable for microwave scattering from ocean surfaces {5],
[6]. Two problems are to be solved using this approach (see
Fig. 1). In the first case, a plane wave will be assumed to be
incident on the surface and the fields scattered to an arbi-
trarily located observer will be computed. This result will then
be used in the conventional definition to determine the radar
cross section for the case of backscatter (monostatic cross sec-
tion). In the second problem, the source of the radiation will
be an antenna at an arbitrary position above the surface. The
fields scattered from the surface back to a co-located receiving
antenna will be obtained and will be used to compute the
available power. It will be shown that this expression for
power has the form of the radar equation and the term corre-
sponding to radar cross section will be identified. It will be
shown that the two forms for radar cross section are identical
if the observer is far from the surface compared to the radii of
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curvature of the surface at the points of reflection (stationary
points). This restriction is not a far field (e.g., Fraunhoffer)
requirement. Rather it is a consequence of focusing of the
scattered rays (caustics) which can occur in the physical optics
approximation [14]. This focusing does not appear in the
conventional definition because the observer is at infinity.

To obtain an indication of the significance of the difference
between the two cross sections, numerical examples have been
computed for a normally distributed random process. This is
an example surface which has been used in studies of the scat-
tering from fully developed ocean waves [3}, [17]. The dif-
ferences between the two cross sections can be significant, and
values for representative situations are presented.

SCATTERED FIELDS

Solutions are desired for the electric field scattered from an
irregularly corrugated, perfectly conducting surface in two
cases: 1) the incident radiation is a plane wave, and 2) the inci-
dent radiation is produced by an antenna located at an arbi-
trary point above the surface. These two problems are illus-
trated in Fig. 1. The solutions will be specialized to the case
in which there are no variations perpendicular to the plane of
the figure (i.e., two dimensions) and results will be obtained
explicitly for the case of backscatter.

The scattered electric field eg(r, ) for both problems can be
expressed in terms of the Helmholtz integral which in the case
of perfectly conducting boundaries has the following form:

e, v)= ‘ﬁ % gFF") ds

surface

@

where g(7/F') is the two-dimensional Green’s function j/4 H§V .
& |F -7 [), and 7 is a unit vector normal to the surface Z(y).
The kernel 9¢/dn in this integral will be evaluated for both
problems by making a Kirchoff approximation: That is, the
fields at a particular point on the surface are assumed to be the
same as would exist on an infinite plane tangent to the surface
at that point. Assuming perpendicular polarization (Eo =
Ey %), the Kirchoff approximation yields the following kernel
for incident plane waves [14] :
g—: =2j(k -n)Eoxel* 7 (3a)
and in the case of radiation from the finite source the Kirchoff
approximation yields the form [15]

22 = VAT K cos (9~ @) HPGR) F(y,) 2.
In (3b), the function F(y, v) is the Fourier transform of the
source current density J(z, y), evaluated at spatial frequencies
vy = vfc sin ¢(y) and v, =v/c cos ¢(¥). R(p) is the distance
from the source to the surface, a(p) is the slope of the sur-
face, ¢(y) is the angle R(y) makes with the vertical (z-axis),
and k = 2mv/c. The frequency of the incident radiation is »
and H§V(kR)=+/2J7kR exp [j(kR - n/4)] is the asymp-
totic form for large kR of the Hankel function of first kind
[1]. Equatjon (3b) was obtained by representing the source in
terms of an equivalent current distribution, X J(z, y) (e.g., the

(3b)

equivalent aperature illumination of the antenna). Then the
Kirchoff approximation was used to find the fields on the sur-
face taking into account radiation from the image of the
source below the tangent plane. This results in an integral over
the equivalent current distribution and its image which has
been evaluated here using a Fraunhoffer approximation [15,
appendix A and B]. This is an appropriate procedure when
the antenna is small relative to the distance to the surface, a
restriction which is to be distinguished from requiring that the
antenna be in the far field of the scattering elements (surface).
The latter restriction implies limitations on the relative size of
the object while the former implies a restriction on the size of
the antenna (for given distance and wavelength).

