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Abstract: Grapevine wood fungal diseases such as esca are among the biggest threats in vineyards

nowadays. The lack of very efficient preventive (best results using commercial products report

20% efficiency) and curative means induces huge economic losses. The study presented in this

paper is centered around the in-field detection of foliar esca symptoms during summer, exhibiting a

typical “striped” pattern. Indeed, in-field disease detection has shown great potential for commercial

applications and has been successfully used for other agricultural needs such as yield estimation.

Differentiation with foliar symptoms caused by other diseases or abiotic stresses was also considered.

Two vineyards from the Bordeaux region (France, Aquitaine) were chosen as the basis for the

experiment. Pictures of diseased and healthy vine plants were acquired during summer 2017 and

labeled at the leaf scale, resulting in a patch database of around 6000 images (224 × 224 pixels)

divided into red cultivar and white cultivar samples. Then, we tackled the classification part of the

problem comparing state-of-the-art SIFT encoding and pre-trained deep learning feature extractors

for the classification of database patches. In the best case, 91% overall accuracy was obtained using

deep features extracted from MobileNet network trained on ImageNet database, demonstrating

the efficiency of simple transfer learning approaches without the need to design an ad-hoc specific

feature extractor. The third part aimed at disease detection (using bounding boxes) within full plant

images. For this purpose, we integrated the deep learning base network within a “one-step” detection

network (RetinaNet), allowing us to perform detection queries in real time (approximately six frames

per second on GPU). Recall/Precision (RP) and Average Precision (AP) metrics then allowed us

to evaluate the performance of the network on a 91-image (plants) validation database. Overall,

90% precision for a 40% recall was obtained while best esca AP was about 70%. Good correlation

between annotated and detected symptomatic surface per plant was also obtained, meaning slightly

symptomatic plants can be efficiently separated from severely attacked plants.

Keywords: proximal sensing; disease detection; grapevine trunk disease; esca; SIFT; deep learning

1. Introduction

Grapevine trunk diseases involve a complex group of fungi colonizing the trunk, which leads

to slow degradation of perennial organs, and often ends with the death of a part of the plant or the

entire plant. One side effect of that degradation is the expression of typical “striped” foliar symptoms

during the summer period [1]. However, esca disease remains quite elusive because of the periodicity

of the expression of these symptoms. Diseased plants do not necessarily express symptoms, and plant

death (apoplexy) may suddenly happen during hot and dry summers [2]. Because of its toxicity,
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sodium arsenite was banned from french vineyards in 2001, ruling out the only effective chemical

product against the fungi complex [3]. Since then, many research efforts were conducted to find

new ways of preventing the spread of the disease in vineyards, which for instance led to commercial

biocontrol products (Esquive WP). In France, approximately 10% of vine plants are affected by those

diseases [4], meaning a need to replace them in the next few years. This results in huge economic

losses for the viticulture profession but also in younger vineyards, endangering the local identity of

historic wine-growing regions.

Esca foliar symptoms exhibit a particular pattern allowing in many cases accurate disease

diagnosis. For instance, red cultivar esca symptoms appear as red spots turning yellow or necrotic [1].

These spots follow the shape of the leaf’s primary and secondary veins, resulting in the well known

tiger-stripe pattern and its green → yellow → red → brown color gradient (Figure 1a–d). However,

symptoms tend to appear differently between white cultivars and red cultivars. White cultivars usually

show a wide strip of chlorotic yellow tissues (Figure 1a,b) while red cultivars show a narrow yellow

strip (Figure 1c,d). In the case of apoplexy, leaves quickly turn to a pale green and wilt in a few days.

Wilting is however not specific to esca and could be related to many other issues.

Typical tiger-striped esca patterns are however not so frequent in the vineyard as most leaves

found on symptomatic grapevines show attenuated patterns, appearing only partly on the leaf and

with varying intensity (Figure 1e) or partly wilted (Figure 1f). Circular patterns can also be observed

in some cases (Figure 1g,h)

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1. (a–d) Examples of well defined esca patterns; and (e–h) examples of altered esca patterns.

A year after year cartography of symptomatic plants could help disease management in the long

term, allowing better replacement cycles and specific treatments. However, in reality, the exhaustive

location list of these symptomatic plants is unknown. The random expression of yearly symptoms

renders disease tracking even more confusing. Vine growers are usually unable to keep data of

vineyard evolution between years. The only known solution is plant-by-plant human notation,

a time-consuming task prone to errors (missed plants, symptoms appearing on one side of the row

only, etc.).

These issues motivate for the conception of an automated esca detection device, which may prove

to be a significant challenge. Indeed, the presence of wilting, reddening and yellowing zones on



Remote Sens. 2019, 11, 1 3 of 26

the limb is not specific to esca. Actually, most grapevine diseases and deficiencies involve similar

colorations, only the spatial patterns of these colors are different. Powdery Mildew/Black Rot

(Figure 2a), Flavescence Dorée (Figure 2c-d), wilted leaves (Figure 2e), deficiencies (Figure 2f) and

insect damages are among the other confounding factors found in the vineyard.

(a) (b) (c) (d) (e) (f)

Figure 2. Examples of non-esca leaves showing foliar discolorations. (a) Black Rot, (b) Full yellowing,

(c,d) Flavescence Dorée, (e) Wilted leaf, (f) Deficiency.

Sensors and computer vision are strong candidates to answer these questions in a non-destructive

and automatic way. Another inherent advantage of imagery is that it allows a localized diagnostic in

the plant, only pointing the symptomatic areas and quantifying the symptomatic portion of the plant.

Huge improvements in the field of image analysis these last 15 years brought new promising tools for

a great variety of tasks involving agriculture, which are referenced in numerous recent reviews [5,6].

More notably, deep learning methods have become increasingly popular, motivating a comparison

between that novel state-of-the-art approach and more classical ones. These enhancements are used in

this paper in the form of Scale Invariant Feature Transform (SIFT) based encoding and pre-trained deep

learning convolutional neural network, allowing to generate sets of features describing in a compact

way the composition of grapevine plant images. Thus, the main contributions of this paper are:

• the comparison of those popular methods in modern Content-Based Image Retrieval (CBIR) [7]

applied to a specific and challenging plant disease problem, from leaf classification to detection of

the disease at the plant scale; and

• the evaluation of the ability to discriminate esca samples from other leaf symptoms. Esca samples

are also divided into three severity subclasses (used during the testing stage) to assess the

performances on easy and hard samples.

This paper is divided into four main sections. Section 2 describes related works about computer

vision methods and examples of agricultural applications. Section 3 describes the experimental design

and image labeling steps leading to the creation of a custom database. In Section 4, we tackle the

classification of leaf image patches from the databases, using the two distinct above-mentioned feature

extraction approaches. Finally, Section 5 addresses the plant-scale detection problem on the basis of

the classification step.

