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ABSTRACT 
 

In a previously reported work, classification techniques based on 
Support Vector Machines (SVM) showed a good performance in 
the task of acoustic event classification. SVM are discriminant 
classifiers, but they cannot easily deal with the dynamic time 
structure of sounds, since they are constrained to work with 
fixed-length vectors. Several methods that adapt SVM to se-
quence processing have been reported in the literature. In this 
paper, they are reviewed and applied to the classification of 16 
types of sounds from the meeting room environment. With our 
database, we have observed that the dynamic time warping ker-
nels work well for sounds that show a temporal structure, but the 
best average score is obtained with the Fisher kernel. 
 

1. INTRODUCTION 
 

Recent works on statistical machine learning have shown the 
advantages of discriminative classifiers like SVM [1] in a range 
of applications, including audio classification [2]. In [3], we 
applied SVMs to the task of classifying a set of 16 types of 
acoustic events that may take place in a meeting room environ-
ment. In that work, the SVM-based techniques showed a higher 
classification capability than the Gaussian Mixture Models 
(GMM) based techniques, and the best results were consistently 
obtained with a confusion-based variable-feature-set clustering 
scheme, arriving with SVM to a 88,29 % classification rate. 
HMMs could not be considered in that task since the amount of 
available data was not large enough to accurately train the mod-
els. 

A drawback of SVMs when dealing with audio data is their 
restriction to work with fixed-length vectors. Both in the kernel 
evaluation and in the simple input space dot product, the units 
under processing are vectors of constant size. However, when 
working with audio signals, although each signal frame is con-
verted into a feature vector of a given size, the whole acoustic 
event is represented by a sequence of feature vectors, which 
shows variable length. In order to apply a SVM to this kind of 
data, one needs either to somehow normalize the size of the se-
quence of input space feature vectors or to find a suitable kernel 
function that can deal with sequential data.  

Several methods have been explored to adapt SVMs to se-
quence processing [4]. The most common approach is to extract 
some statistical parameters from the sequence of vectors and thus 
transform the problem into that of fixed-length vector spaces. 
For example, the mean and the standard deviation of the features 

extracted from every frame of an audio clip were taken as feature 
vector for audio analysis in [2]. Despite the good results we ob-
tained using this approach for acoustic event classification 
(AEC) [3], when frame-level features are transformed into statis-
tical event-level features there exists an unavoidable loss of 
information.  

In the work reported in this paper, we aim at using SVMs for 
AEC but preserving the information contained in the sequential-
ity of data, i.e. the temporal structure of the acoustic events. For 
that purpose, after choosing a set of meaningful reported tech-
niques, we have compared their performance in the framework of 
our meeting-room AEC task. The fact that the used set of acous-
tic event types includes time structured sounds (e.g. music) but 
also sounds whose time evolution is not relevant (e.g. liquid 
pouring), allows us to investigate the appropriateness of the vari-
ous techniques to classify the different types of sounds. 

While in our previous work we tested several feature sets and 
several multi-class schemes for SVM, here we use only the best 
feature set from [3] and a Directed Acyclic Graph (DAG) [5] 
classification scheme. Moreover, the influence of the generative 
model parameters’ estimation error on the Fisher score derivative 
is investigated.  

The paper is organized as follows: Section 2 quickly reviews 
the SVM-based methods used in the work, Section 3 presents 
experimental results and discussions, and Section 4 concludes 
the work. 
 

2. SVM-BASED SEQUENCE DISCRIMINANT 
TECHNIQUES 

 

We have chosen three different SVM kernels techniques that 
make use of dynamic time warping (DTW), namely: dynamic 
time-alignment kernel (DTAK)[6], Gaussian dynamic time warp-
ing (GDTW) kernel [7], and the recent polynomial dynamic time 
warping kernel (PolyDTW) [8]. Additionally, we included in the 
comparison the Fisher score kernel [9] and the Fisher-ratio ker-
nel [10][11], which aim at using generative model classifiers like 
GMM in the discriminative framework, and have been applied 
for speech/speaker recognition using SVM [10][11]. On the 
other hand, among the algorithms reported in the literature that 
normalize the size of the vector sequences [12], we have chosen 
the simple outerproduct of trajectory matrix method, which was 
the winner in [12]. As references for comparison, we also use a 
standard GMM classifier, and an SVM classifier with statistical 
event-level features. 
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2.1 Fisher kernel 
 

