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Abstract
Background: A critical step in processing oligonucleotide microarray data is combining the
information in multiple probes to produce a single number that best captures the expression level
of a RNA transcript. Several systematic studies comparing multiple methods for array processing
have used tightly controlled calibration data sets as the basis for comparison. Here we compare
performances for seven processing methods using two data sets originally collected for disease
profiling studies. An emphasis is placed on understanding sensitivity for detecting differentially
expressed genes in terms of two key statistical determinants: test statistic variability for non-
differentially expressed genes, and test statistic size for truly differentially expressed genes.

Results: In the two data sets considered here, up to seven-fold variation across the processing
methods was found in the number of genes detected at a given false discovery rate (FDR). The best
performing methods called up to 90% of the same genes differentially expressed, had less variable
test statistics under randomization, and had a greater number of large test statistics in the
experimental data. Poor performance of one method was directly tied to a tendency to produce
highly variable test statistic values under randomization. Based on an overall measure of
performance, two of the seven methods (Dchip and a trimmed mean approach) are superior in the
two data sets considered here. Two other methods (MAS5 and GCRMA-EB) are inferior, while
results for the other three methods are mixed.

Conclusions: Choice of processing method has a major impact on differential expression analysis
of microarray data. Previously reported performance analyses using tightly controlled calibration
data sets are not highly consistent with results reported here using data from human tissue samples.
Performance of array processing methods in disease profiling and other realistic biological studies
should be given greater consideration when comparing Affymetrix processing methods.
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Background
Affymetrix microarrays are high throughput assays for
measuring the expression levels of thousands of gene tran-
scripts simultaneously. This type of microarray measures
the expression of each transcript multiple times through a
set of "probe pairs". Since the advent of the Affymetrix
microarray, numerous methods have been proposed for
producing numerical expression summaries for each tran-
script based on the probe pair data. Several systematic
studies have appeared comparing a number of methods
on a common basis (e.g. [1-5]). These studies rely heavily
on calibration data sets derived from spike-in, dilution
series, and mixture experiments for comparing methods.
Our goal here was to carry out a comparative study of
Affymetrix array processing methods using data sets from
typical biological experiments seeking differentially
expressed genes in human tissue samples.

The following seven methods are considered here: Dchip
[10], GCRMA-EB and GCRMA-MLE [11], MAS5 [12],
PDNN [13], RMA [2,3], and TM [[6,7], and
http:dot.ped.med.umich.edu:2000/pub/shared/Affymeth
ods.html]. While not every popular method is included in
our study, several highly distinctive and original
approaches are studied. For example, Dchip was one of
the first approaches to attempt to learn probe weights
directly from the probe data, and RMA pioneered the
approach of disregarding the control mismatch probes.
PDNN uses physical modeling to determine probe
weights, while the two GCRMA methods use GC content
of the probe sequences to reduce variance in the mismatch
(control) probe levels. The MAS5 method is the current
default method provided by Affymetrix.

In addition to the six methods cited previously, we also
include a method designated TM (trimmed mean). This is
a simple method that has been used in a number of pub-
lished investigations (e.g. [6,7]), but has not been consid-
ered in any previous systematic comparison of Affymetrix
processing methods. To produce the probe-set summary
score, the PM-MM differences are rank ordered, and the
brightest 20% and dimmest 20% of values are deleted.
The mean of the remaining values is used as the summary
score. The scores for all probe-sets are then quantile nor-
malized to a reference array using a piecewise linear spline
with 100 knots.

An important feature of this study is the use of False Dis-
covery Rate (FDR) to quantify the sensitivity of a process-
ing method in terms of its ability to distinguish
differentially expressed genes from genes having invariant
expression. This is a highly relevant property, as differen-
tial expression analysis is the most common application
of microarray data. A key advantage of using FDR to com-
pare processing methods is that FDR values can be calcu-

lated accurately using real disease profiling data where the
identities of differentially expressed genes are uncertain.
In contrast, most previous systematic comparisons of
array processing methods have focused on calibration
data sets in which concentrations of certain genes were
experimentally manipulated.