2. Related Works

Imagery using airborne or ground cameras is a popular choice for the detection of diseases or

plant stresses in the field, whether it uses visible, multispectral [8], hyperspectral [9], thermal [10]

or fluorescence [11] imagery. In-field esca detection is mainly studied using aerial multispectral

imagery [12]. In this work, multispectral aerial imagery allows exhaustive vineyard cover and brings

rich spectral information but suffers from geometric problems (stitching of images from different

viewpoints) and lacking resolution for precise symptomatic leaves imaging. Differentiation between

esca and flavescence dorée, another threatening disease with similar foliar symptoms, is also considered

in some works, showing a will to differentiate target disease from other diseases [13,14]. The latter uses

a combination of hyperspectral measurements and RGB imagery with textural analyses, in laboratory

conditions. RGB imagery may seem less attractive at first glance but is actually a cost-effective
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choice. While it does not include rich spectral information (three-channel broadband sensor), spatial

information may be used for disease detection problems involving symptoms with defined patterns,

such as esca. We chose to study the problem using proximal sensing to propose a complementary

application to remote sensing surveys.

The most simple image processing methods regarding disease detection are image binarization

ones, considering a threshold to separate green (healthy) elements from the symptomatic parts, e.g.,

the work in [15] estimates virulence of wheat pathogen and compares it to traditional visual estimate

methods. For that, colorspace transformations may be applied, such as RGB to HSV transformation

(keeping hue information in a single channel) or vegetation indices (greenness index). Morphological

operations can also be used to smooth the results and reduce false detections. These approaches are

quite limited for more complex applications since they are sensitive to natural conditions (lighting,

angle, shades, and organs with similar colors). Because of the absence of spatial information, they also

perform badly if the underlying goal is to differentiate between diseases with similar discolorations.

Facing the limitations of color thresholding techniques, spatial information extraction was

considered, taking into account the spatial relationships between pixels at first, and then between

shapes and objects. Circular Hough transform was used as a powdery mildew spots detector [16].

Segmentation [17] allows retaining homogeneous spatial regions and then classify them according to

the contained color features. Texture analysis, using for example standard Haralick indices, computed

on gray level co-occurrence matrices, can also naturally be used and combined with other color

features [18].

Lately, techniques naturally encoding the object composition of the image have been devised,

allowing huge progress on general image classification tasks. SIFT keypoint detection is a powerful

method used both for image classification and image correspondence [19]. The intuition behind SIFT

relies on finding “keypoints” in an image and then computing a 128-dimensional descriptor around

that point to summarize local gradient histograms information in a scale and rotational invariant

way. That wealth of local informations can then be aggregated into a compact image representation

using bag of visual word-type approaches [20]. SIFT descriptors are used for diverse agricultural

applications such as leaf species classification [21]. In that case, the descriptors help to distinguish

species based on the architecture of leaf venation and shape. In [22], species retrieval from a database

of roughly 80 species is performed, using a fusion of several features including SIFT and Gabor filter,

using HSI colorspace. A smartphone leaf identification system is devised for portable android device

in [23] using SURF (a fast SIFT variant) features with bag of visual words. Similarly, rice flowering

steps can be detected using the same SIFT descriptors [24]. Spatial grids of SIFT descriptors is also

used in that study. As for disease detection, a set of three soybean diseases are classified in [25] on

scanned leaves. Best results are achieved using a multiscale grid in the form of the Pyramid Histogram

of Words (PHOW) method. Extensive experiments around SIFT variants (including color fusions and

different keypoint detectors) are also performed in [26] for the classification of flowers pictures from

three datasets. In the case of esca detection, SIFT/Bag of Words (BoW) combinations are of particular

interest. Esca symptoms can be summarized as local patterns on the leaf (following the five main

veins) with oriented soft gradients at different scales, meaning SIFT descriptors are good candidates

to extract that information. On the other hand, BoW describes the composition of complex images

with many objects and shape, similar to natural grapevine images. Other techniques based on local

descriptors such as Local Binary Patterns [27], Gabor Wavelets [28], Histogram of Gradients [29] and

structure tensor [30] are also popular methods in the literature.

Deep learning methods introduced a new shift in the way we envision features. Convolutional

Neural Networks (CNNs) architectures use a network of image filters to extract features from an

image [31]. The weights determining the nature of these filters are learned during the training

step. The user only defines the global structure of the CNN. CNNs are successfully used for image

classification [32] and detection problems [33] on huge image databases (e.g., CalTech101 and Imagenet).

The excellent results on these datasets have motivated the use of deep learning for many agricultural
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applications. For instance, plant identification is performed in [34]. In that study, two image databases

are considered, one being the above-mentioned Flavia dataset and the other a custom database of

smartphone images in natural conditions. In [35], the authors used VGG and AlexNet CNNs for

classification on the Plant Village dataset. This database comprises images of different diseases and

species in laboratory and infield conditions. It is worth noting that the network trained on laboratory

images does not seem to generalize well on real field images. Web images can also be gathered to create

a plant disease database such as in [36]. Using more advanced frameworks, Fuentes et al. performed

the detection of tomato diseases using ResNet classification network and Faster R-CNN detection

architecture [37]. In that paper, a data augmentation process is used to generate more samples based

on variations of existing samples and reduce the overfitting effect. Fruit detection is also tackled

in [38], merging RGB and NIR Imagery, exhibiting good detection results even for partially occluded

fruits. Sometimes authors also try to deeply modify existing methodologies, e.g., in [39], the LeNet-5

network is used in combination with a novel k-means based weight initialization in order to improve

classification performances of different weeds type in a soybean field and, in [40], a custom network is

devised for the quantification of maize tassels on in-field images. CNN’s state-of-the-art performances

on many applications motivated the use of deep learning techniques for esca detection.

From these works, several tendencies can be noticed:

• Image databases tend to grow bigger and to be more diverse. In parallel, laboratory

studies in controlled conditions evolved into field condition acquisitions. Classification

and detection problems are getting harder but in the meantime they are closer to potential

commercial applications.

• Feature extractors become less and less specific. Many agricultural applications actually do not

use ad-hoc approaches. Thanks to transfer learning, very general trained feature extractors can be

efficiently used for specific tasks.

• Classifier importance has been revised downwards. State-of-the art classifiers such as SVM,

random forest or artificial neural network provide satisfactory results that almost entirely depend

on the two above-mentioned points. This means that, in most cases, noticeable performance gaps

can only be achieved using larger databases and better feature extractors.