Fisher kernel is one of the most successful approaches that en-
able SVM to classify whole sequences. Inspired by using 
statistical modeling method, Fisher kernel recently has become 
very popular in the areas that involve time-series recognition. 
The generalized idea of Fisher kernel the score-space kernel was 
applied to speech recognition in [11]. Modification of likelihood 
score space kernel (i.e. Fisher kernel) known as likelihood ratio 
score-space kernel has shown comparative results in the sphere 
of speaker verification [10]. 

The idea of Fisher kernel includes in mapping the variable 
length sequence to a single point in fixed-dimension space, the 
so-called score-space. To perform such a mapping, Fisher kernel 
applies the first derivative operator to the likelihood score of the 
generative model. Given an input sequence X, and a model M, 
parameterized by θ, the Fisher score is defined as  

( ) ( )θψ θ ,log MXPXfisher ∇=   (2.1.1) 

The Fisher score can be interpreted in the following way. When 
a generative model is trained by ML (maximum likelihood) crite-
rion, it uses the same set of derivatives to compute how close it 
is to the local extreme. Another motivation of using Fisher score 
is that the gradient of the log-likelihood can capture the genera-
tive process of the whole sequence better than just a posterior 
probability. Furthermore, in [9] it was shown that, under the 
condition that the class variable is a latent variable in the prob-
ability model, the learning machines, that use Fisher kernel, are 
asymptotically at least as good as making decision based on the 
generative model itself (maximum a posteriori). In [9] applied to 
bio-sequences recognition Fisher kernel performed significantly 
better than HMM. 
 

2.2 Outerproduct of trajectory matrix 
 

The time analysis of the data gives a sequence of l-dimensional 
parametric vectors. The sequence is considered as a trajectory in 
the l-dimensional space. If we define the l-by-m trajectory matrix 
as X = [x1,x2, …xm], the outerproduct matrix Z [12]is defined as  

Z=XTX    (2.2.1) 

Thus the outerproduct matrix Z is l-by-l and no longer depends 
on the length of the sequence. The vectorized outerproduct thus 
can feed the SVM classifier directly. It is obvious that this 
method explicitly considers sequence duration information. De-
spite the simplicity of the given approach, it showed 
considerably better results than Compaction and Elongation 
method in the task of spoken letters recognition [12]. 
 

2.3 Gaussian dynamic time warping (GDTW) 
 

This approach as well as a previous one does not assume a 
model for the generative class conditional densities. The GDTW 
[7] method addresses the problem of variable length sequences 
classification by introducing the DTW technique to SVM kernel. 
Recalling the standard RBF kernel for SVM  
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exp),( RTRTK γ   (2.3.1) 

where T, R denote two patterns to compare. As mentioned in 
Section 1, if the two patterns are sequences of different length, 
they cannot be compared in the kernel evaluation directly. An 

obvious modification of (2.3.1) is to substitute the squared 
Euclidian distance computation with the equivalent that can cope 
with temporally distorted, variable length sequences. Thus, in [7] 
GDTW kernel was defined as  

( )( )RTDRTK ,exp),( γ−=   (2.3.2) 

where ( )RTD ,  is a DTW distance between sequences T and R. 
The proposed method was successfully applied to handwrit-

ing recognition and showed comparative and at times superior 
results to HMM and MLP in [7].  
 