Substituting (3) into (2) and performing the integration in
the limit kR —> <> by means of a saddle point approximation
[8] yields the physical optics solution for the scattered fields.
Assuming in the plane-wave case that the wave is incident at
angle 6 and that scattering is to an observer at (y =0,z = H),
one obtains

~ 8- ]
e Tl
all y,, €OS (- @

+ -1/2
[-aEeS s e
where
P(¥n)=R(yn) tynsinb - Z(y,)cosd (4b)
R =VH-Z()]* +5* (40)
p=tan™ [y/(H-Z(y))] (4d)

and R,(») is the radius of curvature of the surface at y. The
n are the stationary points defined by 3®/dy = 0. To obtain
the radar cross section for backscatter, (4a) will be evaluated
in the limit that the observer recedes to infinity (R(y) - =)
along a ray parallel to the direction of incidence 8 of the plane
wave. In this limit, scattering occurs at points where a = =60
and the result for very large R(») is

R(yn) JLIEN)
2R(y,)

These are cylindrical waves propagating from the stationary
points back in the direction of the incident plane wave.

The equivalent result in the case of radiation from the an-
tenna is obtained by substituting (3b) into (2). Assuming a
source and observer co-located at (¥ =0, z = H) one obtains
the following result for backscatter:

ﬁ(yn, v)

&7, v)=-jE,X 2.
alt y,

)

S5 oNe FD F2kR(yn)
e,(F,v)=-FuX ﬂ%n VARG e
R . -1/2
' [l ) R((J;))] €
where
Eo =~ /ule e7™% \Jk]87 F(0,v) (6b)
F(yp,v)=F(yn, v)IF (@, ). (6¢)
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The amplitude in (62) has been normalized so that the electric
field radiated by the antenna in the direction 8, the angle of
incidence of the plane wave, is equal to the amplitude of the
plane wave. In this normalization F(y,, v) is the far-field
radiation pattern of the antenna. F(#, v) is a constant; and if
F(8,v) is the maximum value of F(y,, »), then F(y,, v) is the
relative field pattern of the source [7].

Prior to using the scattered fields given by (4) and (6) to ob-
tain expressions for radar cross section, some comments are in
order, First, the solutions for &,(7, v) are applicable to surfaces
which are large compared with the distance R(»), to the ob-
server. In particular, although the assumption kR > 1 was
used to justify an asymptotic expansion of the Helmholtz inte-
gral, it was not necessary to make a sagital approximation for
R(y) in the evaluation of (2). That is, it has not been neces-
sary to expand R(y) in a power series in y and Z(») keeping
only terms up to first order iny and Z(y). As a result, (4) and
(6) are applicable as long as the observation point is many
wavelengths above the surface (kR large) regardless of the size
of the surface. This is in contrast to making a Fraunhoffer ap-
proximation in which it is necessary to impose restrictions on
the size of the surface relative to the distance to the observer.
(Typically L/R <1 and kL%/R < 2 where L is a dimension
characteristic of the surface.) Secondly, in the limit R(y,) >
oo backscatter from the plane wave and finite source ((5) and
(6), respectively) become very similar. If the size of the sur-
face is restricted so that one can also do a binomial expansion
of R(y) about R, the distance from the observer to the cen-
ter of the illuminated surface, then one can show that

¢(¥)=2R(»)- R,

and in this case, the phase factors in (5) and (6) are equal to
within a constant (which is arbitrary for the plane wave).
Thus, as R(»,,) = °°, one obtains

€s(7, V)piane Wave

Re(Yn) il2kR(yn)-R,)

=-jEoXx (72)
° a,‘?;n 2R(¥n)
&7, V)Source
N F(n,0) ./ Re(¥n) _j2kR(3p)
=-jEoX e .
oF & VRow V 2R(n)
(7b)

Hence, in this far-field (Fraunhoffer) approximation, except
for the arbitrary phase, the two solutions differ only by the
factors F(y,, v)\R(»,) which are the antenna pattern (F)
and the cylindrical spreading (1/2/R(y,)) present in the case
of radiation from a finite source. If this ratio is kept constant
as R - oo, the two solutions are directly proportional.

As a final comment consider the singular case of a flat
surface, Z(y)=0. In this case there is only one stationary
point in both (4) and (6) and this corresponds to the ray nor-
mally incident on the surface. Of course R (¥,) =  in this
case. Setting o = 0 in (4) and letting R, = o= yields a reflected
plane wave &= -Eox exp (FKR(0)) as expected. In (6) set-
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ting R, — °° also yields one solution, which in this case is just
radiation from the image of the antenna below the surface.