3. Data Collection and Processing

In field data collection was performed during summer 2017, in mid-august. Two plots from the

Bordeaux region of France were used at the basis for the experiment: red cultivar Cabernet-Sauvignon

vineyard in Pauillac and white cultivar Sauvignon-Blanc vineyard in Castres-Gironde. In both cases,

the 50 first plants were sampled on even numbered rows. Since esca plants represent about 5% of the

plants, esca samples are more sparse than healthy samples, thus additional plants presenting esca

symptoms were handpicked to complete the database. Cartography of esca prevalence in the last five

years was available, allowing to know in advance which plants are diseased.

Images were acquired using a RGB 2592×2048 camera; the camera was protected in a sturdy

box packed with a microcomputer (image storage and acquisition program) and an electronic

flash (Figure 3).
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(a) (b)

Figure 3. (a) Detailed view of the sensor; and (b) sensor progressing through a vineyard row.

Data acquisition was then triggered using a custom smartphone app for one-time acquisition

or regular acquisitions. The device was then mounted on a transformed wheelbarrow advancing in

the vinerow and aiming at the plants on the right side (Figure 4). This device could also be easily

mounted on a tractor for fast and automatic acquisitions. Lens and flash calibration depend on natural

conditions and thus were done on the field to obtain a clear image of the grapevine plant foreground

with homogeneous lighting and blurry background (next vine rows). A picture was taken for each

plant, centered as much as possible on the trunk. Spatial resolution of images is about 1 mm.

Figure 4. Examples of pictures acquired in a vinerow.

The differences in symptom expression shown in Figure 1 are greatly exacerbated by acquisition

geometry and scene complexity. Leaves are visible at different angles and may be partially hidden.

Esca symptoms are frequently overlain with stems, wires and other leaves. They may also appear

blurry because of their relative position with the foreground, while the out-of-field background may

trigger false positives. This means that the proposed classification algorithm should be robust to

changes in illumination, rotation and obstructing elements. To take into account these differences,

esca symptoms were roughly separated into three subclasses during the labeling process:

• Esca3: Very well defined symptoms, most of the foliar area is affected, no occlusions (e.g.,

Figure 1a–d).

• Esca2: Strong to medium symptoms (some parts of the leaf may not be affected), possible partial

occlusions (e.g., Figure 1e,f).

• Esca1: Weak symptoms or strongly occluded symptoms (e.g., Figure 1g,h). May be confounded

with other diseases and abiotic stresses.
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Since samples from these subclasses are scarce, these were only used during the testing stage as

a way to evaluate more precisely the performances.

Image labeling was manually done using the free software LabelImg, outputting. xml files

containing a list of bounding boxes for every labeled image. The files were then processed using a

python script in order to create databases of rectangular leaf patches, which were then resized to 224 ×

224 patches (Table 1) during the feature extraction step.

Table 1. Summary of image database samples: Number of 224 × 224 patches per class.

Esca
Control

Esca 1 Esca 2 Esca 3
Confound. Total

White Cultivar 1554 326 165 43 630 2718
Red Cultivar 2045 259 218 60 953 3535

Total 3599 585 383 103 1583 6253

Natural class unbalance is easily noticeable, which can be explained by the low prevalence of

esca symptoms in vineyards compared to the huge amount of control plants. It is also obvious that

most of labeled esca symptoms are not “textbook examples” symptoms. Very well-defined symptoms

are actually sparse, roughly 50 samples per cultivar in our database, which is not only caused by

actual symptoms themselves but also by acquisition geometry. More generally, in real applications,

background samples are often numerous, while targeted disease are scarce and present with varying

intensity (displayed with green and red circles in Figure 5). Confounding factors (blue circles in

Figure 5) could be separated in many different subclasses but most of them would have very few

samples. In some cases, these subclasses are likely to be confounded with targeted esca class in the

feature space (deficiencies) and in some cases not (powdery mildew, wilted leaves). A 2D visualization

of features extracted from the database using t-distributed Stochastic Neighbor Embedding algorithm

(t-SNE) algorithm can be found in Figure 5c. The t-SNE is a non-supervised dimensionality reduction

technique known for its ability to find relevant embeddings in high dimensional spaces [41].

Separation plane Esca

Control

Confound.

(a) Ideal case

Esca 1

Esca 2
Esca 3

Control

(b) Real case—schematic

diagram

-100 -50 0 50 100

1st axis

-100

-50

0
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100

2
n

d
 a

x
is

Control leaves

Esca1 Esca2 Esca3

Confounding symptoms

(c) Real case—study

data with t-SNE

dimensionality

reduction

Figure 5. Schematic comparison of ideal (a) and real (b) class balance in esca leaf disease study. (c)

Dimensionality reduction of feature maps extracted from the best performing approach in this paper

(MobileNet off-the-shelf features from the 12th layer).
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4. Leaf-Scale Classification

4.1. Methodology

Leaf classification consists in learning a model to predict which of the three classes a given

leaf belongs to. Before learning the rules leading to prediction, features describing the leaf have to

be extracted.

4.1.1. SIFT Descriptors

Scale-Invariant Feature Transform (SIFT) [19] is commonly used to describe local regions from

an image in a scale and rotational invariant way. Most of the time, SIFT refers to a two-step process

including keypoints detection (using for example the Difference of Gaussian (DoG) method) and

computation of SIFT descriptors around these keypoints. The first step can however be replaced by

any other method such as Harris detector or a simple regular grid of keypoints. Given a keypoint

(coordinates), its scale (defining the zone covered by the descriptor in the image) and the main

dominant orientation of the gradient within that zone, local gradient histograms were sampled in

eight directions on a 4 × 4 grid (examples of SIFT descriptor grids at different scales and angles are

provided in Figure 6b). A 128-dimensional SIFT descriptor was then formed by aggregating the 16

histograms of gradients in the grid. Finally, normalization is often applied on the resulting vector.

The resulting features are known to be scale and rotation invariant, which means that a rotated and

scaled image should provide very similar SIFT features than those computed on the original image.

For classification tasks, it allows more robustness to these changes. Interestingly, in the case of standard

keypoint detection only, healthy leaves samples yield significantly less keypoints than symptomatic

leaves, which makes sense since keypoints mainly react to leaf veination and edges while symptoms

also trigger many other keypoints at different scales, as illustrated in Figure 6. Keypoints position, scale

and main orientation are displayed in Figure 6a while examples of individual descriptors (orientation

histograms within cells of a 4 × 4 grid) built on these keypoints are displayed in Figure 6b.

(a) Map (b) Examples of descriptors

Figure 6. (First row) (a) Keypoints map and (b) three examples of keypoints descriptors on a 4 × 4 grid

on healthy leaf (extracted on hue channel); and (Second row) keypoints map and three examples of

descriptors on esca leaf.

