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and ICAMS, Ruhr-University, Bochum, Germany

(Received 8 July 2013; published 19 December 2013)

Based on a parallel scalable library for Coulomb interactions in particle systems, a comparison between the

fast multipole method (FMM), multigrid-based methods, fast Fourier transform (FFT)-based methods, and a

Maxwell solver is provided for the case of three-dimensional periodic boundary conditions. These methods are

directly compared with respect to complexity, scalability, performance, and accuracy. To ensure comparable

conditions for all methods and to cover typical applications, we tested all methods on the same set of computers

using identical benchmark systems. Our findings suggest that, depending on system size and desired accuracy,

the FMM- and FFT-based methods are most efficient in performance and stability.
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I. INTRODUCTION

Particle simulation methods, like molecular dynamics or

Monte Carlo sampling, are well-established numerical tools

to understand the dynamics and structure of many-particle

systems. Long-range interactions such as electrostatic or

gravitational interactions pose a particular challenge to such

simulations, since their computation is very time consuming.

Simple truncation schemes for electrostatic interactions have

been shown to produce artifacts [1]. Therefore, one has to take

into account all pair interactions, leading to an unfavorable

complexity of O(N2) (where N is the number of particles). A

number of efficient algorithms, in particular for electrostatic

interactions, have been devised to reduce this computational

effort. Although these algorithms compute the same quantities,

namely electrostatic forces and energies, they differ largely in

their properties.

The problem is complicated even more by the fact that it

is common to apply periodic boundary conditions in order to

*g.sutmann@fz-juelich.de

reduce boundary effects (especially in systems with only a

few particles) and to mimic an infinite system. This creates

the problem of an infinite number of system replicas, in

which the Coulomb sum converges very poorly due to its

long-range nature. When bulk systems are considered, one

usually employs periodic boundary conditions in all three

spatial dimensions, while simulations of thin films and surfaces

or nanotubes require three-dimensional systems with only two

or one periodic dimensions, respectively.

A traditional way to sum up the infinite terms under periodic

boundary conditions is the Ewald summation method [2],

which splits the total contribution into a short-range part and a

long-range part. Summing up the short-range part in real space

and the long-range part in Fourier space leads to a summation

of two rapidly converging sums. Although this representation

is exact, it contains infinite sums and therefore calls for

error controlled approximations in order to be applicable in

computer simulations. The parameters entering the Ewald sum,

i.e., the range of the short-range part, the number of Fourier

modes in the long-range part, and the splitting parameter which

controls the relative weight of both terms, can be optimized

in such a way that the overall performance of the Ewald
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summation is reduced to O(N3/2). Taking into account the

upper limits in the sums of short- and long-range contributions,

approximations can be obtained with a controllable upper error

threshold [3,4]. Other methods, like the Lekner-sum [5,6], the

Ladd-sum [7,8], or the Sperb-sum [9,10], are based on similar

principles. Note that Ewald-like methods also exist for systems

with only one or two periodic boundary conditions [11–14].

Although the Ewald sum removes the quadratic complexity,

the numerical effort is still too large for systems extending to

several million particles or long time simulations. For this

reason, alternative methods were developed with a strongly

reduced complexity of O(N log N ) or even optimal complexity

of O(N ). They can be classified into splitting methods (SMs)

and hierarchical methods (HMs). SMs have the same under-

lying idea as the Ewald summation method; i.e., they split the

total electrostatic interaction into a short-range part and a long-

range part by introducing a differentiable, localized function

ϕ(r) which splits the Coulomb term into overlapping short-

and long-range contributions, 1/r = ϕ(r)/r + [1 − ϕ(r)]/r .

This corresponds to introducing a modified charge distribution,

leading to a smooth potential energy surface in the long-range

part and a singular term plus a smooth term in the short-range

part, which, in total, reproduces the Coulomb potential.

Examples for fast methods of the SM type are extensions

of the Ewald sum which evaluate the long-range Fourier space

contribution on the basis of a fast Fourier transform (FFT),

thereby providing an O(N log N ) complexity. The drawback is

the necessity of introducing an FFT mesh, onto which particle

properties are mapped. Methods like the particle-particle-

particle mesh (P3M) [15], particle-mesh Ewald (PME) [16],

or the smooth particle-mesh Ewald (SPME) [17] mainly differ

in the way the particle properties are evaluated on the grid

and transferred back to the particles [18]. For example, the

popular SPME can easily be converted into the most accurate

and versatile P3M algorithm by changing the precomputed

influence function [19]. Using a grid obviously introduces a

spatial discretization, which causes an error, that can, however,

be controlled and minimized using accurate error estimates

[15,20].

Instead of relying on an FFT, multigrid methods discretize

the Laplace operator and thereby recast this partial differential

equation (PDE) into a linear system of equations that can

be solved iteratively. Although the method’s complexity is

optimal, O(N ), the accuracy depends on the operator’s dis-

cretization order. Furthermore, to obtain a mesh-independent

convergence, a hierarchy of nested grids is employed. Interpo-

lation of particle properties onto the grid and back therefrom

is handled in the same spirit as for the FFT-based methods.

In contrast, HMs do not rely on modified charge distri-

butions but evaluate the short-range part of the Coulomb

energy by the direct particle-particle sum, while the long-range

part is expanded into a multipole series, therefore effectively

introducing pseudoparticles, located at the expansion centers.

The transition from the short- to long-range description in

HMs usually exhibits a discontinuity in the potential, which

originates from the transition of the electrostatic sources from

(point) charges to multipoles. This discontinuity is often con-

sidered to be responsible for a drift in energy and momentum

of the system. However, the size of the discontinuity can

be reduced to machine precision by controlling the number

of multipoles in the expansion, thereby lifting the associated

problems in momentum and energy conservation.

Examples for HMs are the Barnes-Hut tree method [21]

and the fast multipole method [22]. One of the advantages of

these algorithms is the mesh-free approach, which does not

couple the accuracy of the approximation to an underlying

grid resolution. The number of multipoles in the potential

expansion as well as the depth of the hierarchical subdivision

of space determines the accuracy. These characteristics could

render such methods preferable in simulations of inhomoge-

neous systems, where mesh-based approaches, like FFT- or

multigrid-based methods, that use the same mesh spacing

everywhere, become very memory-intensive and slow. In

recent years, HMs have been extended to simulations under

periodic boundary conditions [23].

Another approach for computing Coulomb interactions

efficiently has been proposed by Maggs [24] and adapted

for molecular dynamics (MD) simulations by Pasichnyk [25].

In this algorithm, a simplified version of electrodynamics

is simulated on a discretized lattice. This method, called

Maxwell equations molecular dynamics (MEMD), is not

widely adopted, but offers the important advantage of intrinsic

data locality that originates from a grid-based solver for

electrodynamics. This does not only provide a good base for

parallelization but offers the possibility for spatially varying

dielectric properties in the system and—for a constant particle

density—scales as O(N ).

Although various methods for long-range interactions in

periodic boundary conditions exist (see also several reviews

or textbook material [26–31]), only a certain subset of them

has entered into widely used molecular dynamics codes for

scientific computing, e.g., P3M and SPME in GROMACS [32],

P3M in LAMMPS [33], SPME in NAMD [34], and P3M in

ESPRESSO [35]. This fact might be related either to long

standing and continuously improved implementations of se-

lected methods and also the large effort needed to implement

a new optimized method. The last two arguments certainly

apply to the fast multipole method. One argument against

adopting the FMM into molecular dynamics codes was based

on the observation that, depending on the implementation, the

method does not necessarily conserve momentum and energy

in dynamical simulations due to the asymmetry in evaluating

pair interactions between particles. However, it is also well

known that mesh-based methods suffer from not conserving

momentum or energy. These objections are considered in the

present article.

Since the evaluation of the long-range interactions is the

most time consuming part in the force loop of typical MD

simulations, the most important requirement is efficiency.

The parallelization of Coulomb solvers requires both a

good single-core optimization and an efficient and scalable

parallel implementation. The present article compares imple-

mentations of the fast multipole method, fast Fourier-based

Ewald summations in the version of P3M and P2NFFT,

multigrid-based methods, and a Maxwell local solver, all

of which solve the interaction between charged particles

in three-dimensional periodic boundary conditions. All of

these methods are provided within a scalable parallel library,

SCAFACOS (scalable fast Coulomb solvers) [30,36], which

can be easily linked to existing particle programs. In addition to
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three-dimensional periodic methods, it also offers methods for

other types of boundary conditions (open, one-dimensional-,

two-dimensional-periodic), as well as a tree code specialized

for strongly inhomogeneous systems.

In the scope of this article the different methods are

compared in terms of efficiency, complexity, accuracy, and

scalability. Common features and differences are outlined,

which might help programmers and users to decide which

method would be optimal for their specific problem. Although

comparisons between different grid-based Ewald methods

[18,37,38] as well as P3M and FMM [39] or standard Ewald

techniques and FMM [40] have been presented in the past, a de-

tailed numerical comparison of an extended class of methods is

still missing. To be informative it is vital for such a comparison

that all methods are benchmarked for the same test systems,

containing extreme and common particle distributions, as well

as on the same set of hardware architectures. The present

article not only compares the methods in terms of numerical

complexity and efficiency but also considers scalability on

parallel architectures.

Since all methods presented here are included in the

SCAFACOS library, our results may directly, and without

great effort, be used in the simulation programs of the users.

Our discussion of scalability on large parallel architectures

gives a good overview on which methods should be con-

sidered as viable candidates for large scale simulations. It

is understood that such a comparison must be based on the

actual implementations of the different methods, which were

carried out by different programmers. Further developments

and optimizations may change the relative performance of the

different methods in the future.

The remainder of the paper is organized as follows.

Section II provides a short description of the different meth-

ods. Section III describes the benchmark setup. Section IV

discusses the stability of the methods in an MD simulation.

Section V gives a performance comparison of the methods and

in Section VI we summarize our findings and comparisons.

II. METHODS

Assume N ∈ N charged particles with charge ql ∈ R at

position xl ∈ [0,1]3, l = 1, . . . ,N . We are interested in the

fast evaluation of the potential

�(x) =
∑

n∈Z3

N
∑

l = 1

x0
l �= x

ql

1
∥
∥x − xn

l

∥
∥

2

, (1)

and field

E(x) = −∇�(x) =
∑

n∈Z3

N
∑

l = 1

x0
l �= x

ql

x − xn
l

∥
∥x − xn

l

∥
∥

3

2

. (2)

Here, xn
l := xl + n, n ∈ Z

3 are the periodic particle images

and ‖x‖2 denotes the Euclidean norm in R
3. The absence of

prefactors in (1) and (2) corresponds to Gaussian units, i.e.,
1

4πǫ0
:= 1.