2.4 Dynamic time alignment kernel (DTAK) 
 

The approach proposed in [6] also deals with DTW. Instead of 
substituting the Euclidian distance in Gaussian kernel (2.3.1) by 
DTW distance, it substitutes the Euclidian distance in definition 
of DTW local distance by a kernel.  
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where k(.) is a kernel function that can be either a simple dot 
product or any conventional SVM kernel and Ф is the optimal 
DTW path. Actually, DTAK performs DTW in the feature space. 
Unlike the original DTW, which finds the optimal path that 
minimizes the accumulated distance/distortion, the DTAK algo-
rithm maximizes the similarity. In the task of phoneme 
recognition, the proposed DTAK method outperformed HMM 
with a small or medium amount of training data and it got com-
parable results with a larger dataset [6]. 
 

2.5 Polynomial dynamic time warping (PolyDTW) 
 

The method shares the same idea of performing DTW in trans-
formed feature space. After spherical normalization [10] each 
vector t of a sequence is projected onto the sphere surface as  
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Then the arcos of the dot product between normalized vectors 
can be taken as a local distance for DTW. Thus, the kernel is 
given as 

( ) 














 ⋅= ∑

=

N

n
nRnT

m rt
N

RTK
1

)()(
ˆˆarccos

1
cos, φφ   (2.4.2) 

This method has been successfully applied to the task with high 
intra-class variation such as dysarthric speech recognition and 
showed superior results to HMM [8]. 
 

3. EXPERIMENTS AND DISCUSSION 
 

3.1 Experimental setup  
 

Our previous efforts in [3] were focused on developing a vari-
able-feature-set clustering scheme and using SVM with 
statistical event-level features. In this work, for simplicity, we 
use DAG [5] multi-class scheme, and only one feature set, the 
one that showed best results in [3], namely, a concatenation of 
perceptual features (ZCR, Spectral Flux, etc) and frequency fil-
tering features [13] (plus their first and second derivatives). The 
number of features per frame is 50 and there is a frame each 
10ms.  



In all the experiments we use the databases of acoustic events 

described in [3]. The database contains the 16 classes of meet-

ing-room acoustic events that are summarized in Table 1. 

For the outerproduct, DTAK, and GDTW methods we use a 

Gaussian kernel, and a 5-fold cross-validation on the training 

database was applied to find the optimal kernel parameter. The 

techniques that exploit DTW required some optimization steps to 

be feasible in practice (beam search strategy, kernel caching). 

For PolyDTW, a polynomial of third degree was chosen with 

α=1, as suggested in [8]. Also, we chose the linear SVM kernel 

for the Fisher score and the likelihood ratio methods, since it 

performed better than RBF. 

The mean of individual class accuracies was chosen as a met-

ric as in [3].  
 

3.2 Comparison results 
 

Figure 1 shows the results of the 8 considered techniques when 

applied to the database of acoustic events. The best average re-

sult is obtained with the Fisher kernel, 88.13%, and it is 

followed by the results from PolyDTW, likelihood ratio kernel 

and GMM. All mentioned results are better than 83.1%, the 

score of the non-sequential SVM technique that uses statistical 

event-level features (SVM stat). A similar result was observed in 

[3] using a binary tree instead of a DAG scheme: 82.9%. 

It is also worth noticing that the result with the Fisher kernel 

(88.13%) is comparable to the best result in [3] using non-

sequential SVM techniques: 88.29%. However, the latter result 

was obtained by using a variable-feature-set clustering, a classi-

fication scheme that is more developed than DAG, and by using 

the most discriminative feature set on each step of classification.  

 

3.3 Influence of the number of Gaussians on the de-
rivatives of the generative model 
 

Interesting enough that the best results for GMM were obtained 

with 8 Gaussians, while for Fisher kernel the appropriate genera-

tive model that leaded to the best performance was 1-Gaussian 

GMM. Figure 2 shows the dependence of performance of Fisher 

kernel, Likelihood ratio kernel and GMM on the number of 

Gaussians.  

