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ABSTRACT 

 

Continuous time Sigma Delta Modulators (CT ∑∆Ms) are a type of analog to digital 

converter (ADC) that are used in mixed signal systems to convert analog signals into digital 

signals. ADCs typically require antialiasing filter; however antialiasing filters are inherent in CT 

∑∆Ms, and therefore they require less circuitry and less power than other ADC architectures that 

require separate antialiasing filters. As a result, CT ∑∆M ADC architectures are preferred in many 

mixed signal electronic applications.  

Because of the mixed signal nature of CT ∑∆Ms, they can be difficult to simulate. In this 

thesis, various methods for simulating single-bit and multi-bit CT ∑∆Ms are developed and these 

simulations include the bilinear transform or trapezoidal integration, impulse invariance transform, 

midpoint integration, Simpson’s rule, delta transform or Euler’s forward integration rule and 

Simulink modeling. These methods are compared with respect to speed which is given by the total 

simulation time, accuracy which is given by the signal to noise ratio (SNR) value and the simplicity 

of the simulation method. The CT ∑∆Ms have been extended from first order up to fifth order with 

one, two and three bit quantizers. Also, the frequency domain analysis is done for all the orders of 

CT ∑∆Ms. 

The results show that the numerical integration methods are more accurate and faster than 

Simulink. However, CT ∑∆M simulations using Simulink are simpler because of the availability 

of the required blocks in Simulink. The overall comparison shows that the numerical integration 

methods can perform better than Simulink models. The frequency domain analysis proves the 

correctness of the use of numerical integration methods for CT ∑∆M simulations. 
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Chapter 1 

INTRODUCTION 

In today’s rapidly growing market of portable electronics, low voltage and low power circuits 

are in great demand because they have a longer battery life. In any type of mixed signal electronic 

system, analog circuits including analog to digital converters (ADCs) typically consume the most 

power [1]. An ADC is the interface between the analog and digital electronics. In many mixed 

signal applications, accuracy improves the system’s performance. Therefore, low power and 

highly accurate ADCs are fundamental requirements of many electronic systems. Sigma-delta 

modulators (∑∆Ms) are a type of ADC that can achieve high accuracy while consuming less power 

and using fewer critical analog components than other ADCs architectures such as flash ADCs, 

dual-slope ADCs, pipeline ADCs and successive approximation register (SAR) ADCs [2]. Sigma-

delta (ΣΔ) ADCs are commonly used in modern high data-rate mobile wireless communications 

systems [3].  

Analog to digital converters can be classified by their sampling rates as either Nyquist-rate 

converters or oversampling converters [7]. Nyquist-rate converters operate near the input signal’s 

Nyquist rate which is twice the signal’s maximum frequency whereas oversampling converters 

operate at rates much greater than the input signal’s Nyquist rate. Flash ADCs, dual-slope ADCs, 

pipeline ADCs and successive approximation register (SAR) ADCs are examples of Nyquist-rate 

converters. ∑∆M ADCs are oversampling converters. Unlike Nyquist-rate converters which are 

suitable for applications requiring moderate resolution conversion of wide bandwidth signals, 

oversampling converters typically provide high-resolution conversion of signals with moderate 

bandwidths. ∑∆M ADCs can provide high resolution conversion of signals with moderate 

bandwidth using less power than other oversampling architectures because ∑∆Ms use fewer 
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analog circuit components than most other architectures. As a result, ∑∆Ms are very popular in 

broadband telecommunication systems which use moderate signal bandwidths and require high 

resolution, high speed, and low power ADCs. 

Accuracy and resolution of any ADC is typically measured using the ADC metrics, signal to 

noise ratio (SNR) and dynamic range (DR). Sigma-delta modulators (∑∆M) can achieve high 

SNRs and large DRs. To achieve high SNRs and large DRs, ∑∆Ms use a feedback loop filter to 

shape the quantization noise and filter the input signal as it passes to the output. A ∑∆M’s loop 

filter is designed in such a way that it attenuates the quantizer’s noise and passes the input signal 

to the ∑∆M’s output without attenuation in the frequency band of interest [2]. The loop filter’s 

transfer function from the ∑∆M’s input to the ∑∆M’s output is called the signal transfer function 

(STF), and for a lowpass ∑∆M, the ∑∆M’s STF is a lowpass filter. The loop filter’s transfer 

function from the ∑∆M’s quantizer to the ∑∆M’s output is called the noise transfer function 

(NTF), and for a low pass ∑∆M, the ∑∆M’s NTF is a high pass filter [7]. 