In this study, performance of DoG + SIFT approach was evaluated, along with two other

sampling strategies:

• Dense SIFT, in which keypoints are sampled on a grid at fixed scale and orientation. Step and

scale parameters were chosen on the basis of a preliminary grid search experiment. Grid step was

fixed to 4 pixels while scale parameter was 5.
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• PHOW SIFT [42], an extension of Dense SIFT using a multi-scale grid. In this experiment, the

proposed SIFT scales were [4, 8, 12]. Grid step was augmented to 8 to reduce the size of the

resulting descriptors and prevent memory issues during the training step.

4.1.2. Feature Encoding

While the computed SIFT local descriptors are informative on their own, they do not provide a

compact representation of the image. Since the number of extracted descriptors may vary between

images, direct comparison between them is not possible. Bag Of Visual Word (BoW) [20] was developed

to create a vocabulary of descriptors (called visual words) that best describe the image. It can be

summarized in 2 steps:

• Unsupervised clustering (most of the time using k-means) is performed in the descriptors space

so that families of similar descriptors are grouped. This leads to the creation of a dictionary of

k words, a list representing the diversity of descriptors in the learning database. In that step,

common grapevine elements at different scales are learned.

• Image encoding is then applied to a test image. SIFT descriptors are computed and assigned to

the nearest cluster/word in the descriptors’ space. Frequency of appearance of each vocabulary

entry then allows us to construct an histogram of fixed size (k) describing image composition.

Vector of Locally Aggregated Descriptors (VLAD) [43] addresses the main problems inherent

to BoW method, namely the lack of weighting. As in BoW, each descriptor is assigned to its nearest

cluster, and then, for each cluster, we consider the sum of differences between assigned descriptors

and the centroid of the cluster in the SIFT 128-dimensional space. More discriminative property is

thus achieved by using first order information in the process. The drawback to that information is

the augmentation of the descriptor’s dimensionality, which can be critical for problems with small

sample number. Fisher Vectors [44] (FV) enrich first order information with second-order statistics by

substituting the initial k-means clustering step with a Gaussian Mixture Model (GMM) parameters

estimation (means, covariance matrix and prior weights), with an expectation maximization algorithm.

Similar to VLAD, first- and second-order statistics are then aggregated in the resulting FV. VLAD can

thus be seen as a simplified version of FV. It is worth noting that the dimensionality of the resulting

features does not depend on the total number of local descriptors in the training database or on the

number of descriptors per image. However, these substantially affect the quality of representation if

too few samples are available. As mentioned before, VLAD and FV dimensionality are two orders of

magnitude higher for SIFT encoding (Table 2). To alleviate the risks associated with high dimensionality,

lower k values are used when considering theses approaches. VLAD and FV approaches are known to

have very good performances using small dictionary size.

Table 2. Dimensionality of encoded image features and range of k parameter tested in the experiments

(k = Number of words/clusters/Gaussian models in the SIFT descriptor space).

BoW VLAD FV

Dimensionality k 128 × k 256 × k
Tested k values 25 → 800 2 → 32 2 → 16

SIFT detection applies to single channels image, thus SIFT + BoW approach describes the

composition of a single channel. To combine the information of several channel, fusion of features,

after the encoding part, was performed. As recommended in the literature [44], an L2 normalization

followed by square rooting was used for the three approaches.

SIFT keypoint detection and encoding algorithms were freely adapted from VLFeat toolbox,

which provides useful functions for computer vision and machine learning in Matlab environment

(Matlab R2017a) [45].
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4.2. Deep Learning Approach

In the imagery field, deep learning often refers to convolutional Neural Networks (CNNs), which

can be seen as a classifier on top of an automated feature extractor. CNNs are networks containing

multiple layered image filters with multiple connexions between layers. The weights defining the

nature of these filters are however not defined by the user but instead by the learning process, linked

with a classification neural network (fully connected layers). Weights evolve during the optimization

process so that a loss function is minimized. Several training strategies can be considered, depending

on the application and the database:

• Full Training consists in training both the convolution and the classification part of the network.

Full training is more appropriate for databases of sufficient size or simple applications.

• Fine-Tuning consists in training only part of the convolutional layers of a pre-trained network

(trained on a huge database such as Imagenet). In this transfer learning method, shallow and

general layers are kept frozen while deep layers are re-trained with a very small learning rate to

learn features specific to the database. Fine-tuning generally works well for small databases.

• Feature extractor approach is a more direct case of transfer learning. It also uses a pre-trained

network but directly treats it as a multi-usage generic feature extractor. No training is done on

the convolutional part and feature map extraction can be performed at any level of the network.

Based on these extracted features, any classifier could be used to obtain the final decision.

In this study, we chose the feature extractor approach as the comparison basis with SIFT features,

since it is an adapted solution for small datasets. Using pre-trained general feature extractor allowed

us to evaluate the viability of transfer learning on our very specific application. Since we treated

feature extraction as a bottleneck, the same classification strategy and framework could be applied for

both SIFT and deep learning experiments (Figure 7).

SIFT + BoW features

Transfer learning

224 x 224

image

Figure 7. Comparative description of SIFT encoding and CNN transfer learning for the construction of

informative features.

4.2.1. Convolutional Network Choice

In many studies, network choice is motivated by a trade-off between speed and accuracy often

linked with the network’s depth and the input image size. Deeper networks usually yield better results

on more complex image sets at the cost of lower speeds and with more demanding GPU memory

consumption. The number of parameters in the network is however not necessarily correlated with

the depth of the network. VGG16 is an example of a relatively shallow network with a huge number

of parameters beneath. Recent networks may also introduce new building blocks in the convolutional

structure, such as ResNet50 using residual learning to compensate for gradient dissipation problems
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in deep neural nets. In that study, we chose to use the lightweight MobileNet family [46] as the

convolutional basis. MobileNet is an adaptable family of networks using 13 convolutional layers

(each containing a full set of filters) generated by two parameters: input image size and network

depth α. Every element of the MobileNet family was trained on ImageNet database, providing a

set of ready-to-use networks for different applications. MobileNet can also be easily embedded on

mobile platforms. This is particularly interesting in the case of this study because the long term goal

is tractor-mounted real time acquisition and processing. Here, we considered the default MobileNet

for our application, using standard 224 × 224 input size and α = 1 for a network of approximately

4 millions parameters. This network has proved its efficiency notably on the Imagenet database, on

which it reached a Top-5 accuracy of about 87%.