RADAR CROSS SECTION

With minor modifications to specialize the results to two
dimensions, the conventional formula for radar cross section
may be written [2], [10}, [11]

e,(F,v) eX(F,v)

)= 1 27R
o)= Hm 2R\ F.0) G v)

R — o

8

where &,(7, v) is the scattered field and &;(7, ») is the incident
electric field. For distributed targets such as land and ocean
surfaces in which there are many randomly located scattering
elements per radar footprint, it is convenient to define a nor-
malized cross section {a°(8)) [16], [18] as follows:

(6°(8)) £ (0(8))/Length

1 &(F,v) & (F,v)
S m 2"R< 2/, v) - &7, v) > ©)

where the brackets { ) denote an ensemble (statistical) average.

Alternatively, the radar equation itself may also be regarded
as the definition of radar cross section. In the case of dis-
tributed targets, one may write the radar equation for the
received power, P,(v), in the following form in two dimensions
[18]:

(P,@)) = f

surface

4 Pi(5)G(5)G,(s)

P (1R)’ (0°(0)) ds

(10)

where P, is the transmitted power and G, and G, are the gains
of the transmitting and receiving antennas, respectively.

The objective of this paper is to compare the conventional
definition for (0°) (see (9)) with the normalized cross section
appearing in the radar equation (equation (10)). This will be
done in the special case of rough, corrugated conducting
surfaces using the solutions for the scattered fields obtained
in the previous section. To obtain the cross section from the
definition, denoted here by (6°(8))py, (4a) will be substituted
into (9). To obtain the form for the normalized cross section
as it appears in the radar equation, to be denoted here by
(0°(0)ge, first, the expression for the scattered fields (see
(6)) will be used to determine the power available from the
receiving antenna and then this solution will be cast into the
form of a radar equation and the terms corresponding to (¢°)
identified. Finally, to make the required averages tractable, it
will be assumed that the fields scatter incoherently and that
the stationary points (specular points) are homogeneously
distributed over the surface (i.e., spatially stationary). These
latter assumptions have been used in the past to analyze
scattering from rough surfaces [3], [13]. Ideally, (¢°(8))pw
will be identical to (6°(8))gr. However, as will be shown,
this is only true if the receiving antenna is far from the illumi-
nated surface compared to the radii of curvature of the surface
at the stationary points: R(y,) > R (»,).

To begin, consider the radar cross section obtained from the
definition (see (9)). Substituting (4a) into (9) and assuming
that the scattered fields &4(7, ») are incoherent, one obtains
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the following:

. 21 cos?(8 - @) cos
0 (0)pw = L iy < cos (8) +cos (f)

ch(yn)I> :

(1
In the case of backscatter, the incident and reflected rays
are locally normally incident on the surface and so a=§=4.
In this case, (11) simplifies to

©°O)pw = — Z (R(yn)) (12)

all ¥n

and when the surface is homogeneous, this result may be
written

@°(0)) = (R (7)) (13)

where n is the number of stationary points per unit length,
This is the two-dimensional equivalent of results which have
appeared in the literature on scattering from rough surfaces
[3], [13]. Itis a well-known result which in three dimensions
has shown agreement with data on ocean surfaces. The de-
pendence of this cross section on the radii of curvature of the
surface is a characteristic of the physical optics solution [2].

To obtain an expression for the radar cross section from the
radar equation, it is necessary to first compute the power
available from the receiving antenna (using (6) to express the
fields incident on the antenna) and then to put the result in
the form of (10). To do this note that the time average power,
P,(v) available from the receiving antenna can be written in
terms of the scattered fields, &,(7, v), incident on the antenna
in the form

4G (r v)

P,(v) = Velu [&F,v) & (F,v)] ——— (14

where 4G, (F,v)/k is the equivalent area of the receiving an-
tenna in two dimensions (a line source) and G,(F, ») is its gain

[10]. Now substituting (6a) for &;(7, v) and assuming that the
scattered fields are incoherent, one obtains
EXFF* R 146
e,ep= 3 (= ~ Riyw) '> . (15)
all y, 2R(yn) R(yn) k

Examination of the definition of £, and F (see (6b), (6c))
and comparison with the form taken by radiation from a two-
dimensional source in the far field yields [14]

|l::0F|2 = \ufe

where P, is the transmitted power. Now using (16) and assum-
ing that the stationary points are homogeneous with density
per unit length, n, and replacing the summation in (15) for-

mally by an integral, one obtains
-1
R(s)} ds> .