Note that the summation over n ∈ Z
3 is only condition-

ally convergent, so that its value depends on the order of

summation. Typically, one assumes summation in spherically

ascending shells. Most puzzling is the fact that, in general, the

summation result is not periodic in the particle coordinates

despite the regular image grid. However, it can be shown

[41,42] that the electrostatic potential can be written as the sum

of a contribution that is periodic in the particle coordinates

and a shape-dependent term that depends only on the total

dipole moment of the innermost image n = 0. The periodic

contribution is often called the intrinsic contribution, since it

can be seen as the solution of the Poisson equation under strict

periodic boundary conditions. This is equivalent to so-called

metallic boundary conditions, when one assumes a metallic

medium that surrounds the growing summation sphere [43].

All results presented in the following are for the intrinsic

solution.

A. Splitting methods

The computation of the electrostatic potential features two

problems. On the one hand, 1
‖x−xl‖2

is decaying very slowly,

making direct summation very inefficient. On the other hand,

it has a singularity, which makes it hard to apply many of the

convergence accelerating theorems.

To overcome this, the electrostatic potential (1) at x can be

split into a short-range contribution �sr and a smooth long-

range contribution �sm by

�(x) =
∑

n∈Z3

N
∑

l=1

x0
l �=x

ql

∫

R3

δ
(

y − xn
l

)

− ϕn
l ( y)

‖x − y‖2
︸ ︷︷ ︸

short-range

+
ϕn

l ( y)

‖x − y‖2
︸ ︷︷ ︸

smooth

d y,

(3)

where the index n distinguishes positions among the periodic

images, δ(xn
l − y) is the δ distribution for the point charge

at xn
l , and ϕn

l ( y) is a splitting function for the charge at

xn
l , as illustrated in Fig. 1. The splitting function is chosen

conveniently such that it decays fast enough in both real

space and reciprocal space, which makes it possible to derive

fast converging expressions both for the short-range and the

long-range parts of (3).

The smooth long-range part is described by the charge

distribution resulting from the splitting function as

ρsm(x) =
∑

n∈Z3

N
∑

l=1

qlϕ
n
l (x) (4)

in the domain [0,1]3 with periodic boundary conditions. Unlike

the original charge distribution, a sum of δ distributions, ρsm

is a smooth function, so that Fourier transforms or grid-based

solvers can be applied to it in order to evaluate �sm(x).

FIG. 1. (Color online) The charge distribution consisting of point

charges (black bars) is split into a smooth part only (dashed blue

lines) and the rest; compare with (3), taken from [44].
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Note that the original sum (3) for the potential excludes the

self-interaction x = xl , while the charge distribution (4) sums

over all charges, including possibly x = xj , if we evaluate the

potential or field at the position of a charge. Therefore, one

has to subtract this self-contribution

�self(xj ) = qj

∫

R3

ϕ0
j ( y + xj )

‖ y‖2

d y. (5)

If the splitting function is radially symmetric around xj , this

correction is only necessary for the potential, since the field

contribution exactly cancels. If ϕn
j ( y + xj ) = ϕn( y), i.e., the

splitting function arises by translation from a generic splitting

function ϕ, then the self-contribution is equal for all charges

and can be precomputed, often even analytically.

After some transformations, the short-range part results in

�sr(x) =
∑

n∈Z3

N
∑

l = 1

x0
l �= x

ql

[

1
∥
∥xn

l − x
∥
∥

2

−
∫

R3

ϕn
l ( y)

‖ y − x‖2

d y

]

,

(6)

consisting of a direct summation part between the position x

and all charges at xn
l in periodic images n and a correction

term that removes the interaction with the charge distribution

ρsm. If point-symmetric charge distributions qlϕ
n
l with limited

support are chosen, the induced potential outside of this

support is the same as that of a point charge beyond the support

of the distribution. Therefore, the summands in (6) decay fast

or vanish for particles that are far enough apart from each

other that it can be evaluated by taking into account only the

interactions up to a given cutoff distance rcut. The rate of the

decay depends on the splitting function.

The computation of the short-range component of the

potential adheres to the same scheme as the computation of

nonbonded short-range interactions in molecular dynamics.

Various efficient algorithms and implementations with ideal

scaling O(N ) exist. In this work, the short-range component

was computed using a linked cell algorithm [28] that is

implemented within the SCAFACOS library. In this algorithm,

all particles are sorted into cells that are larger or equal

to the short-range cutoff radius rcut. To find all interaction

partners of a particle in the short-range component, it is

sufficient to compute the interactions with all particles in the

neighboring cells, which yields the desired linear complexity.

The parallel implementation employs a domain decomposition

that distributes the particles uniformly among a Cartesian

process grid. Particles at subdomain boundaries that are needed

by more than one process are duplicated automatically during

the particle redistribution step.

Note that in a molecular dynamics program, the short-range

part of the SMs would typically be computed within the

(possibly highly optimized) core of an MD program that

computes other nonbonded short-range forces, so that the

short-range computation of the library would not be used. This

is expected to have a positive effect on the performance of the

SMs when used in conjunction with an MD program; however,

the actual gain depends on the employed MD program.

The remaining difficulty is to evaluate the long-range

contribution by solving the Poisson equation

− ��sm = 4πρsm (7)

subject to periodic boundary conditions on [0,1]3. This

solution can be obtained efficiently in a number of ways. In

the set of presented methods we use either multigrid methods

for the solution of the PDE- or Fourier-based methods.

1. PDE-based: Multigrid

The Poisson equation (7) is a prototypical elliptic PDE. All

of its terms are discretized on a Cartesian grid of constant mesh

size Gh of points

Gh = {x|x = h j for j ∈ Z
3},

with a formal discretization parameter h ∈ R. Hence, the

number of grid points per axis is M = 1
h

. Thereby, (7) becomes

a linear system of equations,

Ahuh = fh, (8)

which is solved for the long-range potential �sm, represented

on the grid as uh. A variety of discretizations Ah for the Laplace

operator in (7) exist, each taking into account a specific number

of neighboring grid points with appropriate coefficients used

for evaluation, giving rise to a certain discretization order. For

reasons of locality in implementations with emphasis on strong

parallel scalability, a compact 27-point stencil of fourth order

is typically used [45,46].

The smooth charge distribution ρsm, represented as fh, is

sampled at the grid points Gh to obtain the right-hand side. As

splitting function, ϕ(r), cardinal B splines are employed,

ϕl(x) = ϕ(‖x − xj‖2),

that are radially symmetric. As an alternative, e.g., tensorized

polynomials defined over intervals or Gaussians may be used.

Then, the solution of (8) can be obtained via an iterative

relaxation scheme that minimizes the error em
h = uh − um

h of

the discrete solution at iteration step m,

um+1
h = um

h + Ch

(

fh − Ahu
m
h

)

︸ ︷︷ ︸

dm
h

, (9)

where Ch is an approximate inverse and dm
h is the defect at

iteration step m. Relaxation schemes differ on the choice of the

approximate inverse Ch made clear when Ah = Lh + Dh +
Uh is split into a lower triangular matrix Lh, diagonal matrix

Dh, and upper triangular matrix Uh. For Ch := D−1
h we obtain

the Jacobi method, for Ch := (Lh + Dh)−1 we have the Gauss-

Seidel method. By introducing a weight ω in (9) that makes it

possible to control the contribution of the defect to the update,

relaxation methods are obtained.

It is well known that the spectral radius of the iteration

matrix of both methods is bounded by 1. Furthermore, if the

discretized operator Ah is represented by a compact stencil,

then the component of the error em
h whose frequency is similar

to the inverse length given by the discretization parameter h is

decreased stronger than lower-frequency components. Hence,

the iteration scheme converges more slowly the finer the grid

is resolved.
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l = 4

l = 3

l = 2

l = 1

Legend:

Restriction

Prolongation

Smoothing/Solving

FIG. 2. (Color online) Depiction of typical V cycle.

However, if high-frequency components have been re-

moved, the remaining error can be well described on a coarser

grid. To this end, starting with a fine grid Gh we add a coarser

grid GH with commonly h = H
2

. We define a restriction

operator IH
h : Gh → GH and a prolongation operator I h

H :

GH → Gh, e.g., by trilinear interpolation. Then, the central

idea of the multigrid method is to eliminate the high-frequency

components of the defect, so-called smoothing, restrict the

remaining error to a coarser grid, and solve the defect equation

AH em
H = dm

H , (10)

where dm
H = IH

h dm
h , on the coarser grid. The exact solution of

(10) is the error em
H on the coarser grid that is prolongated back

as a coarse-grid correction to the finer grid,

um+1
h = um

h − I h
H A−1

H IH
h

(

Ahu
m
h − fh

)

. (11)

This is commonly known as a two-grid cycle.

Although the defect equation (10) has to be solved exactly

on the coarser grid, the resulting correction (11) is interpolated

to the finer grid which allows for an approximate solution to

suffice. Therefore, we may use again a two-grid cycle: This

time we use the former coarse grid as the new fine grid, remove

the high-frequency error, and apply a coarse-grid correction.

This is especially favorable if the number of grid points is a

power of 2. This nesting of multiple grids can be continued

until the evaluation of the exact solution is efficient or trivial

on the coarsest grid; see Fig. 2.

The proceeding of the multigrid-based methods can be

subsumed as follows.

Charge assignment. The right-hand side of the Poisson

equation (7) is constructed by sampling (4) with the respective

splitting function on the finest grid.

Solving the Poisson equation. Using a multigrid method

the approximate solution �sm is computed. The accuracy is

directly related to discretization parameter h on the finest grid

and hence to the number of nested levels l.

Evaluation of the potentials. The calculated approximation

�sm is interpolated to the particle positions using Newton

interpolation of sufficient degree, e.g., using a third-order

polynomial for a fourth-order accurate solution. The potential

is then corrected by subtracting the self-contribution �self

given by (5) and by adding the short-range part �sr given

by (6). As mentioned above, efficient methods for short-range

interactions are used here.

Evaluation of the fields. The polynomials of the previous

step are analytically differentiated to obtain the fields due to

the calculated potential surface.

Parameters. The multigrid methods are influenced by

the following parameters: size of the finest grid h = 2l

determined by the number of nested levels l, diameter of the

splitting function’s compact support, the degree of the Newton

interpolation, the discretization order for the Laplace operator,

the specific cycle type, the fixed number of iteration steps

used for smoothing, and the iteration threshold for the global

defect. The grid size and the diameter of the support are the

parameters that have by far the strongest impact on precision:

For a given extent of the support, the obtained accuracy is

strongly depending on h (in case of a fourth-order scheme the

error is reduced by a factor of 16, if h is reduced by a factor of

2). Usually, the principal precision of the method is set with the

size of the finest grid with respect to the discretization order

and can be further tuned by increasing the diameter of the

compact support of the charge distribution. Other parameters

such as discretization order and interpolation degree also affect

precision but the difference in speed is negligible.