4.2.2. Feature Extraction on Pre-Trained Network

Feature maps obtained using the feature extractor approach can be used in different ways, mainly

depending on two parameters:

• Network Depth. Every convolutional layer output can be used as the final feature map. First

layers tend to capture low level information (mainly edges and color filters) while last layers tend

to encode more complex spatial relationships such as shapes, parts and objects

• Pooling Strategy. Feature maps are multi-dimensional arrays, implying the need for a

post-processing step before flattening and feeding them to a classifier. CNNs often use max

pooling or average pooling techniques, or even a combination of the two. Output feature maps

tend to be sparse so max pooling may be the best choice in most situations.

The many possible combinations of network depth and pooling strategy create final features of

different natures and dimensionality, as shown in Table 3. Pooling is performed using five different

grid sizes, maximum values for each cell of the grid and for each channel are then flattened to

construct the final descriptor. For instance, Conv1 output (64 channels) with 2 × 2 pooling yields a

256-dimension descriptor.

Table 3. Resulting dimensionality of grid pooling strategies on convolutional layers outputs.

Layer [Output] 1 × 1 (global) 2 × 2 4 × 4 8 × 8 16 × 16

Conv1 [112 × 112 × 64] 64 256 1024 4096 16384
Conv2/3 [56 × 56 × 128] 128 512 2048 8192 .
Conv4/5 [28 × 28 × 256] 256 1024 4096 . .

Conv6/7/8/9/10/11 [14 × 14 × 512] 512 2048 . . .
Conv 12/13 [7 × 7 × 1024] 1024 . . . .

Deep learning feature extraction was performed using Python 3 and the Keras/Tensorflow

framework, allowing an easy access to pre-trained models on the ImageNet database.

For both experiments, preprocessing simply consisted of an image standardization (zero mean

and unit variance). This step is done automatically using the Keras framework for the deep neural

network and was implemented in Matlab for the SIFT based experiments.

4.2.3. Classifier Choice

In this study, we chose the conventional Support Vector Machine (SVM) classifier, which, on

preliminary tests, gave better results than other well-known classifiers such as Random Forest or
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K-Nearest-Neighbors. Distance matrix was computed to use the χ
2 metric for BoW experiments and

Euclidean distance for other experiments. Radial Basis Function kernel was then used on the matrix

before training a linear SVM using libSVM library. Training and testing were performed on separate

datasets. Partitioning of the dataset was done using a set of 10, randomly pre-generated, 50%/50%

train/test splits with balanced number of samples per classes. That way, the same train/test splits were

used for the compared experiments. A 10-fold cross validation was also used during the SVM training.

Ten percent of the training set was randomly used for the validation set to tune the σ parameter of the

RBF kernel.

4.2.4. Evaluation Metrics

The overall accuracy was considered as the evaluation metric on the test set. Overall accuracy

summarizes accuracy for all classes, which is the proportion of samples assigned to the correct class.

Overall accuracy is also in that case the non-weighted mean of class accuracies since all classes are

balanced in the generated test sets. Esca subclass accuracy can be simply defined as the proportion

of a given subclass sample being assigned to the correct class, for example the proportion of leaves

heavily affected by esca correctly classified as esca. Following the probabilistic SVM approach [47],

posterior probabilities can also be extracted for the samples in the testing step to get an estimate of the

classifier relative confidence for each decision.

As a complimentary measure to overall accuracy, two other indicator were introduced. First,

Matthews Correlation Coefficient (MCC) can be seen as a balanced measure similar to the χ
2 statistic

on a binary contingency table (the confusion matrix).

MCC =
TP × TN − FP × FN

√

(TP + FP)× (FN + TN)× (FP + TN)× (TP + FN)
(1)

which ranges between −1 and 1, the former being a totally incorrect classifier and the latter a totally

correct classifier. Pairwise coefficients for binary cases are averaged in order to obtain multiclass MCC.

Then, to compare competing experiments and determine whether the difference is significant,

one can also use the McNemar test [48]. Using a contingency table between two classification prediction

results, the H0 null hypothesis indicates probabilities of each outcome are the same while the H1

hypothesis indicates they are not. If the H0 null hypothesis is true, the statistic should follow a χ
2

distribution with a single degree of freedom.

4.3. Results

4.3.1. Performances of Simple Color Based Methods

We compared the performances for our two approaches but also for two other simple color-based

methods. Color histogram method simply considers the global image histogram as the final

feature. Various bin sizes and color fusion strategies (in the form of concatenated histograms) were

experimented to get the best result. An overall accuracy of around 75% (respectively, 74.4% and

74.9% for white and red cultivar datasets) was achieved using that method, meaning a decent part of

the samples can be actually well classified using the most simple approach, which is not surprising.

Most of the well classified samples are from the control class (about 88% class accuracy) while esca

and confounding factors class are harder to classify (respectively, 65% and 67% class accuracy),

showing difficulties to differentiate symptoms. In an effort to use spatial information, grid of color

histograms considers a spatial grid laid on the image, and then a histogram is computed within each

cell of the grid. Local histogram are then either concatenated or encoded using the three methods

presented in this paper (BoW, VLAD, and FV). In the best case, this yields a gain of around 5% of good

classifications compared to simple color histogram approach, meaning the base performance using

grid color histogram approaches and channel fusion is about 80% (respectively, 79.7% and 80.4% for

white and red cultivar datasets).
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4.3.2. SIFT Performances

As shown in Figure 8 (results for RGB fusion on white cultivar dataset), performances are

dominated by dense grid of SIFT descriptors encoded with simple BoW histogram, reaching around

87% accuracy. Performances are gradually increased with the number of clusters for BoW encoding.

That does not hold true for VLAD and FV encoding, however, in which only grid-based methods yield

increasing performances, while DoG SIFT yields relatively stable performances. This is an interesting

property of these two methods, since it means that good results can be achieved with small dictionary

sizes. It is also interesting to note that single scale dense grid seems to perform better on all experiments

than multiscale grid. This could be an un undesirable effect of the threefold augmented descriptor

dimensionality. Similar interpretations could be drawn on the red cultivar dataset.
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Figure 8. Overall accuracy on the white cultivar database as a function of the number of

clusters/models used in the SIFT encoding part: (a–c) the three types of encoding considered in

the experiment. RGB fusion was used, concatenating each channel features into one final feature vector.

Red Curve: DoG SIFT (keypoints); Light Green Curve: Dense SIFT (grid); Dark Green Curve: PHOW

SIFT (multiscale grid); Dotted line: Best overall accuracy.

4.3.3. CNN Performances

While general CNN performances depend on the depth extraction, decent image representation

can be achieved using only the first convolutional block, providing accuracies similar to the SIFT

method using a trained set of 64 filters sensitive to edge and color with posterior max pooling (Figure 9).