When it is highly likely that at least one gene is differen-
tially expressed, false discovery rate may be defined as the
expected ratio of the number of false positive calls to the
total number of positive calls in a differential expression
analysis between two groups of samples [8]. If the groups
are biologically distinct, a sensitive processing method
should result in many genes with low FDR. Thus to com-
pare the performances of different array processing meth-
ods, we looked at two datasets in which a verified
biological characteristic divided the samples into two
classes, and compared the methods based on the number
of genes having FDR smaller than various thresholds. For
this to be a valid basis for comparison, the FDR values
must be estimated with reasonable accuracy. Following
other recent work (e.g. [9]), we used a permutation
approach for this estimation, arguing that there is no rea-
son that this approach favors or disfavors any particular
array processing method.

A small FDR is due either to a small numerator, a large
denominator, or both. The denominator of the FDR
depends on the actual data distribution, so variation in
this value may be due to factors such as accuracy in mod-
eling the physical and chemical nature of probe binding.
Variation in the FDR numerator, however, depends only
on the distribution of values produced for randomized
data, a purely statistical quantity reflecting the tendency of
the method to incorrectly produce test statistic outliers.
Our results suggest that both factors are important in
determining sensitivity. The best methods produce many
large test statistic values in the actual data, and also pro-
duce consistently small test statistic values for rand-
omized data. Poor performance of one method can be
directly explained by the tendency of the method to pro-
duce outlier expression values, leading to greater numbers
of incorrectly large test statistics.

For overall comparison, we evaluated every pair of meth-
ods on the basis of whether the first method is expected to
call at least one truly differentially expressed gene that is
not also called by the second method. If this is not
expected to occur, the second method is said to strongly
outperform the first. Based on this comparison, two of the
methods considered are clearly favored, two are inferior,
and results for the other three methods are mixed.
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Results
Sensitivity differences
Our primary basis for comparison is sensitivity – the
number of genes detected at a given FDR0 level, where
FDR0 is a rescaled FDR (see methods). Figure 1 shows the
key sensitivity results, using both the t-test statistic and the
rank-sum statistic to assess differential expression. Setting
aside at first differences between the seven processing
methods, we note two findings. First, in the colon data,
analysis using the rank-sum statistic is substantially more
sensitive than analysis using the t-test statistic. For the
ovary data, where the sample sizes would not naturally
suggest a robust analysis, there is no harm to sensitivity in
using the rank-sum statistic. Second, the ovary curves are
substantially higher overall than the colon curves. This
may be due to a greater number of true positives in the

ovary data, or it may be that the small sample size for the
MSI group makes it difficult to attain high evidence levels
for differential expression in the colon data. In any case,
both data sets have many genes with small FDR values,
supporting the biological relevance of the tumor group-
ings for both colon and ovary samples.

The more challenging colon set distinguishes the seven
processing methods to a greater extent than the ovary set.
Using FDR0 = 0.1 as a reference point, there is roughly 7-
fold variation across the seven methods in the number of
detected genes in colon data using t-test statistics, while
for rank-sum statistics the range is roughly 2-fold. In the
ovary data, the range is around 1.25-fold for both statis-
tics. Also notable is that variation in sensitivity due to the
choice of test statistic (t-test or rank-sum) is smaller than

Sensitivity results for colon and ovary dataFigure 1
Sensitivity results for colon and ovary data. Top row: number of significant probe sets at a range of FDR0 values using the 
t-test statistic. Bottom row: number of significant probe sets at a range of FDR0 values using the rank-sum statistic. The left col-
umn shows the results for colon data and the right column shows the results for ovary data.
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variation in sensitivity due to the seven processing
methods.

No single method stands out as having the best or worst
performance in every case. However some methods gener-
ally perform better than others. The Dchip and TM meth-
ods perform consistently well, while the GCRMA-EB and
MAS5 methods consistently perform poorly. PDNN per-
forms well on the ovary data, but poorly on the colon
data, and results for the other methods are mixed.

Level of agreement between methods
Identities of probe sets falling below a given FDR0 thresh-
old vary across the methods. Figure 2 summarizes this var-
iation. The ratio of the number of probe sets falling below

various FDR0 thresholds in k or more of the seven meth-
ods to the number of probe sets falling below the thresh-
old for at least one method is plotted against the FDR0
threshold, for k = 3, 4, 5, 6, 7. In the ovary data there is a
very high level of agreement in this measure. For the rank-
sum analysis, almost 90% of called genes are called by at
least four methods, and more than 70% of called genes
are called by all seven methods. For the t-test analysis, the
agreement is slightly higher yet. For the colon data, the
methods are much more inconsistent. For the rank-sum
analysis, three of the methods agree on up to 90% of
genes, but all seven methods only agree on around 30%
of genes. The t-test analysis is even worse, with only
around 10% of genes common to all seven methods.