The influence of the parameters on the computational work

is described in the following. Initially, we have O(m3N )

work for the interpolation of the spline functions, where

m is the number of grid points per axis of the compact

support of the splitting function. Moreover, the computational

work Wk per multigrid cycle for k levels is completely

determined by its finest grid; see [47], Chap. 2.4.3]. Hence,

assuming W l−1
l = O(M3

l ), where Ml is the number of grid

points per dimension of level l, we obtain O(M3
k ) + W0

computational work. The work on the coarsest grid W0 is

essentially constant, as the convergence of the multigrid is

M-independent [47], Chap. 2.9.3]. The interpolation of the

potential and the derivation of the interpolation polynomials

for the calculation of the fields results in O(l3N ) work, where

l is the interpolation degree. The necessary correction of the

potential and the fields due to the short-range part is of order

O(N ), if the particles’ distribution is close to uniform. Hence,

the method yields optimal complexity with the scaling constant

depending critically on the desired accuracy determined by the

discretization order of the stencil.

Multigrid is usually parallelized by a suitable decomposi-

tion of the domain and distribution of particles over many pro-

cesses. Each process samples its local share of particles on the

grid and performs operations on its local grid only, where some

communication is required with direct neighboring processes

during the restriction, prolongation, and smoothing. There is

also one global communication in every multigrid iteration

where the local defects are summed up globally. Eventually,

each process interpolates back its particle potential.

2. Fourier-based: Ewald and particle-mesh Ewald

The fundamental idea of the Fourier-based methods is to

compute the smooth long-range contribution �sm in Fourier

space. This leads to the well-known Ewald formula [2,48] for

the computation of (1), which splits the electrostatic potential

at position xj into the parts �(xj ) ≈ �sr(xj ) + �sm(xj ) +
�self(xj ), where

�sr(xj ) =
∑

n∈Z3

N
∑

l = 1

x0
l �= xj

ql

erfc
(

α
∥
∥xj − xn

l

∥
∥

2

)

∥
∥xj − xn

l

∥
∥

2

, (12)
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�sm(xj ) =
∑

k∈IM\{0}

e−π2‖k‖2
2/α

2

π‖k‖2
2

Ske−2π ik·xj ,

(13)
�self(xj ) = −2qj

α
√

π
.

Hereby, the complementary error function is defined by

erfc(z) = 2√
π

∫ ∞
z

e−t2

dt and the structure factors Sk are given

by

Sk =
N

∑

l=1

qle
+2π ik·xl ,

where M is the number of grid points per dimension and

the multi-index set IM := {−M
2
, . . . ,M

2
− 1}3 collects all the

grid points. The short-range part (12) as well as the Fourier

coefficients in (13) decay exponentially fast, so that the

potentials �(xj ), j = 1, . . . ,N , can be computed in O(N3/2)

when choosing optimal parameters [49].

The evaluation of the smooth component �sm can be further

sped up using FFTs, which leads to the family of PME
algorithms that includes P3M [15], PME [16], SPME [17],

and P2NFFT [50]. If the charge positions xj are “sufficiently

uniformly distributed,” these algorithms end up with an

arithmetical complexity of O(N log N ).

During the end of the 1990s, it became clear that P3M,

PME, and SPME can be considered as a single method with

different components. These are mostly interchangeable, and

their choice has a significant impact on the performance of the

method [18,51]. The original P3M algorithm by Hockney and

Eastwood has the advantage that it replaces the continuum

Green’s function by what is called the optimal influence
function, which can be derived analytically by minimizing the

functional that yields an average root mean square error for the

force. The optimal influence function can be derived for many

other variants that minimize the error in energy, or for dipolar

forces, or for the interlacing technique described further below

[15,52–54]. The method P3M in the present article refers

to the best known combination of these components, which

means that it differs from the original method by Hockney and

Eastwood [15] in several details.

The approximate computation of the long-range compo-

nents consists of the following steps.

Charge assignment. The charges are smeared out onto the

P nearest grid points of a discrete grid ρmesh of size M3,

ρmesh( p) =
1

h3

N
∑

l=1

qlϕ(h p − xl),

for p ∈ IM , where h = 1/M is the grid spacing. In P3M, the

window function ϕ is chosen as a three-dimensional tensor

product of cardinal B splines of order P .

Forward Fourier transform. The charge grid ρmesh is Fourier

transformed using the FFT to yield the reciprocal charge

distribution ρ̂mesh.

Solving for the potential. Next, the reciprocal potential �̂sm

is computed from ρ̂mesh using an appropriate Green’s function

Ĝopt (which is often called influence function in this context):

�̂sm = Ĝoptρ̂mesh.

Note that Ĝopt is, in fact, the product of the Coulomb Green’s

function and the Fourier transform of the Gaussians used for

the Ewald splitting. In continuum, this function is given by

Ĝ(k) =
1

π‖k‖2
2

e−π2‖k‖2
2/α

2

.

However, since the charge density is discrete, this continuum

Green’s function is not the best choice, even if it has been used

by some other methods. To minimize the overall relative error

in the potential, for example, the optimal influence function is

given by [52]

Ĝopt(k) =
∑

m∈Z3 ϕ̂2(k + m)Ĝ(k + m)
[∑

m∈Z3 ϕ̂2(k + m)
]2

,

where the sum over m is known as the aliasing sum and serves

to minimize the discretization errors.

Backward Fourier transform. Using the FFT, the reciprocal

potential is Fourier transformed backward to yield the long-

range potential �sm
mesh at the grid points.

Evaluation of the potentials. The potentials at the original

particle positions are approximated from the potential grid.

This step employs the same window function as the charge

assignment,

�sm(x) =
∑

p∈IM

�sm
mesh( p)ϕ(x − h p).

Evaluation of the fields. For the P3M method in the present

paper, the fields are derived with an analytical differentiation
scheme if not otherwise stated. This method is identical to the

approach used in the SPME method [17]. Since the gradient

of the charge assignment function is known analytically, the

gradient at the original particles positions can be directly

interpolated from the values of the potential grid,

Esm(x) =
∑

p∈IM

�sm
mesh( p)∇xϕ(x − h p).

A second approach, which was, for example, employed by

Darden et al. in their PME variant [16], is the ik differentiation.

Here, one makes use of the fact that in reciprocal space, the spa-

tial derivative turns into a simple multiplication by ik, where

k denotes the wave vector. This makes it computationally very

cheap to compute the reciprocal electric field Ê = ik�̂sm.

However, transforming this field back to real space requires

three backward FFTs instead of only one that is sufficient for

the scalar potential.

Interlacing. In addition, the P3M algorithm in this work

uses an extension to the algorithm sketched above that is called

interlacing [54], and that was already suggested by Hockney

and Eastwood [15]. A second grid shifted by half a grid spacing

is introduced and all the steps above are applied to both grids.

Afterward, the potentials and fields obtained for both grids

are averaged. This results in about an order of magnitude

higher accuracy compared to the single grid method, while the

computational effort for using interlacing is roughly twice the

effort of using a single grid. The gain in accuracy is sufficient

to make it possible to reduce the mesh size by factor of two

in all three spatial dimensions while maintaining the accuracy,

so that interlacing yields a significant performance gain.
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Throughout the rest of this work, we use the term P3M to

denote the variant of the algorithm with the best combination

of components known to date, namely the optimal influence

function, interlacing, and analytical differentiation [51].

Parameters. The parameters of the method are the Ewald

splitting parameter α, the short-range cutoff radius rcut, the

order of the charge assignment function P , and the grid spacing

h. The choice of these parameters does have a strong influence

on the accuracy and performance of the algorithm. Fortunately,

good analytical error estimates exist [20] that help to make a

good choice. The Ewald splitting parameter α does not have a

direct influence on the computational performance; however, it

does have a strong influence on the accuracy of the algorithm.

There is an “optimal” value of α where the best accuracy is

reached. Using a value that is off this optimum by as little as

10% can result in an accuracy that is two orders of magnitude

worse. Using the analytical error estimates, the optimal α

can be determined easily. The short-range cutoff radius rcut

determines the accuracy of the short-range part, while the

charge assignment order P and grid spacing h determine the

accuracy of the long-range part. Increasing the first two and

decreasing the latter will improve the accuracy of the methods

at the expense of the performance. Determining the optimal

combination of these parameters to reach a given accuracy is

an optimization problem.

The largest part of the parallelization of the algorithm is

straightforward. The most complex part is the parallelization

of the three-dimensional FFT, which was parallelized using

two-dimensional stencils [55].

The particle-particle NFFT (P2NFFT) is a general frame-

work for particle mesh algorithms based on non-equispaced

fast Fourier transforms (NFFTs) [56,57]. By appropriate

choice of parameters, this framework includes the PME meth-

ods for periodic boundary conditions and the fast summation

algorithm [58,59] for nonperiodic boundary conditions.

In the case of periodic boundary conditions, the P2NFFT

follows the approach of [60,61], e.g., the NFFT is applied

for the fast calculation of the long-range parts �sm
j . The

structure factors Sk in (13) can be computed by an adjoint,

three-dimensional NFFT of total grid size M3 with O(N +
M3 log M) arithmetic operations. This is followed by M3

multiplications in Fourier space and completed by a three-

dimensional NFFT of total grid size M3 to compute the outer

sums. The relation between N and M is determined by the

approximation error of the algorithm and is discussed in detail

in [18,20,57]. Choosing the total grid size M3 proportional to

the number of particles N yields the typical overall complexity

of O(N log N ).

The modularized structure of the P2NFFT allows a straight-

forward parallelization based on the parallel NFFT algorithms

presented in [50], which are implemented within the publicly

available PNFFT software library [62]. A regular blockwise

domain decomposition is induced by the underlying parallel

FFT algorithms [63] that are publicly available within the

PFFT software library [64].

Although different in spirit, the steps of P3M and P2NFFT

are very similar, and in fact, it can be shown that these two

methods are equivalent for periodic boundary conditions [65].

The optimal influence function of P3M, which is the result of

a functional optimization, in the light of the NFFT algorithm

is nothing but the continuum Green’s function decorated by

the convolution and deconvolution steps of the NFFT and its

adjoint. This analogy makes it possible to employ interlacing

also to the NFFT-based algorithm and gives deeper insight

into the origin of P3M’s optimal influence function. Also,

the computation of the gradients is handled similarly by both

methods.

Both methods P3M and P2NFFT use an equal distribution

of the particle system among a Cartesian process grid, thus

requiring a redistribution of the particle data. If particles are

already located on their corresponding process of the grid, then

the amount of communication required for the redistribution

decreases automatically. This helps to improve the scalability

of the parallel implementations, especially when the number

of particles per process becomes very low.

B. Hierarchical methods

In comparison to Fourier-based methods, HMs like the

Barnes-Hut tree method [21] or the fast multipole method

(FMM) [66] do not carry out any computations in reciprocal

space. Instead, the fast evaluation of the potentials �(xj ) is

achieved by splitting up contributions in real space into a

near-field part and a far-field part. The reduction of numerical

complexity is accomplished by factorization of the inverse

distance ‖xj − xl‖−1
2 into parts which only depend on xj

and parts which only depend on xl . The expansion can be

performed either in Cartesian or, more efficiently, spherical co-

ordinates [67]. Interactions in tree codes consider contributions

between particles and a whole hierarchy of pseudoparticles,

consisting of multipoles located at expansion centers, and

therefore result in a complexity of O(N log N ). Often a

geometric criterion is considered to decide about the size of

a pseudoparticle, i.e., the spatial volume in which explicit

particles are grouped together into a multipole expansion,

interacting with a single particle in a distance. On the other

hand, FMM makes use of hierarchically transferring multipole

information down a tree, so that individual particles interact

with effective far-field and explicit near-field particles, which

gives rise to an O(N ) complexity. In the following the FMM

is described on a more detailed level.

