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We compared the sampling efficiency of simulated tempering and replica exchange. Our results
indicate that simulated tempering is superior to replica exchange if the parameters for temperature
transition in simulated tempering are adjusted to be proportional to the partition function. It is shown
that, in simulated tempering, the rate of traversing energy space of different temperatures is much
higher than that in replica exchange, especially in the case of low tempering frequency and/or larger
temperature separations. © 2008 American Institute of Physics. �DOI: 10.1063/1.2988339�

I. INTRODUCTION

Simulated tempering1 and replica exchange2 are two
tempering methods that simultaneously sample a system at
different temperatures. The central idea of tempering is to
sample the system at multiple temperatures simultaneously.
An important advantage of the tempering methods is that
they can overcome the problem of broken ergodicity, that is,
the system is likely trapped in local configurational space if
the simulation is performed only at a low temperature. In the
tempering methods, the system can frequently visit higher
temperatures where the sampling is ergodic and go back to
lower temperatures with a very different configuration. Thus
the methods are useful in accelerating samplings at low tem-
peratures and improving the statistics there.

In simulated tempering, the temperature of the system is
randomly switched between several predefined values. The
frequencies of visiting different temperatures depend on a set
of parameters that define the acceptance probability of tem-
perature transitions. The particular set of parameters that re-
sult in equal visits to all temperatures comes from the parti-
tion function.1 Since the partition function is usually
unknown in advance, Park and Pande proposed a method of
using short preliminary simulations to estimate the
parameters.3 For a complex system where the equilibration
time is long, we demonstrated the use of a dynamic updating
scheme to obtain a runtime estimate of the partition
function.4

In replica exchange, also known as parallel tempering,
independent simulations �replicas� at different temperatures
are run simultaneously. Two replicas can randomly exchange
their temperatures according to certain acceptance rule,
which preserves the Boltzmann distribution at each tempera-
ture. In this way, the frequencies of visiting different tem-
peratures are always the same.

The performance of the two algorithms was studied by
many authors5–10 focusing on different aspects. Particularly,

Park found that the simulated tempering offers a larger ac-
ceptance ratio for temperature transitions than replica
exchange.8 Sindhikara et al. found that the sampling effi-
ciency increases as one increases the frequency of attempting
exchanges in replica exchange.9 In this study, we focus on a
measure of tempering efficiency based on the rate of travers-
ing the energy space expanded by all sampling temperatures,
which allows us to systematically study the effects of tem-
perature spacing and tempering frequency. We shall demon-
strate that a temperature transition is generally more efficient
than a temperature exchange under the same conditions.

II. THEORY AND RESULTS

We first review the acceptance probabilities of simulated
tempering and replica exchange. Next, through the autocor-
relation function, we define the tempering efficiency, accord-
ing to which the two tempering methods are compared.
Readers familiar with the basics can proceed directly to
Sec. II C.

A. Acceptance probabilities in simulated tempering
and replica exchange

In simulated tempering, several sampling temperatures
are defined before simulation. Temperature transitions are
randomly proposed to change the system temperature from
the current value to another one. The probability of accepting
a proposed temperature transition from � to �� �both � and
�� are expressed in reciprocal temperatures, i.e., �=1 /kBT�
is

APST�� → ��� = min�1,
w�� exp�− ��E�/Z��

w� exp�− �E�/Z�
� , �1�

where E is the current potential energy �we shall drop the
adjective “potential” in the following discussion for conve-
nience�; Z� and Z�� are the values of the partition function at
temperatures � and ��, respectively; and w� and w�� are the
weights of visiting temperatures � and ��, respectively. Ac-
cordingly, the equilibrium weight of an individual configura-
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tion being at � is w� exp�−�E� /Z�; after summing over all
configurations, the total weight of visiting � is w�. The use
of the partition function ensures that each sampling tempera-
ture is visited by the appropriate weight. In this study, we
assume that all w�’s are the same unless specified otherwise.
Previously, we demonstrated the accuracy and efficiency of
sampling using these weights on several typical systems.4

In replica exchange, the acceptance probability for an
attempted exchange between two replicas with temperatures
� and �� ������ is

APRE��,E;��,E�� = min�1,exp��� − ����E − E���� , �2�

where E and E� are the energy of replicas at temperatures �
and ��, respectively.