FDR agreement between methodsFigure 2
FDR agreement between methods. The ratio of the number of probe sets with FDR0 value below a given threshold in k 
or more of the seven methods to the number of probe sets with FDR0 value below the threshold in at least one method was 
calculated for k = 3, 4, 5, 6, 7, and plotted against the FDR0 threshold. Results are shown for the colon data (left column), the 
ovary data (right column), and for the t-test statistic (top row), and the rank-sum statistic (bottom row).
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Turning to pairwise agreement, Table 1 shows the percent-
age of genes called by both members of a pair of methods
out of the genes called by at least one of the two methods.
In the ovary data, MAS5 shares the fewest calls with the
other methods for both t-test and rank-sum analysis,
while GCRMA-EB has relatively weak agreement for the t-
test analysis. In the colon data, the GCRMA-EB method is
highly inconsistent, with less than a quarter of calls in
common with four of the six other methods for t-tests. A
notable similarity is that the DChip and TM methods have
at least 90% agreement in all analyses.

Complementing comparison of the statistical tests, we
also compared the expression levels produced by the
seven processing methods. For each pair of methods, and
for each pair of samples within one of the two data sets,
we calculated Pearson correlation coefficients of expres-
sion levels over all genes. These values were summarized
by taking the median over all pairs of samples within a

data set, shown in Table 2. Interestingly, methods calling
similar genes as differentially expressed do not exhibit
particularly strong correlation in expression levels. For
example, TM and DChip perform very similarly in terms
of which genes are identified as significant, but the pair-
wise correlation between expression levels for these two
methods is less than the average. On the other hand, the
TM and MAS5 methods are generally at the extreme high
and low ends of the sensitivity scale respectively, but their
expression levels are the most strongly correlated of any
pair of methods.

Calibration
Variation in FDR across the seven methods is due to two
factors – variation in the number of transcripts with large
test statistics, and variation in the expected number of
transcripts with large test statistics when there is no real
differential expression. Here we investigate the second fac-

Table 1: Pairwise agreement between methods. For each pair among the seven processing methods, the ratio of the number of probe 
sets with FDR0 < 0.05 in both methods to the number of probe sets with FDR0 < 0.05 in either method was calculated. Results are 
displayed as percentages.

Colon Ovary
t-test EB 9 77

MAS5 19 45 68 88
MLE 15 60 60 94 81 72
PDNN 68 14 28 23 93 83 73 98
RMA 58 16 32 26 86 92 83 74 98 100
DCHIP 90 8 17 14 60 52 95 81 71 99 97 97

Rank-Sum EB 39 90
MAS5 38 88 73 82
MLE 84 32 32 99 89 72
PDNN 45 86 84 38 98 91 74 97
RMA 71 54 53 60 63 88 98 83 87 89
DCHIP 94 41 40 79 48 75 99 91 74 98 99 89

TM EB MAS5 MLE PDNN RMA TM EB MAS5 MLE PDNN RMA

Table 2: Median pairwise correlations over all sample pairs. For each pair of processing methods, expression levels were computed for 
each sample in the colon and ovary data sets. Results shown are the median Pearson correlation coefficients over all sample pairs 
between log-scale expression levels for all genes.

Colon Ovary
GCRMA-EB 0.86 0.86
MAS5 0.94 0.84 0.95 0.84
GCRMA-MLE 0.88 0.80 0.91 0.89 0.80 0.92
PDNN 0.82 0.77 0.74 0.71 0.82 0.78 0.76 0.73
RMA 0.88 0.81 0.85 0.82 0.85 0.89 0.80 0.86 0.85 0.85
DChip 0.81 0.73 0.76 0.75 0.81 0.89 0.83 0.74 0.79 0.77 0.83 0.90

TM GCRMA-EB MAS5 GCRMA-MLE PDNN RMA TM GCRMA-EB MAS5 GCRMA-MLE PDNN RMA
Page 5 of 12
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:26 http://www.biomedcentral.com/1471-2105/6/26
tor, which is driven by the tendency of each method to
produce outlier expression values.