1. Fast multipole method

With the help of the associated Legendre polynomials Plm

and a transformation of the particle coordinates into a spherical

representation xl = a = (a,α,β), xj = r = (r,θ,φ) a single

particle-particle interaction can be factorized for ‖a‖2 < ‖r‖2

via

1

‖r − a‖2

=
∞

∑

l=0

l
∑

m=−l

(l − m)!

(l + m)!

al

r l+1

×Plm(cos α)Plm(cos θ )e−im(β−φ)

=
∞

∑

l=0

l
∑

m=−l

ωlm(a)μlm(r).

For numerical reasons it is sufficient to truncate the infinite

series at a certain finite term p for the computation. Besides

the truncation at multipole p, the FMM has two additional

parameters. To establish a spatial grouping of particles and to
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apply the factorization scheme, HMs employ a decomposition

of space into a set of boxes eventually forming an octree.

The subdivision is repeated until a certain tree depth dmax

is reached. The last parameter, the “well separatedness” (s),

controls the convergence rate of the aforementioned expansion.

The minimum separation of two boxes interacting via multi-

poles is s = 1. Higher separation yields better convergence,

thus lowering the number of poles p for a given accuracy, but

increases the size of the interaction set in both near and far

field. To compute the potentials �(xj ) and fields E(xj ), the

following steps have to be implemented.

Expansion into multipoles. First, all particles need to be

sorted into their corresponding boxes of the octree at depth

dmax. This step is performed via a Radix sort method [68]. The

sorting is followed by an expansion of all Mk particles around

their box center into spherical multipoles ωk
lm on the lowest

level dmax of the tree via

ωk
lm =

Mk∑

j=1

qja
l
jPlm(cos αj )e−imβj .

Since all Mk particles inside each box k are expanded around

the same center, the coefficients of the particles can be summed

up into a unique expansion ωk
lm per box. This step takes

O(p2N ) time.

Shifting multipoles. Now the multipole information is

shifted from the lowest level upwards to the root node of the

tree via the multipole-to-multipole operator (OM→M )

ωlm =
l

∑

j=0

j
∑

k=−j

OM→M (b)ωjk(−b) .

The OM→M operator combines multipole coefficients from up

to eight boxes on depth d and transforms these coefficients

into a single multipole expansion ωlm around the center of the

parent box b at depth d − 1. This step is repeated for each level

in the tree until the root node is reached. For a homogeneous

particle distribution the shift can be performed in O(p4N )

time.

Far-field interactions. After the octree has the full multipole

information available in each box on each level, the far-field

interactions can be performed. To obtain a reduced complexity,

only a fixed number of close-by interactions per level are taken

into account. Omitted interactions are carried out on a higher

level of the tree. In a tree code Mk remote particles of a box k are

transformed into local coefficients μlm around the center of the

box under consideration with the help of the particle-to-local

operator (P2L) via

μlm =
Mk∑

j=1

qj

1

r l+1
j

Plm(cos θj )eimφj .

Since each particle on each level has to be taken into account

this step costs O(p2N log N ) time.

The complexity can be reduced to O(p4N ) in the FMM by

applying the multipole-to-local operator (OM→L) given by

μlm =
p

∑

j=0

j
∑

k=−j

OM→L(−b)ωjk(b) .

The reduced complexity originates from the possibility to

transform multipoles of a certain box directly into a local

expansion without the need to incorporate the particles itself.

The number of interactions for the FMM is limited to

7(2s + 1)3, since only boxes of s neighboring parent boxes

on level l − 1 are considered. For s = 1 the maximum number

of interactions for each box on each level is 189. A higher

separation criterion increases the interaction list substantially

and is not favorable for the accuracy range discussed in this

article.

Shifting local coefficients. Now the far-field information

is available as local coefficients μlm inside the tree. To

compute the far-field properties (e.g., potentials, fields) these

coefficients are shifted towards the leaves of the tree. This step

uses the local-to-local operator (OL→L) given by

μlm =
p

∑

j=0

j
∑

k=−j

OL→L(b)μjk(−b).

This step can be performed in O(p4N ) time.

Compute far field. The far-field contributions now can

be computed for each particle in each box. The far-field

approximation of the potential �(a) can be obtained by

�(a) ≈
p

∑

l=0

l
∑

m=−l

μlm

1

(l + m)!
alPlm(cos α)e−imβ .

This step can be performed in O(p2N ) time.

Compute near field. Due to the convergence requirement

‖a‖2 < ‖r‖2 some interactions may not have been accounted

for. These remaining near-field interactions are carried out

separately with a classical direct summation scheme. Since

the number of particles in the near field is bounded, this step

also scales linearly.

To allow faster high-precision calculations, the operator

complexity of the current FMM implementation uses a

rotation-based approach [69], reducing the complexity from

O(p4N ) to O(p3N ) without inflicting the error bounds. The

presented implementation also eliminates the need to seek

for the optimal set of FMM parameters by utilizing an error

control and run time minimization scheme [70] based on

a user-provided energy error threshold �E. The algorithm

can also handle (mixed) periodic boundary conditions [23,30]

efficiently in O(N ) time.

Parameters. The parameters which determine the accuracy

and performance of the FMM are, as mentioned above, the

well-separated criterion s, the depth of the FMM tree d, and

the length of the multipole expansion p. All three parameters

are determined by an error prediction model, for which an

optimization problem is solved,

∂t

∂d
= 0,

∂t

∂p
= 0,

∂t

∂s
= 0,

subject to �E(d,p,s) � ǫ,

which determines the parameters according to the threshold

and a minimum run time. Therefore, the only parameter, which

has to be specified externally is the error threshold ǫ.

The FMM implementation uses parallel sorting to insert

particles into their corresponding boxes of the octree and to

distribute these boxes among parallel processes. The resulting
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FIG. 3. (Color online) Schematic of the MEMD lattice interpola-

tion. The electric fields D are placed on lattice sites and the magnetic

fields B in rotated dual space on the plaquettes. The current j is

interpolated from the moving charges.

distribution of particles among processes corresponds to a Z-

order space filling curve. If particles are already provided with

this kind of distribution, then the amount of communication

required for the parallel sorting decreases automatically, thus

improving the scalability of the parallel implementation.

C. Local method: MEMD

While the majority of electrostatics algorithms calculate

Coulomb interactions by computing the global potential, for

example by solving the Poisson equation, and differentiating

the resulting potential, the MEMD algorithm follows a

different approach. It is based on the full electrodynamics

of the system, discretized on a lattice as shown in Fig. 3.

Initial solution and temporal updates. The method consists

of two different combined methods. Initially, an exact solution

of the Gauss equation

∇ · D = ρ

for the system is computed with a numerical relaxation scheme.

The charges are interpolated onto the lattice via the linear

cloud-in-cell algorithm. They are then added up shellwise to

perfectly obey Gauss’ law, and the field energies are minimized

numerically. This initial scheme scales with O(N2), but has

to be applied only once in the beginning and still retains the

locality of the algorithm. A possible improvement methods

with better scaling behavior shall be discussed elsewhere.

Subsequently, the correct solution can be obtained by only

applying temporal updates of the fields. The time derivative

and some physical arguments, as laid out in [25], lead to the

following constraint that is then applied to the propagation of

the system

∂

∂t
D + j −

1

c2
∇ × B = 0,

with the electric field D(x) = ε(x)E(x) [with the assumption

of a local ε(x)], the electric current j and a magnetic field

component B. This results in temporal updates for the electric

field without ever calculating the corresponding potential

�(x). The equations are purely local; hence, the permittivity

ε(x) is not necessarily constant but may vary in space.

Thermodynamic limit. Because of the algorithm’s local-

ity, we consider the Lagrange density function for this

constraint

L =
∑

i

mi

2
v

2
i − U +

1

2c2

∫

ε(x)�̇
2
dx −

1

2

∫
D2

ε(x)
dx

+
∫

A( Ḋ − ∇ × �̇ + j )dx,

where mi and vi are the particle masses and velocities, � is

an additional degree of freedom in form of a vector field that

relates to the magnetic field, A is a Lagrange multiplier, and

1/c2 is merely a prefactor that can be expressed by the physical

wave propagation speed c.

Equations of motion. From this, the equations of motion for

the particles and the fields are obtained via variational calculus.

For the particles, this yields the known formula for the Lorentz

force, and the artificial B field shows the wavelike propagation

mi ẍi = −
∂U

∂xi

− qi E + qivi × B, B =
1

c2
�̇,

(14)

Ḋ = c2
∇ × (∇ × B) −

j

ε
, Ḃ = −∇ × D.

Note that the magnetic part of the Lorentz force can and

should be omitted since the B field is artificial and only used to

propagate changes in the D field. To preserve time reversibility

of the external integrator, the magnetic fields are propagated

twice by half a time step, before and after the force calculation,

respectively.

The intrinsic locality of the algorithm leads to an O(N )

scaling and a way to treat periodic box geometries by matching

the box boundaries onto a torus.

Implementation. For parallel execution, the system is split

into cubic spatial domains and distributed on the available

cores. Each domain contains a regular lattice that carries all

currents and fields. Since the algorithm is purely local, com-

munication only occurs on the lattice cubes directly attached

to a neighbor domain. These surface patches are exchanged

asynchronously while the B fields are propagated for all inner

cells during parallel communication. The communication cost

can be reduced if the charges are presorted in cubic domain

decomposition. Especially for small numbers of particles per

core, where the percentage of computing time for the sorting

step is significant.

Parameters. The algorithm features one central parameter,

the lattice size, to tune speed and accuracy. All other pa-

rameters are either given by the external integration routine

or are constrained by the stability criterion. They can thus

be set optimally by the implementation. Optimal accuracy is

achieved in an error minimum for an appropriate mesh. The

accuracy reacts sensitively to coarser mesh sizes, with a scaling

of a3 with the lattice spacing a. Finer meshes, scaling with

1/a2, do not influence the accuracy as strongly but increase

the computational effort proportional to 1/a3 [71]. The choice

of this parameter can therefore influence the behavior of the

algorithm significantly.

III. BENCHMARK SETUP

A. Systems

In order to calculate the electric field E = −∇� for a

1/r potential, all methods presented here split the long-range
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FIG. 4. The cloud-wall system (300 charges): two oppositely

charged walls in the center of the box and a surrounding diffuse cloud.

The system was artificially created to contain a strong long-range field

component.

part of the potential from the divergence at r → 0. Since the

performance relevant part of the calculations is the treatment

of the long-range components, all benchmarks presented

here were carried out for two systems, consisting of different

charge distributions, both of which feature a significant

long-range contribution which challenges the achievable

accuracy of the methods.

The cloud-wall model system, shown in Fig. 4, consists of

300 particles, which represent two oppositely charged walls

centered in a cubic box together with a diffuse cloud of charges.