An important measure is the averaged acceptance prob-
ability or the acceptance ratio. It can be calculated in both
cases under the Gaussian approximation, where the constant
temperature energy distribution p��E� is approximated as a
Gaussian distribution. Such an approximation is a result of
the second order expansion of the entropy, or the logarithm
of the density of states: S�E� /kB=ln g�E�	− 1

2aE2+bE+c;
the density of states g�E� is related to the energy distribution
as p��E��g�E�exp�−�E�. The calculated acceptance ratios
are

ARST�� → ��� = erfc
 1

2�2a
�� − ��� , �3�

ARRE�� ↔ ��� = erfc
 1

2�a
�� − ��� �4�

for simulated tempering7 and replica exchange,5 respectively.
Here, erfc�x�= �2 /����x

� exp�−u2�du is the complementary
error function. The relation between the two can be ex-
pressed as

erfc−1�ARRE� = �2 erfc−1�ARST� , �5�

which indicates a larger acceptance ratio provided by simu-
lated tempering than by replica exchange. Note that the
Gaussian approximation is only correct for large systems.
For a small system, however, we have to include higher or-
der terms, such as E3 and E4, in the expansion of the entropy
in the energy range of interest, and thus the energy distribu-
tion is no longer a Gaussian.5 In such a case, the relation
between the two acceptance ratios can deviate from the
prediction of Eq. �5�. It is worth noting that, although the
Gaussian approximation gives a good prediction for the ac-
ceptance ratios, caution should be taken when it is used to
calculate properties that strongly depend on the distribution
tails.5

The above results can be generalized to tempering along
several “temperatures” b= ��i� instead of one. The partition
function of such a generalized canonical ensemble is Z
=� exp�−b ·E�, where the vector E= �Ei� contains energy
terms Ei’s corresponding to different �i’s. The acceptance
ratios of simulated tempering and replica exchange become

ARST = erfc���b · A−1�b

2�2
� ,

ARRE = erfc���b · A−1�b

2
� ,

where �b=b−b�, and A is the curvature matrix of the en-
tropy, i.e., S�E� /kB	− 1

2E ·AE+¯.
An example of the generalized tempering is that along

the pressure instead of the temperature, where vector E con-
tains the energy and volume, and b the temperature and pres-
sure. Another example is the tempering along the volume �or
the density� of a Lennard–Jones system,4 whose partition
function written in the reduced coordinates s=r /�3 V is

ZV � �1/VN� � drN exp�− �U�rN��

=� dsN exp�− �U�sN;V�� ,

where N is the number of particles and V the volume; the
contribution from the ideal gas part is removed. The potential
between a particle pair, i and j, with a separation sij is
U�sij ;V�= �1 /V4��1 /sij

12�− �1 /V2��1 /sij
6 �. The repulsive and

the attractive energy parts can be collected independently
over all particle pairs to form two-energy terms E
= ��i�j1 /sij

12,�i�j1 /sij
6 �; the corresponding temperatures are

given by b= �1 /V4 ,1 /V2�.
We tested the validity of Eq. �5� on three different sys-

tems. The first system was a 32�32 Ising model with two
temperatures. The coupling constant is unity. The first tem-
perature was T=3.0. Different choices of the second tem-
perature from 3.05 to 3.70 were used to cover a wide range
of acceptance ratios. The second testing system was a 108
particle Lennard–Jones system. The density of the system
was set to 0.3. The first temperature was T=2.0, and the
second temperature ranged from T=1.0 to 1.9. The third case
was the multiple-volume tempering on a 108 particle
Lennard–Jones system, where the first density was 	=0.35,
while the other varied from 	=0.3 to 	=0.345. The tempera-
ture was fixed at T=3.0. In all cases, we used the single
particle Metropolis algorithm to generate configurational
changes. The results of the three simulations and the predic-
tion from the Gaussian model Eq. �5� are plotted in Fig. 1. A
good agreement between the two confirms the validity of the
Gaussian model in calculating acceptance ratios. Note that
there is generally a significant difference between the two
acceptance ratios. For example, at the point where the accep-
tance ratio of simulated tempering is 15%, that of replica
exchange is about 4%. Generally the difference is more
prominent as one increases the spacing between the two tem-
peratures �or densities�.