The numerator of the FDR aims to correct for variation in
the number of false positives, so that a method claiming
large numbers of differentially expressed genes is not con-
sidered superior unless it also produces relatively small
numbers of false positives. This can be viewed as a calibra-
tion, in which for each method, the test statistic must
reach a certain threshold in order that the proportion of
false positives is no greater than a specified value.

Calibration results are summarized in Figure 3. For each
method, the threshold test statistic value required to
obtain FDR0 less than f was calculated, and plotted against
f. For example, to achieve any FDR0 value between 0.05

and 0.1 in the colon rank-sum data, GCRMA-MLE
requires the lowest test statistics, RMA requires a rank-sum
statistic 0.15 units larger than that of GCRMA-MLE, and
MAS5 requires a rank-sum statistic 0.3 units larger than
that of GCRMA-MLE.

Figure 3 indicates that the methods differ substantially in
terms of calibration. Notably, the ordering of the seven
methods in Figures 1 and 3 are quite similar, suggesting
that calibration plays a major role in determining sensitiv-
ity. Variation in thresholds among the seven processing
methods is greater in the colon than the ovary data, par-
ticularly for the t-test analysis.

Since calibration depends only on randomized data, it
should be possible to trace variation in thresholds across

Calibration results for ovary and colon dataFigure 3
Calibration results for ovary and colon data. The threshold test statistic required to obtain a given FDR0 for each 
method is plotted against the FDR0 value. Results are shown for the colon data (left column), the ovary data (right column), and 
for the t-test statistic (top row), and the rank-sum statistic (bottom row).
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the processing methods to statistical properties of the
expression levels. For example, if one method produces
expression levels with heavier tails, it is easier to get a large
t-test statistic value by chance, particularly for the colon
data with small sample sizes. This would necessitate a

higher threshold. To quantify this, let  denote the log2

expression level of transcript i in sample j for method k,
where k = 1, ..., 7 denotes the seven processing methods,
and let

where  is the pth quantile of , and med is the

median value. This is an affine-invariant measure of the
size of the right tail of the expression values. Values of Bk

for the seven methods and two data sets are shown in
Table 3. For reference, a Gaussian distribution has a B
value of 3.74 when the sample size is as in the ovary data,
and 3.56 when the sample size is as in the colon data. The
GCRMA-EB method is seen to have a much greater pro-
pensity for producing extreme expression values, explain-
ing its low sensitivity, poor agreement with other
methods, and conservative calibration.

Variation in observed test statistics
In addition to calibration differences, FDR variation is
also influenced by the observed test statistic values. This is
summarized in Figure 4. For each method, and for a range
of test statistic values t, the number of probe sets for which
the observed test statistic value exceeds t was calculated
and plotted against t. For example, in the colon rank-sum
data, PDNN had the smallest test statistics, with MAS5
having around 500 more probe sets meeting a log test sta-
tistic threshold of 5 compared to PDNN. The Dchip and
TM methods have over a thousand more probe sets meet-
ing this threshold.

Variation in test statistic values across the methods is
greater in colon than in ovary data, and generally tracks

with sensitivity. However note that in the colon rank-sum
data, Dchip has substantially larger test statistics than
GCRMA-MLE, even while GCRMA-MLE has better sensi-
tivity (Figure 1), due to its less stringent calibration (Fig-
ure 3).

Identification of genes with large fold changes
An interesting possibility that can not always be excluded
is that the intergroup differences are so vast that nearly
every gene is affected to a small degree. If this were the
case, the FDR values for the t-test and Wilcoxon statistics
would converge to zero for every gene as the number of
samples grows, making FDR values difficult to interpret.
To further investigate this issue, we repeated the analysis
using t-statistics truncated to zero when the fold change is
less than 1.5 as test statistics for FDR analysis. The corre-
sponding FDR values remain bounded away from zero for
genes having true fold change smaller than 1.5, while
genes with true fold change exceeding 1.5 have FDR val-
ues converging to 0. Thus the statistic identifies a mean-
ingful subset of genes even when all genes are
differentially expressed to some degree.