This ensures a strong long-range contribution in the potential.

The periodic box was replicated 3, 7, 15, 32, and 70 times in

every direction to yield cubic boxes filled with 8100, 102 900,

1 012 500, 9 830 400, and 102 900 000 particles, respectively.

The cloud-wall systems were used for both the performance

measurements as function of accuracy in Sec. V A as well as

for the scalability benchmarks in Sec. V C. Since these test

cases represent periodically replicated systems, the reference

values for potentials and forces can be obtained even for very

large numbers of particles.

The second test system consists of a cubic box filled with

12 960 particles of a silica melt shown in Fig. 5. It was

taken from an MD simulation of a melting silica crystal

using the Beest–Kramer–van Santen (BKS) force field [72].

The overall charge neutral system consists of positively and

negatively charged ions which are sufficiently homogeneously

distributed, while the electrostatic potential still has a signif-

icant long-range contribution. For the scaling and benchmark

runs the original silica melt system was replicated 2, 4, 8,

16, and 32 times in every direction to yield cubic boxes filled

with 103 680, 829 440, 6 635 520, 53 084 160, and 424 673 280

particles, respectively.

The silica melt test systems were used for both the stability

benchmarks in Sec. IV and the complexity benchmarks in

Sec. V B.

B. Error measure

In order to compare the accuracy of the different methods,

the following error measure is defined. Let �FCS(xj ) denote

FIG. 5. Silica melt (12 960 charges): a system that is sufficiently

homogeneous while retaining a significant long-range contribution.

the potential which is calculated by one of the presented fast

Coulomb solvers and �REF(xj ) the highly accurate reference

potential computed by the Ewald summation method for which

the parameters were chosen to yield an accuracy close to

machine precision. In the following, we compare the different

solvers with respect to the relative rms potential error given by

εpot :=

(∑N
j=1 |�REF(xj ) − �FCS(xj )|2

∑N
j=1 |�REF(xj )|2

)1/2

.

Since all methods differ in their definition of relative short-

and long-range contribution, only the total potential can be

used as common reference point.

C. Architectures

The benchmark tests were performed on two different

hardware architectures at Jülich Supercomputing Centre. In

the meantime, the JUGENE architecture has been shut down

and replaced by the JUQUEEN system [73].

1. Blue Gene/P (JUGENE) [74]. One node of a Blue

Gene/P consists of four IBM PowerPC 450 cores that run

at 850 MHz. These four cores share 2 GB of main memory.

Therefore, we have 0.5 GB RAM per core, whenever all the

cores per node are used. The nodes are connected by a 3d-torus

network with 425 MB/s bandwidth per link. In total JUGENE

consists of 73 728 nodes, i.e., 294 912 cores. The software has

been built with the IBM XL compilers (Advanced Edition for

Blue Gene/P, V9.0).

In this work, we consider this architecture as prototypical

for a well interconnected HPC machine.

2. Jülich research on Petaflop architectures (JUROPA)
[75]. One node of JUROPA consists of 2 Intel Xeon X5570

(Nehalem-EP) quad-core processors that run at 2.93 GHz.

These eight cores share 24 GB DDR3 main memory. There-

fore, we have 3 GB RAM per core, whenever all the cores per

node are used. The nodes are connected by a QDR InfiniBand
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network with nonblocking fat tree topology. In total, JUROPA

consists of 2208 nodes, i.e., 17 664 cores. The software has

been built with the Intel Compilers (version 11.1).

In this work, we consider this architecture as prototypical

for a convenience cluster.

D. Implementations

Whenever the performance and, in particular, the scalability

of an algorithm is examined, it strongly depends on the actual

implementation of the algorithm. Therefore, in some cases

different implementations of the same algorithm are employed,

as provided within the scalable parallel library SCAFACOS

[30,36], which is used for the comparison of methods.

In the following some implementation features are provided

for each method. A more in-depth discussion about parallel

implementations is given in the library manual [76] and in a

follow-up publication that is still in preparation.

Two implementations of the multigrid method were used in

the benchmarks. PP3MG [77] is implemented in C, featuring

as splitting function either cardinal B splines or polynomials

defined over an interval. Finite difference or finite volume

operators are available as fourth-order compact schemes

or extended higher-order schemes. Newton interpolation is

applied to map grid values to particles. Versatile multigrid

(VMG) is a multigrid-based method implemented in C++ with

strong emphasis on modularity in terms of employed iterative

solver, domain decomposition, and interpolation schemes.

Note that both multigrid-based methods have converged to

employing cardinal B splines or polynomials, a fourth-order

compact stencil, and Newton interpolation in most of the

following benchmarks and hence differences in performance

can be recast to specific implementations and differences

in the compilers. For the very low- and high-accuracy

benchmarks lower or higher-order schemes are used.

In the case of the Fourier-based methods, two implementa-

tions were used which were originally developed in different

communities. The P3M algorithm or one of its variants is

a widely used method in condensed matter simulations to

compute Coulomb interactions. The implementation of the

algorithm used in this work was originally adopted from the

simulation software ESPRESSO [35] and is implemented in

C. In fact, two variants of the algorithm were used for the

benchmarks. In the first benchmarks, the algorithms did not yet

employ interlacing, and the ik-differentiation scheme was used

for computing forces onto particles. During the time of writing

the implementation has been extended to use both analytical

differentiation and interlacing, as it was determined that this is

the fastest combination of components [51]. Since JUGENE

was replaced with a new architecture before these changes

were implemented, it was not possible to rerun all benchmarks

with the modified algorithm. In the graphs, whenever the

noninterlaced method with ik differentiation was used, it

is denoted as “P3M (ik).” The second implementation of a

Fourier-based method is P2NFFT; see [50]. Starting from the

fast summation method [58], it was shown in [61] that the

method is based mainly on a “convolution at nonequispaced

nodes.” This conclusion leads to great simplicity: The P2NFFT

implementation mainly consists of only two building blocks

required to compute this convolution, namely, the FFT [63]

and the NFFT [50].

As noted in Sec. II A2, the implementations of P3M and

P2NFFT are mathematically equivalent for periodic boundary

conditions. Whenever there are differences found in the

performance between these two, they originate only in part

from the implementation itself, but mainly from differences

in the way in which the parameters, which enter into the

algorithms, were determined. For all timings of P2NFFT, all

parameters were chosen based on the comparison of several

runs, whereas for P3M, an estimate for the near-field cutoff rcut

and an automatic tuning of all other parameters is used.

The core of the FMM is implemented in FORTRAN 90.

Sorting is done externally via a call to a C library function.

The parallel version of the FMM does make use of the message

passing interface (MPI) for collectives and ARMCI and OSPRI

(Blue Gene/P only) for the one-sided, nonblocking point-to-

point communication. To simplify the use of the algorithm for

the user, an additional run time and error control scheme was

implemented to automatically tune the parameter set.

The implementation of MEMD is written in C and was

ported from the Molecular Dynamics software ESPRESSO [35].

It is based on the B field wave propagation version proposed by

Dünweg and Pasichnyk [25] rather than the original diffusive

Monte Carlo propagation [24]. The interpolation scheme for

the electric currents is based on a linear charge interpolation.

The simulation box is divided into subdomains, and each

subdomain is mapped onto a grid of equally spaced lattice sites

in each dimension and across all domains, which facilitates

the applicability of a finite differences curl operator (∇×).

The parallel communication is merely done on next neighbor

boundaries. The algorithm includes dynamics (propagation of

fields) and, to set the time scale of the system, requires—in

contrast to the other algorithms—the specification of a time

step to correctly map the motion of charges to the electric

current.

IV. STABILITY

The long-term stability of an MD simulation is a good

test for the accuracy of the computed forces. If a symplectic

integrator is used, the time discretization error does not

lead to a long-term energy drift, so that any remaining drift

must be due to systematic errors in the forces. A symplectic

integrator has the property that the discretized solution for

the original Hamiltonian H is equal to the exact solution

for a nearby Hamiltonian H ′ [78]. Since the energy for H ′

is exactly conserved, its deviation from the energy for H

remains bounded. Likewise, a time-reversal symmetry of the

integrator guarantees the conservation of total momentum. If

total momentum is not conserved, there must be systematic

errors in the forces.

To evaluate the long-term stability, we have run MD

simulations of the silica melt system described in Sec. III A

using the BKS force field [72], the Coulomb component

of which is computed with the different methods from the

SCAFACOS library. The simulations were performed with the

MD code IMD [79], using a symplectic leap-frog integrator

in the NVE ensemble. The system consisted of 12 960 atoms

and was first equilibrated at 2950 ◦C. The simulations were
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FIG. 6. (Color online) Kinetic energy per particle of the center-

of-mass motion of the system according to different methods and

accuracies: εpot = 10−3 (top); εpot = 10−5 (bottom). Note that the

P3M method used here uses an ik differentiation for the forces

instead of analytical differentiation and does not apply interlacing.

With MEMD, only an accuracy of εpot = 10−3 could be reached.

run over 100 000 time steps of 0.2 fs each. This time step

is a rather small, conservative choice, so that remaining time

discretization errors should be negligible.

A. Conservation of momentum

The results for the conservation of momentum are shown

in Fig. 6, for two different required accuracies. At the

beginning of the simulation, the total momentum was set to

zero. The development of the specific kinetic energy of the

center-of-mass motion, calculated in energy per particle, is a

good measure to monitor the momentum conservation in the

system.

As can be seen from Fig. 6, for the methods FMM, P3M,

and VMG the center-of-mass momentum remains zero for

all practical purposes, whereas with the methods P2NFFT,

PP3MG, and MEMD, a small but noticeable increase of

the center-of-mass momentum is visible. The reason for the

difference between P3M and P2NFFT is the use of different

differentiation schemes. The ik-differentiation scheme used

FIG. 7. (Color online) Total energy per particle according to

different methods at accuracies εpot = 10−3 (top) and εpot = 10−5

(bottom). The initial energy has been subtracted in order to make the

fluctuations and the drift better visible. Note the different scales of the

two figures (units of 10−3 and 10−5 eV). Note that the P3M method

used here uses an ik differentiation for the forces instead of analytical

differentiation and does not apply interlacing. With MEMD, only an

accuracy of εpot = 10−3 could be reached.

in P3M conserves the momentum exactly, but is somewhat

slower, whereas the analytical differentiation scheme used in

P2NFFT conserves the momentum only approximately but is

faster. Both methods can use either of these differentiation

schemes. There is a trade-off between higher accuracy and

higher performance involved when one selects the differentia-

tion scheme. Note that VMG artificially enforces conservation

of momentum while PP3MG does not.

B. Conservation of energy

The conservation of total energy is shown in Fig. 7, for the

same required accuracies as for the momentum. For the higher

accuracy, the drift of the energy is negligible for all practical

purposes, even though the multigrid methods seem to have
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slightly higher energy fluctuations. The situation is different

for the lower required accuracy, where the multigrid methods

VMG and PP3MG show a very clear drift. This means that

the forces contain a systematic error, which adds up during the

simulation. The other methods, especially the Fourier-based

ones (P3M and P2NFFT ), behave much better in this respect.