Performances seem to gradually improve with depth until the sixth layer; worst-case performances in

case of inadequate pooling also seem on the rise (worst performance was above 85% and best one above

90% for block 6). For deeper layers, performances are more uncertain, although global best accuracy

was achieved using global max pooling in the 12th block output. This could mean deeper layer features

lack the generalization ability of more shallow ones. Interestingly, it seems high dimension features

perform better on shallow layers while low dimension features perform better on deep layers. Things

are slightly more different for the sub-accuracy scores. Typical esca symptoms get easily classified with

near 100% accuracy for every depth in the network as shown in Figure 9c. However, shallow features

tend to struggle on more subtle foliar symptoms, the fourth layer marking an important performance

boost in more difficult symptoms classification (Figure 9a,b). Similar behaviors were observed for the

red cultivar dataset.
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Figure 9. White cultivar performances using features from pre-trained MobileNet 224 1.0 network for

different depths using max pooling: (a–c) performances for the three esca sublassses. Point size reflects

dimensionality.

4.3.4. Summary

While both studied methods provide similar results (best accuracies around 91% accuracy on

white cultivar and 88% on red cultivar), deep learning features present the advantage of slightly

better performances (Table 4) at lower parameterization costs. It provides significant enhancements

in the classification of confounding factors: the most difficult class due to its extreme variability.

Dimensionality seems to play a role in the classification performances, best accuracy being obtained

with final features with around 103 dimensions. While perfect classification seems hard, if not

impossible, best features perfectly separated healthy leaves from symptomatic leaves (even in the most

complex cases) and limited the number of other symptoms wrongly detected as esca.
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Table 4. Summary of best mean performances (%) for the whole dataset (OA), esca subclasses

(esca1–esca3) and the confounding factors class (Conf) using 10 different train/test runs with balanced

classes. Mean standard deviation for all results is around 1.6%. Bold values indicate best results for

both extractor families. RGB, HSV and hue images were considered for SIFT based extractors and only

the best result is displayed. Max pooling, average pooling and a combination of these two were also

considered for deep learning based descriptors.

White Cultivar Red Cultivar

OA Esca1 Esca2 Esca3 Conf OA Esca1 Esca2 Esca3 Conf

DoG SIFT
BoW 85.4 80.1 82.7 97.6 79.5 83.4 82.2 92.2 100 74.1

VLAD 86 83.2 88.1 98.8 81.1 83.6 83.7 94.1 99.2 75.2
FV 85.7 82.4 85.6 98.4 81.4 83.2 82.5 93.2 97.7 74.6

Dense SIFT
BoW 87.9 82.3 90.2 100 81.1 85.4 85.9 90.8 99.7 76.7

VLAD 86.7 80.1 91.6 99.8 82.4 82.7 81.3 89.2 96.3 75.1
FV 86 82 89.9 99.2 80 81.5 82.2 88.4 96.5 72.5

PHOW SIFT
BoW 87.1 80.5 87.1 98.6 79.5 84.4 84.9 92.2 100 74.9

VLAD 85.8 80 89.8 99.8 80.6 80.9 81.1 89.6 99.7 72
FV 85.5 80.9 87.7 97.8 80.4 80 80.1 87.4 98.9 70.6

MobileNet 224-1.0
Imagenet features

1st layer 87.8 80.6 87.6 95.5 82.1 86.4 89.5 92.7 96.5 71.4
7th layer 90.2 85.6 93 99.3 85.9 86.4 92.7 97.8 100 76.1
12th layer 90.7 86.3 94.2 98.9 86.9 87.8 92.1 98.3 99.8 78.3

Table 5 presents a comparison of the performances for three selected experiments using overall

accuracy and Matthews Correlation Coefficient (MCC). While similar behaviors are observed, it seems

the gap between SIFT approach and deep learning approach widens using the MCC.

Table 5. Overall accuracy and Matthews Correlation Coefficient (MCC) performance indicators on

three selected experiments (white cultivar).

Grid Color Histograms Dense SIFT + BoW MobileNet 12th Layer

Overall Accuracy (%) 79.7 87.9 90.7
MCC 0.69 0.76 0.84

Using the McNemar test on the above-mentioned experiments showed the “MobileNet 12th layer”

approach performed significantly better than the “Grid color histograms” and “Dense SIFT + BoW”

methods (respective p-values were ≈ 0 and 1.5 × 10−2).

The difference between weak features (using the best color histogram strategy) and strong features

can be seen in Figure 10 using SVM posterior probabilities on the test set [47]. In that figure, sorted

probabilities are plotted separately to visualize the repartitions for the three labeled classes (control,

esca and confounding factors) and the three esca subclasses (darker reds indicate more defined

symptoms). Grey zones indicate bad classification cases for a given class.
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Figure 10. Repartition of sorted SVM esca probabilities ([47]) in the test set. Green plots: asymptomatic

leaves; light red to dark red plots: esca symptoms subclasses (from weak to strong); blue plots:

other symptoms.

From these results, we can conclude that transfer learning approaches are a promising method for

informative feature extraction related to esca (and possibly other diseases). Deep and intermediate

layers outputs, combined with aggressive pooling (low resulting dimensionality) yielded the best

performances on the MobileNet network. Next, the discriminative power of deep learning features

was extended to disease detection on plant images.

5. Plant-Scale Detection

5.1. Methodology

Detection Network

Detection at the plant scale involves finding and classifying symptomatic leaves on a picture

containing the full plant. This results in much harder blind search problems within complex images.

A good detection network should output anchor boxes and associated classes fitting the human

annotations. Detection algorithms have drastically evolved during the last 15 years; their evolution

can roughly be summarized into three main steps:

• Standard Sliding-Window approaches, in which each window is fed to the trained CNN. This is

the slower approach.

• Two-Step Detectors, using a Region Proposal Network (RPN) to get anchor boxes and then

feeding the proposal to the trained CNN (R-CNN and Faster R-CNN).

• One-step Detectors, in which both processes are done simultaneously, using dense sampling

(YOLO, SSD, and RetinaNet).