Results for this analysis are shown in Figure 5. In the ovary
data, the GCRMA-EB method performs best, with
GCRMA-MLE, MAS5, and TM slightly inferior. Several of
the methods, specifically PDNN, DChip, and RMA exhibit
flat curves indicating that only a limited number of genes
meet the 50% change criterion. In the colon data,
GCRMA-MLE and TM are nearly tied as the best perform-
ers. Overall, variation in sensitivity across the methods
exists at a similar level to that found in the t-test and Wil-
coxon analyses. Only the GCRMA-MLE and TM methods
give consistently good performances in the two data sets
for this analysis.

Strong outperformance
Thus far we have focused on sensitivity as a criterion for
comparing methods. However even if one method is less
sensitive than another, if the overlap in the called gene
sets is not too great then the less sensitive method may
still contribute to our understanding of which genes are
differentially expressed. Suppose two methods denoted 1
and 2 give N1 and N2 genes respectively at a given FDR
level. Then nk = (1 - p0FDR0)·Nk estimates the expected
number of truly differentially expressed genes called by
method k. Now suppose that I is the number of genes
called by both methods. Then nk - I is an estimated lower
bound for the expected number of genes correctly called
by method k but not by the other method. We will say that
method 1 strongly outperforms method 2 if n1 - I ≥ 0 but n2
- I < 0. This means that in terms of differential expression,
method 2 is not expected to contribute any true positives
that were not called by method 1.

Table 3: Tendencies of the processing methods to produce 
outlier expression values. Values of the B statistic (see text) are 
shown for the seven processing methods and two data sets.

Colon Ovary

TM 3.71 4.03
GCRMA-EB 6.75 6.21
MAS5 3.44 3.74
GCRMA-MLE 5.09 5.43
PDNN 3.49 4.84
RMA 4.34 4.90
Dchip 3.82 4.39

Zij
k

B Q Q Q Qk i ik ik ik ik= −( ) −( )med 1 1 2 3 4 1 2/ / // ,

Qik
p Z Zi

k
i
k

1 2, ,...
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Table 4 summarizes the results of this analysis using p0 =
1 and FDR0 = 0.05, showing the number of times that each
method was strongly outperformed by other methods in
our study. This analysis clearly favors the TM and Dchip
methods, while the MAS5 and GCRMA-EB methods are
nearly always found to be strongly outperformed by the
other 5 methods. These results are not sensitive to choices
of p0 between 0.5 and 1 (more than half of values are con-
stant within this range and non-constant values do not
vary by more than 1).

Discussion
Impact of processing method choice
The choice of processing method for Affymetrix array data
evidently has a major impact on the ability to confidently
report the results of differential expression analysis. The

effect is greater, for example, than the choice of using a
robust or a non-robust analysis, even in the colon data
where robust analysis results in substantial improve-
ments. Differences among processing methods are much
greater in the more challenging colon data set compared
to the ovary data, yet it should be noted that the sample
sizes in the colon data are not atypical in real
investigations.

While results from two data sets can never conclusively
determine the optimal method, it is notable that across
both data sets, using both t-statistic and rank-sum analy-
ses, there is a high degree of similarity in the rank ordering
of the methods from the best to the worst performer. The
trimmed mean (TM) and Dchip methods consistently
perform as well or better than any of the other methods.

Test statistics for ovary and colon dataFigure 4
Test statistics for ovary and colon data. For each of the seven processing methods, the number of probe sets exceeding 
a test statistic threshold t was calculated and plotted against log2 t. Results are shown for the colon data (left column), the 
ovary data (right column), and for the t-test statistic (top row), and the rank-sum statistic (bottom row).
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A possible explanation for this is that the weights used by
the Dchip may tend to downweight the least and greatest
PM-MM differences, just as the TM method excludes these
differences.

Interpretation of FDR comparisons
When comparing array processing methods using experi-
mental data in which the identities of differentially
expressed genes are unknown, great care must be taken to
ensure that apparent differences in sensitivity are not due
to other factors. One critical point is that the null distribu-
tion providing the expected number of false positives at a
given test statistic threshold (the numerator of the FDR)
must fairly reflect the statistical behavior of null genes.