They show no energy drift (or a much smaller one) even at

low accuracy. This must be taken into account in the Methods

selection. If a drift must be avoided, the multigrid methods

have to be run at higher accuracy, which costs performance,

whereas the other methods can be used at lower accuracy

without having to deal with a drift.

It is apparent that MEMD is not capable of achieving an

accuracy of ǫ < 10−5, which was found to provide long-term

stability for the other methods. The lack of accuracy of MEMD

is due to a low near-field resolution in directly adjacent cells,

where no explicit particle interactions are considered. The

application of a thermostat could possibly circumvent the

numerical drift at lower accuracy but cannot guarantee the

correct description of the dynamics of the system. However, if

the main focus is on the configuration of a system and not on

dynamics, e.g., in Monte Carlo simulations, MEMD might be

considered as a fast method.

V. PERFORMANCE OF THE METHODS

In the following we assess the performance of each method

in terms of accuracy, complexity, and parallel scalability. For

the accuracy measurement, we inspect how much longer a

method runs for a specific increase in desired accuracy of

the relative potential error. The complexity tests check on the

theoretically expected complexity with respect to the experi-

mentally measured dependency of run time on the number of

particles. Finally, parallel scalability extends the benchmarks

to very large systems of charges and examines parallel

efficiency of the methods up to very large numbers of cores.

A. Accuracy

For the following benchmarks, the parameters of the fast

Coulomb solvers were tuned in order to achieve different

potential errors εpot. Figure 8 shows the run time per particle for

the cloud-wall system with 102 900 particles on JUROPA. We

discuss each method’s source of error individually to explain

the details of Fig. 8.

The error introduced by the multigrid-based methods

(VMG and PP3MG) is composed of a discretization error,

an algebraic error, and an interpolation error. The first is

due to the discretization of (7) and depends on the chosen

discretization scheme. It scales typically like O(h2), O(h4),

or O(h6). Further, an appropriate splitting function has to be

chosen that, in order to be represented adequately on the grid,

has to be smooth enough and must have a large enough support.

As a consequence the choice of a higher-order scheme leads to

a larger number of grid points a charge is sampled onto. The

order of the interpolation scheme is also chosen according to

the order of the discretization scheme, this results in a run time

behavior similar to the sampling part. The algebraic error due

to the iterative solution of the linear system is controlled to be

on the same order.

FIG. 8. (Color online) Required wall clock time per particle for

102 900 charges versus the relative rms potential error εpot on one

core of JUROPA.

Putting this information together explains Fig. 8: The grid

sizes, inversely proportional to the discretization parameter

h, can only be increased by a factor of 23 or powers thereof

and the resulting error decreases then like the order of the

discretization scheme, e.g., O(h4). However, as the accuracy

was measured in powers of 10, not only are the grid sizes

changed and the support of the splitting function adjusted

accordingly, but also the optimal discretization scheme, in-

terpolation degree, and type of splitting function are chosen

individually.

Regarding the Fourier-based methods, the error of the

truncated Ewald sum splits into the errors caused by the

truncation of the near-field sum (12) at a given near-field

cutoff range rcut and the error caused by the truncation of

the Fourier series (13) after M mesh points in every direction

of space. Note that both errors depend on the Ewald splitting

parameter α in the opposite direction; e.g., for every given

rcut and M there exists an optimal choice of α for which

both errors are balanced. In addition, P3M and P2NFFT

spread the charges qj with a B-spline function on the grid in

order to make the problem suitable for FFTs. This introduces

another approximation error that decreases exponentially for

increasing order P of the B spline. The P3M method seems to

be significantly worse than P2NFFT; however, it was noticed

that this seems to be caused mostly by problems in the

automatic parameter tuning procedure. As the P3M method

is equivalent to the P2NFFT method, it can be expected that

the method can be improved to perform on the same level as

P2NFFT.

The FMM has two distinct error sources contributing to the

overall error. Both error sources emerge in the far field only.

The FMM near field is free of errors except for numerical

rounding off visible in all methods. The first algorithmic error

source, the limited number of poles, introduces a truncation

error. The second error source occurs whenever the translation

operator OM→L is applied. Both errors can be controlled

in the current implementation such that the results do not

show any errors compared to the direct summation or even
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FIG. 9. (Color online) Required wall clock time per particle at

relative rms potential error εpot < 10−3 on one core of JUROPA.

exceed the precision due to fewer terms in the summation.

One cannot state any accuracy scaling properties for systems

with arbitrary particle distribution. However, for well behaved,

almost homogeneously distributed systems like the ones used

in this comparison, the FMM shows the following scaling

behavior. First, up until �Erel = 10−4 the run time of the

FMM is constant. Second, the run time increases linearly until

�Erel = 10−8. Finally, the FMM shows a quadratic scaling

behavior until machine precision. The theoretical O(p3)

scaling, with p being the number of poles in the expansion,

is not visible when increasing the requested accuracy up

to machine precision, since the FMM does tune the near-

and far-field contributions automatically which improves the

accuracy scaling.

The discretization of the MEMD method introduces two

numerical errors, both of which can be expressed using the

inverse lattice spacing 1/a. The first is a charge discretization

error that originates in the linear interpolation on next neigh-

bors for the electric current. As expected, it scales with 1/a3

and can theoretically be reduced by extending the short-range

cutoff of the algorithm to several cells. This, however, implies

a high increase in computational effort and does not allow

for spatially varying dielectric properties, one of the main

advantages of MEMD. The second error is related to the use

of retarded solutions of the Maxwell equations with an adjusted

speed of light. This in turn can be directly expressed via the

lattice spacing, since this dictates the propagation speed of the

magnetic fields. From (14) it is apparent that this error scales

with a2. This error formulation yields a minimum error of

about 10−4 for the relative force error, where realistically 10−3

is achievable in most systems. The method provides a tuning

function to find the parameters for a minimal error. In Fig. 8,

MEMD performs acceptably but can only cope to a maximum

precision of 10−4 in the relative potential error.

B. Complexity

In this section we compare the theoretical complexity of

each method with the measured run time complexity. Figure 9

shows the run time per particle as a function of the number

of particles for the various methods on a single core of the

JUROPA system with the silica melt test system duplicated

as described in Sec. III A. All the methods are required to

maintain the relative rms potential error of εpot < 10−3. Note

that not all the implementations are intended to run such large

problem sizes on a single core. Therefore, a lack of memory

or other implementation depended limitations lead to some

missing data points in Fig. 9.

We observe an almost linear increase of run time with

increasing number of particles for all compared methods,

which agrees perfectly with the theoretical O(N ) complexities

of the MEMD, PP3MG, VMG, and FMM methods. The

time per particle varies between 5.2 × 10−6 and 1.4 × 10−4.

Although P3M and P2NFFT yield a theoretical O(N log N )

complexity, this is not visible in the compared range of particle

numbers. This does not emerge as the run time share of the FFT,

which is responsible for the asymptotic O(N log N ) scaling,

ranges only between 3% and 10% of the total run time. Further

note that there is no crossover point of the FMM and P3M run

time up to 5 × 107 particles. However, the run time difference

between FMM, P3M, and P2NFFT are rather marginal for all

compared system sizes.

C. Scalability

Our last benchmark is focused on parallel scalability.

Although each method presented here shows linear scal-

ing behavior for a small number of cores, at some point

implementation-dependent restrictions will cause a deviation

from the O(N/P ) behavior at large problem sizes N and

large numbers of cores P and thus a decrease in efficiency

for highly parallel execution, as expected for strong scaling.

The timings presented in this section were performed on

the two different architectures described in Sec. III C. All

algorithms are tested for parallel scalability using the cloud-

wall test case from Sec. III A on the JUGENE system, which

has a large number of slowly clocked cores, and on the

JUROPA system, an architecture more similar to common

compute clusters. Results of the wall clock measurements for

1 012 500 charges on the JUROPA system are presented in

Fig. 10.

The gray dotted lines drawn in Fig. 10 each denote a factor

of 10 in the run times with respect to the fastest method on one

core. A graph starting out on the lower line therefore is reduced

to a relative efficiency of 0.01 when crossing the upper line,

providing the best visible resolution in a region of very low

efficiency. All methods in Fig. 10 show very similar efficiency

and their scaling behavior at low core numbers appears linear.

To provide a better resolved and easier to read comparison,

the scaling plots presented from here on will feature the relative
parallel efficiency in dependence on the number of cores. Let

Pmin denote the minimal number of cores that was included in

the measurements and tbest the run time of the fastest method

at this level of parallelism. We then plot the relative parallel
efficiency e(P ), which we define by

e(P ) =
tbest

t(P )

Pmin

P
. (15)

The same scaling measurements as in Fig. 10 are shown in

Fig. 11(c) using Eq. (15). In direct comparison, the nonlinearity
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FIG. 10. (Color online) Required wall clock time of the cloud-

wall test case with 1 012 500 charges versus the number of cores on

JUROPA at relative rms potential error εpot < 10−3.

even at small numbers of cores can be seen, and the scaling

trend of each algorithm in the most interesting scope above

10% efficiency of the fastest method is more apparent on

the nonlogarithmic scale. The only disadvantage of plotting

the parallel scaling like this is that it is not possible to read

off the actual timing of an algorithm from these plots. To

allow for this, we give the best timing tbest at the minimal

number of cores Pmin in the caption of the scaling graphs. The

actual timing can then be calculated as t(P ) = tbest

e(P )
Pmin

P
. Where

Pmin �= 1, we give it explicitly.

We now discuss the scalability of each method individually.

1. VMG and PP3MG

On both architectures multigrid methods show a very good

scaling behavior. Both methods use a fourth compact order

discretization scheme that maximizes parallel efficiency at

moderate accuracy. The efficiency plots on both architectures

are smooth and the methods behave like expected; cf., Fig. 11

and Fig. 12. On JUROPA (see Fig. 11) the performance of

VMG overall is a little bit better than the behavior of PP3MG;

nevertheless, both methods show a loss of efficiency for small,

i.e., less than 1000, numbers of particles per core. This effect

seems to be less pronounced for PP3MG. The factor between

VMG and PP3MG can be explained by examining the param-

eters chosen for VMG, that seem to be chosen more favorable

for this implementation. On JUGENE (cf. Fig. 12), both

methods perform equally for smaller processor number, for

larger processor numbers PP3MG suffers less from scalability

issues. Note that both methods were tuned manually.