B. Transition matrix and correlation function

An accurate measure of tempering efficiency can be es-
tablished from a transition matrix and its correlation func-
tions. Each step of a Monte Carlo simulation can be viewed
as an implementation of a discrete-time master equation. If,
at step t, the probability of the system to be in state m
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�m=1,2 , . . . ,M� is given by the mth component of an
M-dimensional vector p�t�= �pm�t��, then the probability vec-
tor at the next step t+1 is given by

p�t + 1� = Ap�t� ,

where A is the transition matrix. The largest eigenvector of
the transition matrix represents the equilibrium distribution
and its eigenvalue is 
1=1.0.11 The other eigenvectors repre-
sent directions of fluctuation modes. Starting from an initial
distribution p�0�, the distribution at time t is p�t�=Atp�0�.
Then the autocorrelation function for p�0� is defined as

C�t� = p�0� · �p�t� − p���� , �6�

where the contribution from the final distribution p��� is
removed to make C���=0. Since the vector p�0� can be
decomposed to a linear combination of eigenvectors vm’s of
the transition matrix as p�0�=�k=1

M bkvk, the autocorrelation
function must adopt the form

C�t� = �
k=2

M

ck
k
t = �

k=2

M

ck exp�− t/�k� ,

where 1 /�k=−log�
k�	1−
k represents the decay rate of the
kth fluctuation mode.

Among all fluctuation modes, the second or the slowest
mode usually dominates the correlation function of interest,
and hence is most important. As long as the mode is retained,
it is convenient to define states on a coarse grained level to
eliminate irrelevant fluctuation modes and to simplify calcu-
lations.

C. Efficiency of tempering

The main purpose of tempering is to enhance low-
temperature sampling by helping the system to overcome
high energy barriers. With the help of high temperatures, the
system at a low temperature can readily switch between dif-
ferent energy wells. The tempering process therefore can be
modeled as a combination of a well-switching process at
high temperatures and a tempering process that delivers the
system between the highest and the lowest temperatures.

In simulated tempering, a system state can be labeled by
the current configuration and the temperature. In replica ex-
change, such a labeling applies to each individual replica,
whose temperature is changed through exchanges with other
replicas �however, the configuration of a replica or its energy
remains unchanged during an exchange�. In this way, each
replica acts like a system in simulated tempering; the only
difference is that now the acceptance probability of changing
the temperature depends on the energy of another replica, as
indicated in Eq. �2�.

Consider tempering on a double well system with a low
temperature � and a high temperature �� ������. The sys-
tem state can be categorized into four cases for the system
being at �a� temperature � and well 1, �b� temperature �� and
well 1, �c� temperature �� and well 2, and �d� temperature �
and well 2. In each Monte Carlo step at the high temperature
��, the system can switch between wells with a probability p
�the probability of well switching at the low temperature is
ignored�. The transition probability between the two tem-
peratures is P. The transition matrix is

�
1 − P P 0 0

P 1 − P − p p 0

0 p 1 − P − p P

0 0 P 1 − P
� .

The decay rate is determined by the second largest eigen-
value

1/�2 	 1 − 
2 = p + P − �P2 + p2.

This rate represents how fast the system moves in the
temperature-energy space and serves as a measure of temper-
ing efficiency. Although derived from the two-temperature
case, the model can be approximately used where more than
two temperatures are involved. In such a case, � and �� are
interpreted as the lowest and the highest temperatures, re-
spectively, and the well-switching process at a temperature
other than �� is ignored.