Permutation approaches have been extensively used to
produce empirical p-values (e.g. [14]) and were used by
Efron et al. [9] to estimate FDR values. Although permuta-
tion approaches are known to be slightly biased for esti-
mating the FDR, the size of the bias (e.g. as shown in
figure 5 of Efron et al. [9]) can not explain the magnitude
of differences found here. In addition, for a comparative
analysis, as carried out here, it is more crucial that the
biases be relatively constant across the methods. How-
ever, since permutation approaches may not be highly
accurate when the sample size is small, it is important to
check performance on multiple data sets before conclu-
sions about performance are drawn.

Sensitivity for detecting genes with at least 50% change in expression magnitudeFigure 5
Sensitivity for detecting genes with at least 50% change in expression magnitude. The number of significant probe 
sets at a range of FDR0 values is shown for analysis in which the test statistic is the t-statistic truncated to zero when the fold 
change is less than 50%.

Table 4: Strong outperformance of each method. For each of the seven processing methods, and for each of the four analyses, the 
number out of the other 6 processing methods that strongly outperform the given method at FDR = 0.05 was determined.

Colon Ovary
t RS t RS

TM 1 1 0 0
GCRMA-EB 5 5 5 4
MAS5 4 5 6 6
GCRMA-MLE 4 0 1 0
PDNN 2 4 1 0
RMA 3 3 1 4
DChip 0 2 0 0
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While we have focused on FDR as the basis of compari-
son, the pursuit of small FDR values is not the only desir-
able operating characteristic of an array processing
method, and other reports have also emphasized the accu-
racy of estimating the precise size of concentration
differences. However to the extent that most actual studies
seek to find differential expression between groups, the
use of small FDR values seems more instrumental as the
basis for judging methods.

Variation due to choice of test statistic
Although our primary aim was to investigate variation in
sensitivity due to the seven processing methods, all analy-
sis was carried out independently for two test statistics.
The t-statistic is widely used in practice, but is well-known
to be sensitive to outliers, particularly when the sample
size is small. We found that certain processing methods,
particularly EB-GCRMA, had a tendency to produce out-
lier expression values in the colon data set. Thus the com-
bination of using the EB-GCRMA method with t-statistics
in the colon data led to particularly poor performance.

Variation due to log transform and array normalization
In practice, the approach used for array normalization and
for forming log-transformed expression values may be
equally or more influential than the method used for pro-
ducing probe set summaries [15]. In this study, we used
implementations of the seven processing methods as pre-
pared by their developers, and thus array normalization
and and log-transforms were applied in a method-specific
fashion. This provides a comparative analysis of the
various methods as they are used in practice, which is
most directly relevant since few investigators will override
the default normalization and log-transform methods
provided by the developers of each method.

Nevertheless it remains of interest whether these routine
processing steps are the determining factor of perform-
ance. In a future study it will be important to investigate
this question further by modifying the implementations
of the processing methods so that uniform log transforms
and array normalizations are applied.

Comparison of methods using data from disease profiling 
data sets
A key point that we advocate in this work is that false dis-
covery rates in actual disease profiling data constitute a
valuable complement to benchmarking results obtained
from spike-in, dilution series, and mixture experiments
(e.g. [4,5]). The primary obstacle that must be overcome
is that proper null sampling distributions are essential to
ensure that the methods are compared on a common
basis. Since numerous data sets covering a wide range of
Affymetrix platforms are available, to the extent that mul-
tiple data sets are in agreement about relative perform-

ances it is unlikely that the randomization procedure used
to calculate FDR values is systematically biased against a
particular method.

In spite of the statistical challenges in using disease profil-
ing data for benchmarking, we argue that these data sets
also offer some unique advantages. Calibration data sets
are relatively few in number and are not available for all
platforms. Newer platforms in particular are under-repre-
sented. Therefore overtraining to the available calibration
data through manipulation of the many tuning parame-
ters in the more complicated processing methods is an
unavoidable concern. In addition, the calibration data
sets likely do not represent the same degree of challenge
as disease profiling data in that reproducibility of fold
changes for affected and unaffected genes is quite high
compared to data from, say, human tissues where a large
number of uncontrolled sources of variability are present.

Conclusions
Performances of multiple array processing methods on
disease profiling data sets vary widely across the seven
methods studied here, but results are generally consistent
between the two data sets studied. Results of our analysis
generally do not parallel results obtained using calibra-
tion data sets [4,5], suggesting that such comparisons may
not completely capture the most relevant aspects of
performance.