2. P2NFFT and P3M

On the JUROPA architecture, P2NFFT and P3M outperform

the other methods (see Fig. 11). Mathematically, the two

methods are identical [65], and for these scalings both use

interlacing and the analytic differentiation scheme. Therefore,

the significant difference in performance and scaling seen

in Fig. 11 stems solely from the different choice in the

FIG. 11. (Color online) Relative efficiencies e(P ) [see (15)] of

the cloud-wall test case at different sizes versus the number of cores

on JUROPA at relative rms potential error εpot < 10−3. (a) Cloud-wall

test case with 8100 charges. tbest = 6.35 × 10−2 s. (b) Cloud-wall test

case with 102 900 charges. tbest = 6.60 × 10−1 s. (c) Cloud-wall test

case with 1 012 500 charges. tbest = 7.25 s.

algorithms’ specific parameters. In these simulations, P3M

uses an automatic parameter tuning method, whereas P2NFFT

timings were done with manually tuned parameters. The

automatic tuning method makes use of the error estimate
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FIG. 12. (Color online) Relative efficiency [see (15)] of the

cloud-wall test case with relative rms potential error εpot < 10−3

on the JUGENE architecture. Note that the P3M method used

here uses an ik differentiation for the forces instead of analytical

differentiation and does not apply interlacing. (a) Cloud wall test

case with 1 012 500 charges. tbest = 106.7 s. (b) Cloud wall test case

with 9 830 400 charges. tbest = 454.8 s; Pmin = 2. (c) Cloud wall test

case with 102 900 000 charges. tbest = 753.1 s; Pmin = 16.

from [52] and times several test runs with different sets of

real-space cutoffs and lattice sizes to determine the optimal

parameters. This works reasonably well within a full MD

software but may give flawed results in a library, where the ratio

of computational effort between short-range and long-range

interactions is not as obvious.

The nonoptimal tuning routine of P3M results in a consid-

erably larger near-field cutoff range than the manually chosen

parameters of P2NFFT, which were optimized for an ideal

single core performance. Hence, the P2NFFT calculations are

mostly done in Fourier space via the FFTs, which is advanta-

geous on small numbers of cores. On a large number of cores,

this situation is reversed and P3M as well as also other methods

perform better for the same reason: More Fourier space

calculations demand more global communication, whereas in

the case of P3M more interactions are calculated in real space

with a near-field solver requiring less global communication.

With both implementations, it is possible to switch param-

eters at the point of crossover, making the resulting algorithm

the fastest on the JUROPA architecture.

On the JUGENE architecture (see Fig. 12), both algorithms

used an older implementation. Neither of which featured

interlacing, and in the case of P2NFFT this included the

analytic differentiation scheme, whereas P3M used the ik

differentiation. The automatic tuning routine was used for

all timings. P2NFFT, in contrast to scalings on the JUROPA

architecture, did not tune the near-field cutoff range. At the

time of the scaling measurements, it was not yet possible to

run P3M for the setups in plots in Figs. 12(b) and 12(c) be-

cause of parallelization issues with uneven automatic domain

decomposition of the MPI library. This problem is fixed in the

current version of SCAFACOS.

The good scaling behavior (at the expense of slower

single core performance because of the large near-field cutoff)

observed on the JUROPA architecture is still visible and both

implementations surpass the FMM performance for very high

numbers of cores.

3. FMM

As can be seen in Fig. 12, the FMM implementation

performs very well on the JUGENE architecture, showing

not only the best single core performance of the compared

methods but also excellent scaling behavior, making it the

fastest method down to 103 particles per core. The OSPRI

library is used for point-to-point communication. At large

scales, a global communication scheme could still improve

the scaling behavior, but point-to-point communication was

chosen to optimize the method for a small memory footprint.

On the JUROPA architecture (see Fig. 11), FMM shows

good results at small numbers of cores and good scaling

behavior, but is outperformed by the Fourier-based methods.

Comparison of the two architectures suggests that the ratio

of computing time to communication is not optimal since the

implementation performs very well on JUGENE with slowly

clocked cores. This is partly due to the ARMCI message

passing layer not scaling as expected, the communication

being one-sided (blocking or nonblocking), and the lack of

thread-based parallelism. Overall, it is mostly due to the

optimization on small memory footprints.
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Of all methods presented here, the implementation of

FMM has the lowest memory requirement. Several additional

communication steps are required to achieve this. The number

of global synchronizations can be reduced if this low mem-

ory requirement is lifted. The Morton-ordering and sorting

algorithm is restricted to a small memory requirement. This

ordering also introduces imbalance; hence the scaling limit.

Additional load balancing would be needed to even out the

reordering effects.

4. MEMD

The MEMD algorithm performs acceptably on the JUROPA

system. The absolute timings do not reach those of the fastest

methods but are situated in the midrange compared to all

alternatives. The parallel scaling is not as strong as expected

from a purely local method, which is due to the large amount of

data sent between cells at the node boundaries. In addition to

interpolated charges as in other methods, currents and electric

and magnetic fields have to be exchanged, which leads to a

communication overhead on clusters with good single CPU

performance.

On a system with slower clocked cores like JUGENE,

MEMD performs quite competitively, as can be seen in Fig. 12.

A comparison between the two architectures reveals room for

improvement within the communication structures.

The timings shown here are all measurements of the

dynamic solution of the algorithm and do not include the

first time step, which is calculated via the initial numerical

relaxation scheme. Since MEMD does not provide a tuning

method for a given error estimate, manually tuned parameters

were used for all simulations to obtain the required accuracy at

the coarsest possible mesh. On the JUGENE architecture, due

to memory consumption, the simulations had to be restricted

to higher numbers of cores.

D. Performance comparison

As a general remark we emphasize that the comparison

was made between methods included in the parallel library

SCAFACOS. Due to the common interfaces, positions, and

charges are copied into the library and resorted internally.

Although there are various kinds of optimizations already

done, a performance gain could be obtained by transferring

sorted arrays of charges and positions of particles in, e.g.,

block structures or along space filling curves to the library

for an improved cache usage. Furthermore, the evaluation of

the short-range part of interactions within the force loop of

the MD code has the potential to increase performance due

to the combined calculation with empirical potentials such as

Lennard-Jones, which avoids a double calculation of mutual

distances between near-field particles in the MD code and in

the library. For the present comparison the implementation of

the near-field contribution was calculated consistently with

the methods offered by SCAFACOS in order to put all

methods on a common ground. Finally, changes to particle

position in an MD simulation are usually small such that

especially the PDE-based methods may benefit from starting

at solutions gained from the previous time step. However, such

optimizations have not been explored for this comparison for

the sake of a common ground.

The systems chosen for the benchmarks fulfill the re-

quirements to exhibit a sufficient contribution from long-

range contributions to the electrostatic potential, whereas

the distribution of particles is relatively homogeneous. It

has to be pointed out that for systems which show strong

inhomogeneous particle distributions, mesh-free methods like

FMM will most likely gain in relative performance with

respect to mesh-based methods, like P2NFFT and P3M, since

a sufficient resolution of the particle distribution will call for

large meshes.

It is apparent that for architectures consisting of powerful

single cores, the FFT-based methods P2NFFT and P3M

show the best performance of all methods included in the

SCAFACOS library. It can be seen that the chosen parameters

are crucial for accuracy and speed. For example, the real-space

cutoff radius might be set small when a small number of

processors is used, since the far-field part can then be very

efficiently calculated by a well scaling FFT. However, when

the number of cores is increased and the efficiency of the FFT

is degraded due to communication, more work is transferred

to the short-range part by finding a balance between far-field

and near-field calculations by a larger near-field cutoff radius.

For architectures with a smaller ratio of communication to

computation time, i.e., a fast network structure together with

slow single cores, the fastest algorithm is the FMM. It also

features the smallest memory requirements, allowing for very

large systems even on small numbers of cores. The implemen-

tation has been optimized for a small memory footprint, and

it is most likely that the timings can even be further improved

by use of a less memory efficient sorting and communication

schemes. For a small error threshold (ε < 10−5), controlling

the approximation, the given implementation of the FMM

is sufficiently energy and momentum conserving for long

trajectory calculations. A further advantage of the FMM, that

was not explored in the present article, is its ability to deal

with partially periodic systems.

The multigrid methods perform acceptably and show a

very good scaling behavior. The only global communication

which is required is the reduction of the defect over all cores,

which is necessary for controlling the overall convergence of

the method. Further optimization could reduce the workload

of local computations, i.e., charge assignment and near-field

correction. Although the method shows a moderate perfor-

mance compared with other methods at the same accuracy, the

underlying multigrid solvers are flexible enough to allow for

many variations, e.g., spatially varying dielectric properties

of the Poisson equation, which makes them attractive for a

broader class of applications.

MEMD is a recently developed method that, especially on

architectures with a favorable ratio of single core performance

and communication performance, can compete with the more

established algorithms presented in this article. The perfor-

mance at higher accuracies remains an open question but is, in

principle, achievable. Methodically, MEMD is highly scalable

and, with an improved and optimized implementation of the

communication structures, could be an interesting option for

applications including spatially varying dielectric properties.

Nevertheless, MEMD in its current state shows some limits in

applicability. First, for algorithmic reasons, it does not perform

well for inhomogeneous systems or systems with vast changes
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between consecutive configurations. Second, for physical

reasons it cannot deal with systems that feature spatially fixed

particles or external driving fields that would result in a net

electric current. In its present implementation and development

state it cannot be tuned to very high precision, mainly because

of its limited resolution of short-range interactions.

VI. SUMMARY AND CONCLUSIONS

The present article focused on a comparison of algorithms

for the calculation of long-range (electrostatic) interactions

in many-particle systems with periodic boundary conditions

in terms of stability, accuracy, complexity, and parallel

scalability.

Stability. As expected for a symplectic integrator, the center-

of-mass momentum is conserved for FMM-based as well as

FFT-based methods (when applying differentiation in Fourier

space) within the applied error bounds. Small deviations from

momentum conservation are observed for FFT - and multigrid-

based methods, which apply an analytic differentiation scheme

(unless the momentum is artificially removed, as is the case

for VMG).

The total energy of the system is conserved very well for

simulations with a relative rms potential error of εpot � 10−5

for all methods except MEMD, which does not reach the

accuracy level. At a lower relative precision of 10−3, the

FFT-based methods P3M and P2NFFT conserve the total

energy of the system perfectly for methodical reasons. The

FMM shows a slight systematic deviation, and both multigrid

methods exhibit a clear energy drift that needs to be corrected

for.

Complexity. All implementations behave as expected from a

theoretical analysis of the algorithms. The log(N ) contribution

of the FFT-based methods is not visible for common system

sizes, as the work spent in the FFT is negligible compared with

other tasks.

Accuracy. The relative increase in run time as a function

of reduced approximation error of the methods is smallest for

FMM and P2NFFT, which makes them favorable for high-

precision calculations. All other methods show a significant

increase in computational effort for high-precision force

calculations. Differences found here between P2NFFT and

P3M can be recast to a different way of determining the

parameters, relevant for the accuracy of the methods.

Multigrid methods, which discretize the Laplace operator

by high-order finite difference stencils, suffer from a rela-

tively large discretization error compared with Fourier-based

methods, which compensate the discretization error by a

nonlocal correction via the influence function. Since multigrid

methods perform local operations, nonlocal corrections cannot

be considered in a natural way.

As mentioned, MEMD is a rather recent method which

still awaits maturity. Accuracy of this method at its present

stage is moderate and precision requirements of εpot < 10−5

could not be reached within the present scope. This can be

recast to a rather coarse treatment of short-range interactions,

where nearby particles in different cells interact via their

discretizations on grid points. In the future this restriction

might be lifted to bring also MEMD closer to other methods.