(P, () = f <4 PGG’{ il—
an

1
ZPth (16)

R(s)

surface k(2 R)? R.(s)

Equation (17) is the desired form for the scattered power
seen by the observer in the case of backscatter. It is to be
compared with the radar equation (equation (10)) to obtain an
expression for the normalized radar cross section. Comparing

(17) and (10) one obtains
R(6) ‘1>
RO /

(0°(6)gE =mn <R(0) 1-
INTERPRETATION

(18

The solutions obtained in the previous section for the fields
scattered from irregular, conducting, corrugated surfaces have
been used to compute the radar cross section of the surface.
This was done using the conventional definition of cross
section in one case and by deriving a radar equation in the

other. The results in the case of incoherent scattering and
homogeneous surface statistics are as follows.
Definition:
©°(ONpw =mn (|R(O))). (19)
Radar Equation:
o R(6) }
{0 (0)re= R(@)|1 - . 20
o Oz =mn (RO|1 - 25| ) 20)

Clearly the two forms of the radar cross section are not the
same. However, when R> R, the denominator in (20)
approaches unity and the two results agree. That is, the cross
sections are equivalent if the observer is far from the surface
compared to the radii of curvature of the surface at the
specular points.

Notice the singularity appearing in (20) (and also in (4a)
and (6a)). This singularity is a manifestation of focusing of
the scattered rays which can occur in the physical optics
solution (e.g., [14]). In the physical optics solution the
reflected rays emerge from the surface as if reflected from
a small mirror with focal length proportional to the radius
of curvature of the surface at that point. If the surface is
concave in the direction of the observer, the rays will con-
verge at a point above the surface. When the normalized
cross section is computed from the conventional definition,
the limit is taken as R — . Consequently, the observer is
removed beyond any potential caustic (focusing) and as a
result there is no singularity appearing in the solution (see
(19)). However, when the radar equation is used to deter-
mine the cross section, the observer is maintained at a finite
distance from the surface, and in this case the influence of
focused rays appears explicitly in the solution (see (20)).
The magnitude and phase of the reflected rays depend on
the focal length of the equivalent mirror and on the phase
of the incident wave which illuminates the mirror. Thus, for
a given mirror, incident plane waves and cylindrical waves are
reflected differently. This accounts for differences in the
radical in (4) and (6). Also, the location of the stationary
points and therefore the radii of curvature are different in
(4) and (6), and as a result the averages in (19) and (20) are
not over the same points. This is so because the stationary
points occur where the local angle of incidence equals the
angle of reflection, and the incidence angles are different in
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the two cases. When R > R, the observer is removed beyond
any possible singularity and in this case the incident radiation
is nearly a plane wave for surfaces of finite extent in both
cases and the two solutions for the radar cross section are
identical.

The formulas for radar cross section (see (19) and (20)) have
been derived for one special example—corrugated, statistically
homogeneous, conducting surfaces. However, the differences
which appear in the cross sections are the result of features
inherent in the method of analysis (the physical optics approxi-
mation) and not to the specific scattering object (surface)
chosen. It would seem reasonable, therefore, to expect such
differences in real three-dimensional configurations when the
scattering is predominately specular (situations amenable to
analysis by physical optics). An example is scattering at angles
near nadir from the ocean surface or from rough soil [5].

Granted differences between the two cross sections, the
question remains as to the significance of these differences,
It is possible that R > R is typical of measurements of real
surfaces, in which case the differences would be of no practical
consequence. To obtain an estimate of the possible order of
magnitude of the difference between (6”)py, and (0”gp the
averages in (19) and (20) have been carried out in the case
of a surface Z(y) which is a Gaussian random process with
a Gaussian correlation function. This is a model which has
been used for the analysis of scattering from ocean waves
[3], [17] and might apply to plowed fields. Since R, =[1+
(dZjay)y*1**[{d*Z/dy*] in two dimensions, the joint densities
for Z, dZ[dy and d*Z[dy? are required to evaluate the averages.
The calculations of these densities is straightforward for this
surface [17] and one can show that given