Among these three, the last two are the most used nowadays. Actually, these strategies represent

a trade-off between speed and accuracy, two-step network providing state-of-the-art accuracies and

one-step networks providing fast inference (brought by the need for real time applications at several

frames per second). Recent detection networks use a trained CNN such as MobileNet, ResNet or

VGG as the feature extractor backbone. RetinaNet [49] uses anchor boxes in the same fashion as the

enhancements of the Faster R-CNN network. It combines a regression subnet and a classification subnet

(4 3 × 3 convolutional layers) applied on pyramid of features at different depths [50] (Figure 11). Each

pyramid element has its own output and is fed to the regression and classification head. Multi-scale

anchors are proposed for every feature level with different aspect ratios. In that case, RetinaNet uses 15

anchors types over each element of the pyramid. The known problem with one-stage detectors using

dense sampling is that they fall short in terms of accuracy compared to two-stage partly because of

class imbalance during training. Thus, heavy presence of easy negative samples (in our cases healthy

leaves) may overwhelm the detector. To overcome that issue, RetinaNet uses focal loss. Focal loss
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consists in a change in the cross entropy function, allowing to give less weight to easily classified

background zones of the image, summed on every anchor of the image. On the contrary, hard cases are

given large weights during the training. Predictions from all feature pyramid levels are then merged

using standard non-maximum suppression (NMS).

+

+

Classification subnet

Regression subnet

Classification subnet

Regression subnet

Classification subnet

Regression subnet

Detection list
NMS

(a) Multi-scale feature pyramid

using Mobilenet pre-trained backbone

(b) Retinanet joint classification

 and regression network

Figure 11. One-step RetinaNet architecture in prediction mode, from full image input to detection

list. The whole model is trained using a combination of classification loss and regression loss as the

optimized objective function. MobileNet backbone’s convolutional layers were frozen so that only the

parameters on the RetinaNet side evolve at a given epoch. Learning and weight updates are performed

using standard backpropagation.

RetinaNet was thus applied using the same MobileNet backbone as in the previous experiments.

As mentioned above, the goal of the backbone is to compute rich multi-scale feature maps over the

whole image which can then be fed to the subnetworks dedicated to classification and regression. In

that regard, previous experiments on leaf classification are useful to ensure the feature extraction part

is relevant. Trunk and grape classes were also added to the database to take into account these natural

organs present in every vineyard.

5.2. Parameters of the Experiment

Performances were evaluated with respect to two main parameters: image size and data

augmentation. Image size is a crucial parameter in the speed/accuracy balance. We thus tested

different input image width: 500, 1000 and 1500 pixels. On the other hand, data augmentation enriches

the training database by applying various transformations to images during the learning process

at each epoch. Data augmentation is known for performance boosts and overfitting limitation for

datasets with few samples. In the experiment, we consider whether using data augmentation. Data

augmentation consisted of random geometrical transformations, including images rotations, resizing,

shearing and random flips.

As for the training parameters, Adam optimizer [51] was used with a learning rate parameter of

10−5 and 50 epochs (however, due to overfitting during late epochs, predictive model at Epoch 20 was

used as the basis for the later detection examples). Batch size depends on the input image size; bigger

images need smaller batch sizes in order to not overwhelm GPU memory (GTX GeForce 1060 with

6Go memory).

5.3. Evaluation Metrics

Image search problems work differently from classification problems. Classification associates an

image with a label while detection associate an image with a variable number of bounding boxes and

labels. Here, we used the common Recall/Precision indicator to evaluate the segmentation quality.

Recall (R) indicates which proportion of annotations (bounding boxes) our trained algorithm is able to

detect while precision (P) indicates the accuracy associated with this recall (proportion of true positives
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in the detections assigned to the class). This can be formulated as a function of true positives (TP) and

false positives (FP):

R =
TP

N
(2)

P =
TP

TP + FP

where N is the number of actual annotations in the class. Varying the classification score threshold

allow us to construct the RP curve. From this latter, average precision (AP) for a given class can be

computed as a weighted sum of precision values through possible recalls:

AP =
N

∑
i=1

(Ri − Ri−1)Pi (3)

where i is the position on the RP curve or in other terms the threshold index in the sorted scores vector

(easy high-scored samples are recalled first while hard low-scored samples are recalled last). Most of

existing detection benchmarks consider mean AP values along all classes. However, we only used in

the results the AP metric for the esca class since we are only interested in esca detection’s performances.

Assignment of an annotation box to a detection box is decided using the intersection over union (IoU)

value between the two rectangles. IoU = 0.5 threshold was used in this study. Train/test split was

performed using a set of 1133 images for training and 141 images for testing. Testing set was designed

so that it is representative of the diversity of hard/easy esca and confounding factors cases. Image

repartition is detailed for the detection task in Table 6:

Table 6. Repartition of plants in the training and the testing database in the detection framework.

Percentages do not necessarily add to 100% since some plants can have both esca symptoms and

other symptoms.

Number of Images Images with no Symptoms Images with Esca Symptoms
Images

with other Symptoms

Training 1133 669 (59%) 170 (15%) 353 (31%)
Testing 141 43 (31%) 25 (18%) 78 (55%)

5.4. Results

5.4.1. Detection Examples

Once the whole detection network has been trained, it can be used for inference on new images

that did not participate for training. Examples of detections on esca plants can be found in Figure 12

for both cultivars. Esca is detected using red frames while other symptoms are detected using orange

frames. Only esca and confounding factors classes were represented since healthy leaves, grapes and

wood are background classes. As expected, well defined symptoms are easily spotted with good

confidence rate though some difficulties remain for more challenging areas. While detection of isolated

leaves is easy, zones with many overlain leaves are sources of errors. Depending on the situation,

detections may only cover a part of a leaf or a group of overlapping leaves. Both are actually correct,

which is why the original dataset was labeled in both ways. Leaves with bad contrast are most of the

time recognized such as in the upper left corner of Figure 12d. Stems, wood, soil and background do

not trigger false positive detections.
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(a) Esca red cultivar (b) Esca white cultivar

(c) Esca red cultivar (d) Esca white cultivar

Figure 12. Examples of detection maps using 1500 pixel images with data augmentation during training

and 0.5 classification threshold. (a,c) Esca on red cultivar. (b,d) Esca on white cultivar.

As for other symptoms, totally wilted vines such as in Figure 13a do not seem to trigger false

detections (although wilted vine may indicate esca apoplectic form). Some false positives remain

however for symptoms closely related to esca, such as in Figure 13c,d. Healthy leaves, which have

dense or very sparse foliage do not trigger false detections as well (Figure 13e,f). Scores are typically

higher for esca symptoms than for other symptoms (meaning score threshold may introduce false

negatives for the latter class). This is not surprising since that class is not as specific as the esca class

and thus the network may have not learned a specific signature but a wide range of signatures of

symptomatic leaves that do not fall in the esca class.
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(a) Wilted vine (b) Confounding symptoms

(c) False Positive example (d) False Positive example

(e) True Negative - Dense foliage (f) True Negative - Sparse foliage

Figure 13. More segmentation examples: (a,b) confounding symptoms without esca false positives; (c,d)

confounding symptoms with esca false positives; and (e,f) control plants with no esca false positives.