 Depending on the circuit components used in the ∑∆M’s loop filter, ∑∆Ms can be classified 

as either discrete time (DT) ∑∆Ms or continuous time (CT) ∑∆Ms. DT ∑∆Ms have loop filters 

consisting of discrete time circuits such as switched current or switched-capacitor circuits whereas 

CT ∑∆Ms have loop filters consisting of continuous time circuits such as RC integrators [3]. For 

a DT ∑∆M, the input signal is sampled prior to the ∑∆M’s loop filter; whereas in a CT ∑∆M, the 

signal is sampled inside the modulator’s loop filter. Unlike DT ∑∆Ms, CT ∑∆Ms do not use 

discrete time circuits and therefore do not have settling time requirements in their loop filters. As 

a result, CT ∑∆Ms can operate at higher frequencies than DT ∑∆Ms. Using the same technology, 

CT ∑∆Ms can be clocked up to an order of magnitude faster than DT ∑∆Ms without much 

performance penalty [5].  
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Another advantage that CT ∑∆M ADCs have over DT ∑∆M ADCs is that CT ∑∆Ms have 

inherent anti-aliasing filtering in their signal transfer functions which helps to reduce the number 

of analog circuit components in the overall system. Thus, CT ∑∆Ms can operate with less power 

than DT ∑∆Ms [5]. A disadvantage of CT ∑∆Ms is that they are more difficult to design and 

simulate than DT ∑∆Ms because of the mixed signal nature of CT ∑∆Ms which use both analog 

and digital circuits in their loop filters. On the other hand, DT ∑∆Ms can be accurately modeled 

using difference equations as they are simply made up of delays and gains [3]. There are various 

approaches for simulating CT ∑∆Ms such as using Simulink, SPICE modeling and solving 

differential equations. Each simulation method has a tradeoff between various measures such as 

speed, accuracy, and simplicity.  

Depending on the number of bits that are used in a ∑∆M’s quantizer, a ∑∆M can be classified 

as either a single-bit ∑∆M or a multi-bit ∑∆M. Single-bit CT ∑∆Ms have the advantage over 

multi-bit CT ∑∆Ms in that single-bit quantizers are inherently linear because they have only one 

quantization step. Thus, mismatches of quantization step sizes do not exist and highly linear data 

conversion is realizable with single-bit ∑∆Ms. On the other hand, multi-bit quantizers exhibit some 

nonlinearity in their transfer characteristics due to the mismatch of quantization step sizes. These 

nonlinearities negatively affect the performance of the multi-bit ∑∆Ms. Also, the added analog 

circuitry of a multi-bit quantizer increases the ∑∆M’s overall power consumption. A disadvantage 

of single-bit ∑∆Ms is that for a certain loop filter, a single bit ∑∆M achieves less signal to noise 

ratio (SNR) than an equivalent multi-bit ∑∆M [6]. Every bit added to a ∑∆M’s quantizer reduces 

the quantization noise by approximately 6dB. This 6 dB decrease in the quantization noise power 

increases the ∑∆M’s signal to noise ratio (SNR) by 6dB for every bit added to the quantizer [3].  
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1.1. Motivation and History 

The need of continuous time sigma delta modulator converters arises from the need for current 

digital electronic circuits to operate with low power using low voltage processes and achieve 

higher signal to noise ratios (SNRs) and larger dynamic ranges (DRs) than the previous generation 

of circuits. Various other ADC architectures such as flash ADCs, dual-slope ADCs, pipeline ADCs 

and successive approximation register (SAR) ADCs have been researched and implemented over 

many years. Since these architectures are Nyquist-rate converters, they require an analog 

antialiasing filter with a sharp transition band which is difficult to obtain. CT ∑∆Ms are 

oversampling converters that have an anti-aliasing filter inherent in their architecture. As a result, 