Since the well switching rate p at �� is completely de-
termined by the type of energy move used in simulation, the
dependence on temperature transitions can only rest on P,
the rate of delivering states between the highest and the low-
est temperatures. A tempering method is more efficient if it
more frequently shuttles the system state between the energy
region of the highest temperature and that of the lowest.

1. Efficiency of traversing the energy space

In the case of simulated tempering, consider tempering
between two temperatures � and ��. We divide the energy
distribution at � into two exclusive parts: an overlapping
region with the energy distribution at �� and the rest, see
Fig. 2. A temperature transition from � to �� is possible if
and only if the system resides in the overlapping region. In
other words, the overlapping region separates states that are
capable of making a temperature transition from those which
are not. Accordingly, the acceptance ratio ARST equals the
probability of being in the overlapping region �or the fraction

FIG. 1. The acceptance ratio of simulated tempering �ST� vs that of replica
exchange �RE�. The squares are the results from multiple-temperature en-
semble simulations on the 32�32 Ising model. The solid circles are those
from multiple-temperature ensemble simulations on a 108 particle Lennard–
Jones system. The solid triangles are those from multiple-volume ensemble
simulations on the same Lennard–Jones system. The solid line is the predic-
tion from the Gaussian approximation.
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of states that are ready to make a transition�. We use r� to
denote the transition rate from the overlapping region to the
rest part, and r in the reverse direction during constant-
temperature sampling at �. The detailed balance condition
between the two parts imposes a relation between r and r�:
ARSTr�= �1−ARST�r, or

r

r + r�
= ARST.

The corresponding division can be made on the energy dis-
tribution at ��. For the sake of simplicity, we assume that r�
and r in �� take the same values as those in the � case.

The above divisions yield four coarse-grained states: �a�
being at � but not in the overlapping region, �b� being at �
and in the overlapping region, �c� being at �� and in the
overlapping region, and �d� being at �� but not in the over-
lapping region. While constant temperature sampling trans-
fers the system between �a� and �b�, or �c� and �d�, tempera-
ture transitions transfer the system between �b� and �c�. The
transition matrix is

�
1 − r r�

r 1 − r� − f f

f 1 − r� − f r

r� 1 − r
� ,

where f is the frequency of attempting temperature transi-
tions. The decay rate of the second largest eigenvalue is

1/�2 =
1

2
�2f + r + r� − ��r + r��2 + 4f�r� − r� + 4f2� . �7�

For frequent tempering limit, f �r ,r�, it becomes r; for in-
frequent tempering limit, f r ,r�, 1 /�2 is reduced to
2rf / �r+r��=2ARSTf .

In the case of replica exchange, we first assume that a
temperature exchange is possible if and only if both replicas,
I and II, reside in an overlapping region of the two-energy
distributions. It is because, if either replica leaves the over-
lapping region, a large energy difference between the two
replicas will effectively inhibit the exchange through the ac-
ceptance probability �Eq. �2��. Due to the difference of the
acceptance probabilities, the overlapping region here can
take a different shape from that in simulated tempering. We
now classify states of the system into two categories. In the
first category, replica I is at temperature � and II at ��; in the
second, I at �� and II at �. Each category contains three
states: neither replica, only one replica, or both replicas be-
ing in the overlapping region. Similar to the case of simu-
lated tempering, the rates of moving into or out of the over-
lapping region are denoted by r and r�, respectively, but they
assume slight different values from their counterparts in
simulated tempering. The two rates relate to the acceptance
ratio as

� r

r + r�
�2

= ARRE.

Assuming both r and r� are small, the transition matrix is

�
1 − 2r r�

2r 1 − r − r� 2r�

r 1 − 2r� − f f

f 1 − 2r� − f r

2r� 1 − r − r� 2r

r� 1 − 2r

� .