A major determinant of sensitivity is test statistic variabil-
ity for randomized data. Such variability will affect false
discovery rates as well as empirical p-values, which are an
often-used alternative approach for identifying differen-
tially expressed genes (e.g. [14]). Therefore it will be
important in future work to seek a better understanding of
statistical sampling properties of array processing meth-
ods. A particular focus should be the way that sampling
variance in probe masking and probe weighting is con-
trolled. Methods seeking to incorporate mechanistic
information about the dynamics of probe binding, such
as the two GCRMA methods and PDNN, should in princi-
pal outperform more generic approaches such as the TM
method. Our results, particularly in the colon data, sug-
gest that in medium-sized data sets this potential is not yet
reached.

In this comparative analysis we did not seek to draw
definitive conclusions about the "best" or "worst" meth-
ods. Such conclusions may be made after investigating a
greater number of data sets, including disease profiling
data, data from controlled experiments, and calibration
data. Moreover, it may be that the correct choice of
method may depend on the scientific question being
asked. The key message of this work is that the wide range
of data sets collected in actual scientific investigations
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may be used for comparison of processing methods, and
that in at least the two data sets considered here, similar
results were obtained in the rank ordering of the methods.

Methods
Data sets
We used two data sets – one consisting of 79 ovary tumors
and the other consisting of 47 colon tumors. Both sets
were generated at the University of Michigan using
Affymetrix HG_U133A arrays, which consist of 22283
probe-sets, each of which is designed to assay a RNA tran-
script. Each probe-set consists of a set of (typically 11)
probe-pairs, with each probe-pair comprising a "perfect
match" (PM) probe which is a 25-base oligonucleotide
complementary to the transcript, and a "mismatch" (MM)
probe that is identical to the PM sequence except for alter-
ation of the central base. The MM probe is intended as a
control for nonspecific hybridization, so that the differ-
ence PM-MM measures only specific binding. However
not all processing methods use the MM data in this way.

For differential expression analysis, the 79 ovary samples
were partitioned according to histological class into 38
endometrioid and 41 serous samples. The 47 colon sam-
ples were partitioned into 40 microsatellite stable (MSS)
samples and 7 microsatellite instable samples (MSI). In
both data sets, the partition is based on an independently
measured biological characteristic, so there almost cer-
tainly are differentially expressed genes to be found. How-
ever in neither case are the two classes highly distinct, and
numerous other sources of biological variation are
undoubtedly present in the data.

Normalization across arrays
Array normalization refers to an adjustment of data distri-
butions within each array in order to make the arrays
more comparable. Each array processing method has been
coupled with a normalization procedure by its developers
(see references). We followed these method-specific nor-
malization practices in our analysis. All methods other
than MAS5 use some form of quantile normalization.

Log transform and truncation
All analysis was based on log-transformed data. Log-trans-
formed values, including truncations where needed, were
calculated in the manner recommended by the developers
of each method (see references).

Methodology of comparison
We compared the seven methods based on their sensitiv-
ity in detecting differential expression at a fixed false dis-
covery rate (FDR). For each method, two different two-
sample test statistics were calculated for each gene – the
standard two-sample t-statistic, and the Wilcoxon rank-
sum statistic (equivalent to the Mann-Whitney statistic).

The t-test statistic T is always analyzed as |T|, and the rank-
sum statistic R is standardized as

, where m0, m1

are the numbers of samples in the two classes, and m = m0

+ m1 is the total number of samples.

Our FDR approach closely follows the "global estimate"
of Efron et al. ([9] equation 5.9). For a given test statistic
threshold t, the FDR was estimated as follows.
Randomized data sets were constructed by randomly reas-
signing the class identifiers to the samples. The average
number of transcripts with test statistic value exceeding t
was calculated over 1000 randomized data sets. This
number was divided by the number of actual transcripts
with test statistic value exceeding t to produce a value that
we denote FDR0. In practice the value of FDR0 should be
scaled by the proportion p0 of non-differentially expressed
genes, giving FDR = p0FDR0. Although various estimates
of p0 exist, we elected to ignore this factor since it is con-
stant across the methods for a given data set, and any
estimate of p0 would add an additional source of uncer-
tainty to our results. Thus it should be noted that the
reported FDR0 values, while comparable across methods,
are somewhat larger than the usual estimates. Since p0
would generally be greater than 1/2, the bias is likely less
than a factor of 2.
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