Scalability. A comparison shows very good parallel scaling

behavior for both multigrid methods and the automatically

tuned P3M. The FMM and MEMD scale very well on

architectures with slowly clocked CPUs, but are outperformed

on other systems.

On architectures with slowly clocked CPUs, like the

JUGENE architecture, the FMM performs fastest among

all compared methods. On systems with better single core

performance, the FFT-based methods P2NFFT and P3M are

the fastest, for a small and large real-space cutoff radius,

respectively. The overall best scaling behavior is seen from

the multigrid-based methods although they are not the fastest

methods.

Although part of the presented algorithms exist in various

implementations in the scientific community and are widely

used in different simulation packages, a concise comparison

has been awaited and results presented here have revealed

some common aspects and differences. Though the FMM is

currently not widely adopted, it performed very competitively

in our implementation. Also the Fourier-based methods scale

unexpectedly well to large numbers of charges and cores.

In addition, it is apparent that the choice of parameters

for each method, while being highly complex, has a sig-

nificant influence on the accuracy and performance of the

algorithms.

All algorithms featured in the present article were compared

within the publicly available open source library SCAFA-

COS [36]. This not only makes it possible to perform a

fair comparison between implementations within the same

framework but gives the scientific community the possibility

to link the library to other software, thereby extending either

the functionality or achieving a better scalability. The library

is still under development and further optimizations and

adaptations to future architectures are planned. Furthermore, it

is expected that new approaches to the problem of long-range

interactions, exhibiting advantages in various respects (e.g.,

accuracy, scalability, functionality) can be included into the

open source library, which might allow for an even wider

comparison in future.
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APPENDIX: SCALING PARAMETERS

1. Scaling, tuning, parameters, compilers, versions

The results presented in this paper were timed with a generic

example program that is included within the SCAFACOS
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library and requires a specific set of parameters per method

as command-line input. All simulations were done with the

SCAFACOS library version 0.1, published on June 11, 2013, or

prior versions (scalings on JUGENE ). The method parameters

that lead to the timings presented in Sec. III are listed in

the following tables. For information on precise names and

functions of the set of parameters within each method, we

refer to the library manual [76].

Some parameters remain constant through all scaling

experiments of one method. For better visibility of the actual

changes, these parameters will only be spelled out for the first

value and afterward be referred to as “...”.

2. JUGENE scaling parameters

The parameters used for the scaling of SCAFACOS on JUGENE with the cloud-wall system were

Method No. of charges Parameters

MEMD 1 012 500 mesh = 128, light speed = 0.7, time step = 0.01

9 830 400 mesh = 256, light speed = 0.25, . . .

102 900 000 mesh = 512, light speed = 0.1, . . .

P2NFFT 1 012 500 M = 256, r_cut = 4.481, P = 4, α = 0.573

9 830 400 M = 512, . . .

102 900 000 M = 1024, . . .

P3M 1 012 500 r_cut = 4.481 387, grid = 256, cao = 4, α = 0.573 076

VMG 1 012 500 max_level = 7, near_field_cells = 5, discretization_order = 4, interpolation_order = 5,

precision = 1.0e-4, smoothing_steps = 3

9 830 400 max_level = 8, . . .

102 900 000 max_level = 9, . . .

PP3MG 1 012 500 cells_x = cells_y = cells_z = 256, ghosts = 6, degree = 5

9 830 400 cells_x = cells_y = cells_z = 512, . . .

102 900 000 cells_x = cells_y = cells_z = 1024, . . .

FMM 1 012 500 tolerance_energy = 0.001

9 830 400 tolerance_energy = 0.003

102 900 000 tolerance_energy = 0.001

3. JUROPA scaling parameters

The parameters used for the scaling of SCAFACOS on JUROPA with the cloud-wall system were

Method No. of charges Parameters

MEMD 8100 mesh = 16, light speed = 3.0, time step = 0.01

102 900 mesh = 32, light speed = 2.0, . . .

1 012 500 mesh = 128, light speed = 0.7, . . .

P2NFFT 8100 M = 32, r_cut = 2.3, α = 0.995, P = 4

102 900 M = 64, r_cut = 3.0, α = 0.811, . . .

1 012 500 M = 128, r_cut = 3.5, α = 0.711, . . .

P3M 8100 grid = 32, cao = 3, α = 0.489 078, r_cut = 4.48139

102 900 grid = 64, cao = 4, α = 0.573 076, . . .

1 012 500 grid = 256, cao = 4, α = 0.611 589, . . .

VMG 8100 max_level = 5, near_field_cells = 5, discretization_order = 4, interpolation_order = 5,

precision = 1.0e-4, smoothing_steps = 3

102 900 max_level = 6, . . .

1 012 500 max_level = 7, . . .

PP3MG 8100 cells_x = cells_y = cells_z = 32, ghosts = 5, degree = 5, tol = 1e-4, max_iterations = 50,

discretization = 1, distribution = 1

102 900 cells_x = cells_y = cells_z = 64, ghosts = 6, . . .

1 012 500 cells_x = cells_y = cells_z = 128, ghosts = 5, . . .

FMM 8100 tolerance_energy = 0.003

102 900 tolerance_energy = 0.0005

1 012 500 tolerance_energy = 0.001
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4. Accuracy parameters

The parameters used for the accuracy scaling of SCAFACOS with the cloud-wall system were

Method Accuracy Parameters

MEMD 10−1 mesh = 16, light speed = 3.0, time step = 0.01

10−2 mesh = 24, light speed = 2.0, . . .

10−3 mesh = 32, light speed = 1.5, . . .

P2NFFT 10−1 M = 32, r_cut = 2.0, P = 4, α = 0.580

10−2 M = 64, r_cut = 2.0, P = 4, α = 0.812

10−3 M = 64, r_cut = 3.0, P = 4, α = 0.817

10−4 M = 64, r_cut = 4.0, P = 6, α = 0.645

10−5 M = 128, r_cut = 3.1, P = 6, α = 0.942

10−6 M = 128, r_cut = 3.3, P = 8, α = 1.079

10−7 M = 128, r_cut = 3.7, P = 10, α = 0.963

10−8 M = 128, r_cut = 5.3, P = 10, α = 0.738

10−9 M = 128, r_cut = 6.2, P = 10, α = 0.676

10−10 M = 128, r_cut = 7.2, P = 10, α = 0.626

10−11 M = 256, r_cut = 4.0, P = 10, α = 1.166

10−12 M = 256, r_cut = 4.8, P = 10, α = 1.032

10−13 M = 256, r_cut = 6.4, P = 10, α = 0.818

P3M 10−2 grid = 64, cao = 3, α = 0.489 078, r_cut = 4.481 39

10−3 grid = 64, cao = 4, α = 0.573 076, . . .

10−4 grid = 128, cao = 5, α = 0.639 184, . . .

10−5 grid = 256, cao = 5, α = 0.746 81, . . .

VMG 10−1 near_field_cells = 2, max_level = 5, discretization_order = 2, interpolation_order = 3,

precision = 1.0e-1, smoothing_steps = 2

10−2 near_field_cells = 3, max_level = 6, discretization_order = 4, interpolation_order = 5,

precision = 1.0e-4, smoothing_steps = 3

10−3 near_field_cells = 5, max_level = 6, discretization_order = 4, interpolation_order = 5,

precision = 1.0e-4, smoothing_steps = 3

10−4 near_field_cells = 10, max_level = 7, discretization_order = 4, interpolation_order = 5,

precision = 1.0e-4, smoothing_steps = 2

10−5 near_field_cells = 18, max_level = 8, discretization_order = 4, interpolation_order = 4,

precision = 1.0e-5, smoothing_steps = 2

PP3MG 10−1 cells_x = cells_y = cells_z = 64, ghosts = 3, tol = 1e-2, discretization = distribution = 0,

degree = 1, max_iterations = 50

10−2 . . . , ghosts = 5, tol = 1e-3, discretization = distribution = 1, degree = 3, . . .

10−3 . . . , ghosts = 6, tol = 1e-4, discretization = distribution = 2, degree = 5, . . .

10−4 cells_x = cells_y = cells_z = 128, ghosts = 9, tol = 1e-5, . . .

10−5 . . . , ghosts = 14, tol = 1e-6, . . .

10−6 . . . , ghosts = 19, tol = 1e-7, . . .

10−7 cells_x = cells_y = cells_z = 256, ghosts = 29, tol = 1e-8, . . .

FMM 10−1 tolerance_energy = 0.05

10−2 tolerance_energy = 0.005

10−3 tolerance_energy = 0.0005

10−4 tolerance_energy = 0.0001

10−5 tolerance_energy = 0.000 01

10−6 tolerance_energy = 0.000 001

10−7 tolerance_energy = 0.000 000 06

10−8 tolerance_energy = 0.000 000 005

10−9 tolerance_energy = 0.000 000 001

10−10 tolerance_energy = 0.000 000 000 02

10−11 tolerance_energy = 0.000 000 000 002

10−12 tolerance_energy = 0.000 000 000 000 3

10−13 tolerance_energy = 0.000 000 000 000 01
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5. Complexity scaling parameters

The parameters used for the complexity scaling of SCAFACOS with the silica melt system were

Method No. of charges Parameters

MEMD 12 960 mesh = 24, light speed = 2.0, time step = 0.01

103 680 mesh = 48, light speed = 1.0, . . .

829 440 mesh = 96, light speed = 0.5, . . .

6 635 520 mesh = 192, light speed = 0.25, . . .

P2NFFT 12 960 M = 32, r_cut = 4.8, P = 4, α = 0.47

103 680 M = 64, . . .

829 440 M = 128, . . .

6 635 520 M = 256, . . .

53 084 160 M = 512, . . .

P3M 12 960 grid = 32, r_cut = 5.400 000, cao = 4, α = 0.418 014

103 680 grid = 64, . . .

829 440 grid = 128, . . .

6 635 520 grid = 256, . . .

VMG 12 960 near_field_cells = 4, max_level = 5, discretization_order = 4, interpolation_order = 4,

precision = 1.0e-4, smoothing_steps = 2

103 680 . . . , max_level = 6, . . .

829 440 . . . , max_level = 7, . . .

6 635 520 . . . , max_level = 8, . . . , interpolation_order = 3, . . .

53 084 160 . . . , max_level = 9, . . .

424 673 280 . . . , max_level = 10, . . .

PP3MG 12 960 cells_x = cells_y = cells_z = 32, ghosts = 4, degree = 3, tol = 1e-4, max_iterations = 50,

discretization = 1, distribution = 1

103 680 cells_x = cells_y = cells_z = 64, . . .

829 440 cells_x = cells_y = cells_z = 128, . . .

6 635 520 cells_x = cells_y = cells_z = 256, . . .

FMM 12 960 tolerance_energy = 0.008

103 680 . . .

829 440 . . .

6 635 520 . . .

53 084 160 . . .

424 673 280 . . .
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