The decay rate of the second largest eigenvalue is approxi-
mately

1/�2 	 B/A − ��B/A�2 − C/A , �8�

where

A = 1 +
2f

3�r + r��
, B =

1

3
�r + r� +

3r + r�

r + r�
f� ,

and

FIG. 2. The shaded area is the overlapping region. We assume that the
system can make a successful temperature transition only when it falls into
the region. Constant temperature sampling plays the role of delivering states
between the overlapping region and the rest part of the energy distribution.
Here, r� is the transition rate from the overlapping region to the rest part and
r is that in the reverse direction.
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C =
4fr2

3�r + r��
.

It is reduced to 1
2 �3r+r�−�r2+r�2+6rr�� in the frequent

tempering limit, or 2�r / �r+r���2 f =2ARREf in the infrequent
tempering limit.

In both simulated tempering and replica exchange, the
decay rate is proportional to the acceptance ratio in the limit
of infrequent tempering; hence simulated tempering is supe-
rior over replica exchange because it offers a larger accep-
tance ratio. This conclusion remains true even in the frequent
tempering limit. This can be seen by assuming that the rate r
takes a similar value in the two tempering methods and then
making an algebraic comparison between the corresponding
decay rates. A significant difference can be seen as we sepa-
rate the two-energy distributions far apart. This leads to a
small overlapping region, and rr�. Consequently, the ratio
of the decay rate in replica exchange and that in simulated
tempering becomes 2r / �r�+3r�, which is much less than 1.

To test this model, a numerical comparison was done on
the 32�32 Ising model with two temperatures. The first was
fixed at T=1.7 while the second was variable. As before, the
setup allowed us to compare the two algorithms at different
temperature separations. Since the eigenvalue 
2 corresponds
to the slowest mode in the energy space, it can be measured
from the longest mode of the energy correlation function,

CE���= ��E�t�− Ē� · �E�t+��− Ē��, where Ē= �Ē���+ Ē����� /2
is the average energy at the two temperatures. Particularly
we focused on the frequent tempering limit where the tem-
pering frequency f is fixed at 1.0 �in the infrequent temper-
ing limit we only need to compare the acceptance ratio di-
rectly�. In Fig. 3, we show the decay rate 1 /�2=1−
2 as a
function of the temperature separation. Simulated tempering
invariably gives a larger decay rate �or a shorter correlation
time� than replica exchange. The difference between the two
algorithms is small when the two temperatures are close.
With the increase of the separation, the advantage of simu-
lated tempering over replica exchange also becomes appar-
ent, e.g., at the rightmost point, the ratio of the two decay
rates is larger than 10.

Next, we fixed the second temperature T=2.0, but varied
the tempering frequency f from 2�10−5 to 1.0. The accep-

tance ratios are 6.65% for simulated tempering and 1.03%
for replica exchange, respectively. In the frequent tempering
limit, the decay rate saturates to 5.8�10−5 for simulated
tempering and to 1.7�10−5 for replica exchange. The rates r
and r� can be deduced from the acceptance ratio and the
saturated decay rate, and then used in calculating model pre-
dictions from Eqs. �7� and �8�. A good agreement between
the simulation results and the model prediction can be seen
in Fig. 4�a�. It is also evident that simulated tempering gives
a larger decay rate than replica exchange for any given tem-
pering frequency f .

A numerical comparison was performed with multiple
temperatures on the same Ising model. Seven temperatures
were used, T=1.5, 1.8, 2.0, 2.2, 2.3, 2.4, and 2.6. The tran-
sition temperature is about 2.27. The results are shown in
Fig. 4�b�, where we also used

R�f� = R0f/�f + f0� �9�

to fit the curves. Here, the parameter R0 is the saturated
�maximal� decay rate, and f0 is the tempering frequency
where the rate drops to half of its maximal value. A good
fitting can be seen in both simulated tempering and replica
exchange. This is because Eq. �9� is the simplest form that
captures the essential features of frequency dependence �for
both simulated tempering and replica exchange�, that is, a
linear dependence in the low frequency limit, and a satura-
tion behavior in the high frequency limit. Note, Eq. �9� can
also be treated as a good approximation for the results of the

FIG. 3. The rate of energy space traversing 1 /�2 �measured from the slowest
mode energy correlation function� vs temperature separations �� for simu-
lated tempering �ST� and replica exchange �RE�. The first temperature is
fixed at T=1.7, while the second is variable. The ratio of the two rates is
shown in the inset. In both cases, the frequency f =1.0.