1 Z?
f(Z)= NI exp [‘ 7‘2} (21a)
(Z(3))Z(p2)) = 0% exp [ (—y—lll—} (21b)

then the joint density function for Z, dZ/dy, and d2Z/dy? is
Z,2,2")=fZ")f(Z,2")
_ 73 [ (Z’)Hz]
V2 (4m)**g? exp 4g°?
[ 1222 + 4122Z" + 142" )?
exp |-

160°
where [/ is the correlation length of the surface and o is its
standard deviation. The averages required to evaluate (19)
and (20) are still difficult because of the singularities at
Z" =0 and in (20) when R, =R. These problems are avoided
here by making the assumption that (1/4) = 1)(4). This is an
ad hoc assumption made to simplify the mathematics which
at least is consistent with the approximations made in arriving
at (20) [3]. In particular, the asymptotic evaluation of the
Helmholtz integral (equation (2)) employed here does not
apply at the singular points R = R,. At stationary points for
which R =R, it is necessary to modify this asymptotic form
by taking higher order terms [8], [9]. Doing so, one obtains
finite fields at the singular points but the focused character

} (22)
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Fig. 2. The ratio I' of the radar cross sections computed from the
conventional definition and the radar cross section obtained from
the radar equation in the case of a normally distributed surface with
Gaussian correlation function.

TABLE 1
£ as A Funcrion of [ ForR V1 + (3/26)2 s3 (g) = 1
£ {meters)
500 100 50 10 5 i
0.01 4000 170 40 17 0.4 0.017
0.1 400 17 4.0 0.17 0.04 0.0017
Z 1.0 40 1.7 0.4 0.017 0.004 | 0.00017
|3
5
£ 10 40 0.17 0.04 0.0017 | 0.0004 -
.—g‘
- 100 04 0.017 0.004 | 000017 -
1000 || 004 | 00017 | 0.0004 - : -
10000 || 0.004 | 000017 - -

of the radiation when R is not close to R, remains as described
above. The assumption (1/4) =1K4) avoids this subtelty
and makes it possible to do the average analytically. It is
imposed here in a purely ad hoc way without attempt to
bound the error. Making this approximation one obtains
in a straight forward manner

ra @ Opw _ _IKRIR]
T 600k 1K|1-R/R,D
= exp (-§7) - V£ exfe (£) (23)
where
& 3\?
£=— 1+(—5;) s? (9). (24)

It is clear from (23) that the ratio of the two cross sections
decreases from unity at £ =0 to zero at £ =o, The behavior
of I'(£) has been plotted in Fig. 2. In addition, values of £
are listed in Table I for a range of the parameters ! and R
representative of the extremes one might encounter in observa-
tions of natural surfaces. Consider, as an example, a situation
representative of observations from a low, earth orbiting
satellite (e.g., R =1000km). In this case, it is clear from
Table I that £ is very small even for large values of the correla-
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tion length /: for example, £ = 0.04 when /=500 m. Using
£=0.04 in Fig. 2, one finds I' = 1. Consequently for observa-
tions from space it is unlikely that the differences between the
cross section calculated from the conventional definition and
that actually measured by a radar will be significant. In the
case of observations from aircraft (e.g., 1 km <R < 20 km)
the situation is less clear. In this case, one sees from Table I
that £ can be large for large values of the correlation length
(e.g., £=1.7 at R=1km and /=100 m) in which case differ-
ences between (0”)py and (0”gz could be important, or §
can be quite small (e.g., an observation at R = 10 km over
plowed fields with /=1 m) in which case I'= 1. For tower-
based operations, on the other hand, R is much smaller and
differences between (0°)py and (¢°)gg are much more likely.
For example, at R = 10 m and /=5 m, one finds from Table 1
that, £=04. In this case using Fig. 2 one finds I'=0.45
which is about 6 dB. Clearly, significant differences between
the two cross sections are to be expected in such cases.

CONCLUSIONS

The results of the preceding section, and of this paper in
general, are not reflections on measurement techniques.
Rather, they are an indication to those concerned with the
calculation of radar cross sections that the classical definition
may not apply equally well in all cases. Specifically, in the
case of remote sensing of rough surfaces where the scattering
is predominately specular, it would appear that more specific
attention needs to be given to the geometry under which an
actual experiment might be performed before routinely using
the classical definition to compute radar cross section.
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