5.4.2. Recall–Precision Curves

Figure 14 presents the RP curves for the training and the testing set as well as the effect of

data augmentation on detection performances. Without data-augmentation, overfitting is strongly

noticeable on the training set (Figure 14a). Perfect RP metrics are already reached by the end of the first

10 epochs, meaning every annotation is detected with high confidence scores. Meanwhile, test sets RP

curves are strongly lagging behind. This kind of behavior is not desirable since the network should not
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learn rules specific to the training set. Effect of simple data augmentation can be easily seen, with more

progressive training that does not end with perfect performances (Figure 14b), although there is still a

noticeable gap between training and testing performances. It is worth noting that performances seem

to degrade during the last epochs, stressing the need for early stopping of the algorithm. Symptomatic

leaves easier to recall (most likely leaves from the esca3 or esca2 subclasses) are retrieved with similar

precision when data augmentation is used or not. More difficult leaves however seem to strongly

benefit from data augmentation, with a slower precision decay (as indicated by the red circles from

Figure 14c,d). Using a 75% recall, base algorithm yielded approximately 40% correct detections while

this number jumped to 60% using data augmentation. A side effect of overfitting can be seen in

Figure 14c. Maximum achievable recall on test dataset drops throughout the epochs (indicated by the

dotted vertical lines). For the 50 epochs mark, less than 80% of the annotated symptoms are recalled,

even using very low classification threshold. Over-specific models tend to ignore these kind of samples.

Data augmentation fully resolves the issue, maximum recall being close to 100% even at the end of the

50 training epochs (Figure 14d).
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Figure 14. Effect of the data augmentation parameter on training (a,b) and testing (c,d) esca RP curves.

Epochs 1/10/20/30/40/50 are plotted. Dark green curves: early epochs; light green curves, late epochs.

Vertical dotted lines in (c) indicate the maximum achieved recall.

AP curves presented in Figure 15 show similar behavior on training and testing sets. A significant

gain of about 20% in the best case was observed when data augmentation was considered. In that case,

getting higher AP values is difficult since for high detection thresholds the many hard labeled samples

may not be detected (false negatives). Note also that some detections may not have been labeled (false

positives), which is linked to the challenge of creating the annotation database. Image size seems to

play a minor role on performances except for the 500 pixel width images which yield significantly

lower performances. While data augmentation is a great tool to compensate for small databases, it

cannot bring new information. Larger and more diverse databases will always be preferred to data

augmentation but this latter seems sufficient for our application. As mentioned above, to compensate

for overfitting on the training set, learning phase termination was set to 20 epochs (dashed red line on

Figure 15).
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Figure 15. Evolution of the esca average precision metric on the training and testing set with the epoch

during the training process.

5.4.3. Esca Intensity for Each Plant

Evaluation metrics presented beforehand are useful for assessing the quality of the segmentation

but they do not take into account the fact detections may belong to the same image. Some plants are

more affected than others and we need a quantitative estimation of symptom intensity for each plant.

Thus, as a complementary tool to RP curves, we considered the relation between the annotated esca

surface per image and the detected esca surface (Figure 16). Figure 16a shows this relation on the

training set and Figure 16b on the testing set with 0.5 score threshold.
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Figure 16. Relation between annotated and detected esca surface on the training (a) and testing (b)

databases. Dotted line,: y = x reference; solid line, linear regression model on the true positives.

Samples on the scatter plot origin are images without esca annotations that did not trigger an

esca detection, which can be seen as a group of true negatives (TN). Similarly, samples on the y-axis

(red dots) are false positive (FP) samples and those on the x-axis (blue dots) are false negative (FN)

ones. No false negative was observed on the testing set meaning every annotated esca plant triggered

at least one detection. Test set resulted in seven false positive images (two of them are presented in

Figure 13c,d, meaning detections occurred while nothing in the image was labeled as esca. Detected

surface is however rather low in those samples, meaning these false positives would be labeled with

low esca intensity. As for true positives (TP), decent correlation is obtained on the test set, meaning

that it is possible to roughly quantify esca intensity for each plant.
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5.4.4. Computation Times

Table 7 presents the learning and prediction times estimated in the Keras/RetinaNet code. Both

learning and prediction times increase with image size. However, prediction time does not seem to

benefit much from smaller images. In any cases, the obtained frame rates would be sufficient for real

time applications, provided similar performances can be obtained when switching from desktop GPU

to mobile hardware.

Table 7. Computation times for a GTX 1060 GPU (6go memory).

Image Width 500 1000 1500

Learning time (hours for one epoch) 0.12 0.40 0.44
Prediction time (seconds for one image) 0.15 0.16 0.18

6. Conclusions and Perspectives

Plant diagnostic relies on the observation of the whole plant; it allows human observers to give,

most of the time, accurate predictions about the plant status, although it is still error prone. In this

paper, we propose a novel in-field esca symptom detector taking into account the differentiation

with confounding factors. The first objective was to compare leaf-scale classification performances

using state-of-the-art feature extractors. While SIFT based approaches using detected keypoints or

grid of keypoints yielded good performances on challenging datasets, feature maps extracted from

trained convolutional network (transfer learning) gave better results. Highest accuracy was thus

achieved using deep mobilenet feature maps with global max pooling. In that case, spatial information

allowed better discriminating esca from healthy leaves and other symptoms, especially for harder

samples. While perfect classification on well-defined esca symptoms was easily achieved using these

approaches, classification of less defined esca symptom remains a challenging task. The second

objective was to exploit the discriminative power of the feature extractor to use it as the backbone

in a detection algorithm at the plant scale. Based on the RetinaNet object segmentation model, the

presented algorithm yields good results with an high correlation between the annotated esca surface

and the detected surface for each plant. Furthermore, no esca annotated plant was missed during the

prediction, meaning each symptomatic plant was correctly detected for a detection threshold of 0.5.

Proximal sensing is thus a promising tool for precise disease detection, its rich spatial information can

be used to discriminate between similar diseases in the vineyards, serving as a complementary tool

to remote sensing surveys. Future works may include the construction of a broader in-field image

database including more leaf symptoms and more grapevine cultivars, which is the next step for

automatic and robust in-field grapevine disease detection.
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Abbreviations

The following abbreviations are used in this manuscript:

SIFT Scale-Invariant Feature Transform

DoG Difference of Gaussian

BoW Bag of Words (also known as Bag of Visual Words)

VLAD Vector of Locally Aggregated Descriptors

FV Fisher Vector

CNN Convolutional Neural Network

SVM Support Vector Machine

OA Overall Accuracy

TP True Positives

FP False Positives

RP Recall/Precision

AP Average Precision

IoU Intersection over Union
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