FIG. 4. The rate of energy space traversing 1 /�2 vs the frequency of at-
tempting temperature transitions f in simulated tempering �ST� and replica
exchange �RE�. �a� Two temperatures T=1.7 and 2.0 are used. The predic-
tion from the model is also shown. The model predictions calculated from
Eqs. �7� and �8� are shown in solid and dashed lines, respectively. �b� Seven
temperatures T=1.5, 1.8, 2.0, 2.2, 2.3, 2.4, and 2.6 are used. The solid and
dashed lines come from Eq. �9� for simulated tempering and replica ex-
change, respectively.
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two-temperature case: Eq. �7� is approximately rf / �f + �r
+r�� /2�, while Eq. �8� is roughly C / �2B�. We thus expect
that Eq. �9� can be used to approximate the multiple tempera-
ture case as well. From Fig. 4�b�, it can be seen that simu-
lated tempering once again outperforms replica exchange at
any given frequency. Note that we used a small separation
between neighboring temperature pairs to reduce the differ-
ence of the decay rates in the high frequency limit. However,
as the frequency is lowered, the difference between the two
methods still grows significantly. At the saturated frequency
f =1, the decay rate of simulated tempering is about 1.5 times
that of replica exchange. At f =10−4, the ratio of the two rises
to about 10.

2. System with a transition temperature

Many systems possess a transition temperature which
separates the system between disordered states at high tem-
peratures and ordered states at low temperatures. The energy
distribution at the transition temperature becomes a bottle-
neck region for traversing the energy space. The tempering
efficiency can be improved by focusing sampling around the
transition temperature to enhance the bridge between the
high energy �disordered� states and the low energy �ordered�
states.

In simulated tempering, we can simply adjust the accep-
tance probability �Eq. �1�� by raising the weight w� of the
transition temperature. The effect of adjusting the weight at
the transition temperature can be shown on the 32�32 Ising
model. We used the seven-temperature set, T=1.5, 1.8, 2.0,
2.2, 2.3, 2.4, and 2.6. The integrated correlation time �ob-
tained from integrating the normalized autocorrelation func-
tion from zero to infinity� at the sampling temperatures are
shown in the inset of Fig. 5, where the peak is reached
around the transition temperature Tc	2.3. In Fig. 5, we
compared the energy correlation functions in cases where the

weight of visiting temperature T=2.3 was adjusted to 1.0,
5.0, 10.0, or 20.0, while the weights of other temperatures
were kept at 1.0 �the tempering frequency was f =1 in all the
cases�. The correlation time was significantly reduced with
the increase of the weight, e.g., its value at w=20.0 was less
than one-third of that at w=1.0. As a control, we also in-
creased the weight of another sampling temperature T=1.8 to
20.0 while keeping the weights to other temperatures �in-
cluding T=2.3� unity. From Fig. 5, it is evident that it failed
to shorten the correlation time. This indicates that the tem-
pering efficiency can be significantly improved only if the
weight of the simulation at the transition temperature is in-
creased.

In replica exchange, it is also possible to increase the
weight to the simulation at the transition temperature by add-
ing additional replicas there. However, it is usually inconve-
nient if replicas are distributed in different computer nodes.
In the above case, one has to use 19 additional replicas to
reach the weight w=20.0. Further, the efficiency can be de-
creased if an implementation is unable to afford a frequent
communication between computer nodes.