As can be seen from Figure 2 there is an apparent inconsis-

tency in the results, in the sense that the recognition rate 

improves in the case of the GMM classifier as the number of 

Gaussians increases, but at the same time, the results degrade in 

the case of the Fisher kernel. There is a two-fold explanation of 

this phenomenon. The first is related to the fact that the likeli-

hood of the observation given the model is computed by means 

of a linear combination of Gaussians. The weight of each Gaus-

sian is proportional to the number of samples that are assigned to 

it. Therefore, the parameters estimated with a small number of 

samples (i.e. that have a higher estimation error), have a lower 

influence in the likelihood. In the case of the Fisher score, the 

derivative of the likelihood with respect to each parameter inher-

its the estimation error, and it is not concealed, as it is the case of 

the GMM. Furthermore this effect is augmented by the fact that 

the dimensionality of the Fisher kernel increases proportionally 

to the number of Gaussians, and the number of noisy coordinates 

can be majority [14]. The second explanation uses the concept of 

sensitivity, which is the percentage change of a function for a 

given percentage change of one of the parameters:  
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We computed the sensitivity of the likelihood of a GMM, and 

the Fisher kernel associated to the GMM. The resulting expres-

sions are highly complicated. Nevertheless, simulations for one 

Gaussian confirmed that the sensitivities to the mean and the 

weight of each Gaussian are similar for both GMM and Fisher 

kernel, but the sensitivity to the variance is at least three times 

higher in the case of the Fisher kernel.  
 

 3.4 Dependence of the classifier performance on the 
temporal structure of the acoustic event signals 
 

The signals to be classified are quite heterogeneous, and have 

different temporal structures. Therefore, as was expected the 

performance of each classifier was biased to a given subset of the 

classes. For instance the DTW based classifiers behaved better 

with signals such as “music”, or “sneeze”, while classifiers that 

did not take into account the temporal structure of the signal did 

better with other signals that did not have that structure, such as 

1-chair moving 2-clapping 3-cough 

4-door 5-keyboard 6-laugh 

7-music 8-paper crumple 9-paper tearing 

10 pen writing 11-liquid pouring 12-puncher 

13-sneeze 14-sniffing 15-speech 

16-yawn   

Table 1. Database of the sixteen classes of acoustic events 
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Figure 2. Dependence of the performance of the Fisher score 
kernel, likelihood ratio kernel and GMM on the number of 
Gaussians (log2Ng)  



“pen writing” or “liquid pouring”. Ranking eight classifiers for a 

given class (giving the score 1 to the best one and 8 to the worst 

one) these properties can be summarized in Figure 3 and Figure 

4, where we compare the 8 classifiers for above-mentioned pairs 

of classes.  

In Figure 3 it can be seen that in the case of “music” and 

“sneeze” the best classifiers, i.e. highest ranking and recognition 

rate, are DTW-based such as GDTW, PolyDTW and DTAK. 

While the classifiers that do not take into account the temporal 

structure, give inferior results. In Figure 4 the ranking of classi-

fiers is opposite, and the classifiers that specifically dismiss the 

temporal order fare better; the highest ranking corresponds to the 

GMM, and the Fisher Ratio. Another general feature that was 

detected, and that is reflected in these figures, is that there are 

signals that are easier to classify. It can be seen that systemati-

cally the results for a given class are better than for the others 

consistently for all the 8 classifiers, i.e. the distribution of the 

results for all classification systems are separated, although the 

order of the systems can be different for each signal.  

As a general summary, we can assert that there was a correla-

tion between the classes and the classifiers, which is masked in 

the mean values presented in Figure 1. For both types of signals, 

with time structure or without it, the overall best accuracy with 

Fisher kernel is usually in the middle offering a good balance 

between the two groups of classes.  
 

4. CONCLUSIONS  
 

Several methods that adapt SVMs to sequence processing have 

been reviewed and applied to the classification of sounds from 

the meeting room environment. We have seen that the dynamic 

time warping kernels work well for sounds that show a temporal 

structure, but due to the presence of less-time-structured sounds 

in the database the best average score is obtained with the Fisher 

kernel. Moreover, only one Gaussian is used in that method due 

to its high sensitivity to the variance parameters as a conse-

quence of the scarcity of data. On the other hand, the observed 

bias of the classifiers to specific types of classes is a good condi-

tion for a successful application of fusion techniques.  
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 Figure 4. Comparison results for the classes “pen writing” 
 (10) and “ liquid pouring” (11) 
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