Thus, by raising the weight of the transition temperature,
we can improve the sampling speed by accelerating the pro-
cess of traversing the energy space. This in turn leads to a
higher rate of switching between local wells, and more accu-
rate statistics for low temperature simulations. A possible
side effect is that temperatures other than the transition tem-
perature may receive fewer visits, and thus reduce the total
amount of statistics there. However, in a system that mani-
fests a phase transition, it usually takes a long time for the
system to switch between different local wells even in the
presence of tempering. Thus if we expect that the system can
accumulate sufficient statistics on a local well before it tran-
sits to another well, such a side-effect is negligible.

III. CONCLUSIONS AND DISCUSSIONS

We compared the tempering efficiency between simu-
lated tempering and replica exchange. Simulated tempering
consistently gives a higher rate of delivering the system be-
tween high temperature states and low temperature states as
well as a higher rate of traversing the energy space. The
difference is especially eminent if the energy distributions of
neighboring temperatures are well separated or/and if the
tempering frequency is low. The fundamental feature that
makes replica exchange less efficient than simulated temper-
ing is that in replica exchange a successful temperature ex-
change requires two replicas to be simultaneous in their com-
mon energy space, while in simulated tempering a
temperature transition can happen whenever the system falls
in the region. Besides, it is usually easier for simulated tem-
pering to adopt higher tempering frequency. This is because,
in replica exchange, a high tempering frequency requires
heavy cost of computer node communication. In addition,
simulated tempering is able to concentrate simulation effort
on the “bottleneck” temperature to reach the maximal effi-
ciency without adding additional replicas.

In the above discussion, we assumed that the partition
function used in simulated tempering is exact. But in reality

FIG. 5. The effect of changing the weight to the transition temperature in
simulated tempering. Seven temperatures T=1.5, 1.8, 2.0, 2.2, 2.3, 2.4, and
2.6 are used on the 32�32 Ising model. Each temperature has weight of 1.0,
except the weight to the temperature T=2.3 is variable: 1.0, 5.0, 10.0, or
20.0. The correlation functions are shown to have a shorter correlation time
with the increase of the weight. As a comparison, increasing the weight of
T=1.8 to 2.0 fails to shorten the correlation time. The energy autocorrelation
time from temperature T=2.0 to 2.5 is shown in the inset �T=2.27 is phase-
transition temperature�. The correlation time at the transition temperature is
much longer than that at a neighboring temperature.
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we usually use an approximated partition function for sam-
pling parameters. In this case, what changes is that each tem-
perature may not receive exactly equal number of visits. To
see this, let us assume that the sampling parameter we used is
Z� exp���� instead of Z�, where �� represents the error for
the sampling temperature �. From Eq. �1�, it is clear that
using this set of parameters is equivalent to using the exact
partition function but with a nonuniform weighting factor
w�	exp�����. However, the Boltzmann distribution of
each individual sampling temperature is still preserved and
thus quantities calculated from each temperature contain no
systematic error after equilibration.

However, a sufficiently accurate partition function �e.g.,
�����0.5� is still needed for an efficient simulation. Other-
wise some temperatures can absorb most of the sampling
weights from the rest of the temperatures, which in turn leads
to a slower rate of traversing the energy space �with the
exception mentioned above where the focused temperature is
the transition temperature�. For a large and realistic system
such as a protein, to obtain an accurate partition function is
not trivial, especially for low temperatures where the parti-
tion function is dominated by the ground state. In such sys-
tems, the technique of using an updating factor to gradually
converge the partition function4 is particularly helpful, be-
cause the partition function obtained in this way can properly
reflect the contribution from low energy states which are
usually found in a late stage of simulation. Accordingly we
also believe that the updating of the partition function should
be used until the system is properly equilibrated.

There are concerns in literature that a high frequency
may actually decrease the tempering efficiency in replica
exchange.10 This effect is not observed in our model and
numerical results. Our results show that the tempering effi-
ciency �measured by the decay rate of traversing energy
space� increases monotonically with the frequency of at-
tempting temperature transitions/exchanges, although it en-

counters a saturation and the pace of increase slows down
significantly when the frequency grows to be comparable
with the reciprocal of the autocorrelation time of the energy.
The efficiency drop may be due to communications between
different replicas or other reasons that escaped our calcula-
tion.
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