∑∆Ms have become popular for use in digital electronic circuits [13]. In oversampling converters 

like ∑∆Ms, the in-band quantization noise power is reduced by a factor of 
1𝑂𝑆𝑅 where OSR is the 

oversampling ratio. Also, ∑∆M ADCs use fewer critical analog components and consume less 

power. Along with that, they are not very sensitive to circuit imperfections and do not need 

correction mechanisms like Nyquist-rate architectures [2]. Research shows that there are various 

advantages that continuous-time (CT)∑∆Ms have over discrete-time (DT) ∑∆Ms 

implementations. These advantages include requiring less power because of the inherent anti-

aliasing filters in their STFs and because they require fewer analog components; operating at 

higher clock frequencies and relaxed requirements on sampling because sampling is performed   

inside the loop filter [13] [21]. CT ∑∆M ADCs have been extensively used in wireless receivers 

to perform analog to digital conversion of signals that have bandwidths greater than 15 MHz and 

resolutions of 10-14 bits [14].  

The sigma Delta Modulator was invented by Cutler in 1960 but it was only described in the 

published literature by Inosha and Yasuda in 1962 [15]. In [15], the authors report that sigma-delta 
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modulators have excellent precision, linearity and noise rejection capability and are highly suited 

for implementation in integrated circuits (ICs). In his widely-cited paper [16] in 1985 on use of 

double integration in sigma delta modulation, Candy described how sigma delta modulation 

employs integration and feedback to shape quantization noise and how a modulator that employs 

double integration and has two-level quantization is simple to implement and tolerant of parameter 

variations. After this paper, several applications of sigma delta modulators appeared in audio and 

wide bandwidth communication applications [4].  

In mid1990s, after research established various CT ∑∆Ms’ benefits such as the simplicity of 

the required continuous-time circuits, and an inherent anti-aliasing, the research and 

implementation of continuous-time sigma-delta modulators became popular [4]. In recent years, 

much research has been done in the field of CT ∑∆Ms because of the high demand of high-speed 

and low-power ADCs in communications systems.  

In their book on “Continuous Time Delta Sigma Modulators for High Speed Analog to Digital 

Conversion” [5], J. A. Cherry and W. M. Seagrove discuss the advantages of CT ∑∆Ms over DT 

∑∆Ms, CT ∑∆M practical design issues such as excess loop delay degrading the stability of CT 

∑∆Ms, the theoretical treatment of clock jitter and quantizer metastability as well as various 

compensation approaches for feedback loop delay. The authors state that CT ∑∆Ms have faster 

clocking, better virtual grounds and inherent antialiasing filters, and thus, CT ∑∆Ms have fewer 

circuit requirements and longer battery life. The authors design CT ∑∆Ms by converting DT ∑∆Ms 

to CT ∑∆Ms using the impulse-invariant transformation and then use a SPICE based procedure to 

determine DAC feedback currents that are used to implement the CT ∑∆M’s NTF. The authors 

use a root locus method to show how excess loop delay degrades the feedback loop stability and 

present a method that minimizes excess loop delay problems by using RZ DAC pulses instead of 
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NRZ DAC pulses, by using additional feedback loops and by tuning the DAC feedback levels. To 

avoid quantizer metastability problems at high speed, the authors use a fully integrated modulator 

with a VCO operating at around GHz speed and another half latch in the quantizer for additional 

signal regeneration. 

In their book on “Continuous Time Sigma Delta Modulation For Analog to Digital Conversion 

in Radio Receivers” [17], Lucien Breems and Johan H. Huijsing describe the design and 

implementation of CT ∑∆Ms for signal conversion in radio receivers. Their objective was to 

design a highly linear modulator with a large dynamic range and good image rejection capabilities 

both of which are important requirements for a radio receiver. They use single-bit CT ∑∆Ms for 

analog to digital conversion as it has benefits like high linearity, and low power capability which 

is very important for battery-powered receivers. They also describe various design issues of CT 

∑∆Ms such as quantization noise, clock jitter, intersymbol interference (ISI), DC tones, and 

aliasing. They use inverse-Chebyshev and Butterworth filter characteristics for designing the NTFs 

of higher-order ∑∆Ms. The book also describes the design of a quadrature ∑∆Ms with a data-

dependent dynamic element matching circuit. The book emphasizes how a CT ∑∆M can be 

combined with a mixer in radio receivers for intermediate frequency to baseband analog to digital 

conversion with less power and higher performance than other ADC architectures.  

In their book “Continuous Time Sigma Delta Analog to Digital Conversion” [4], M. Ortmanns 

and F. Gerfers discuss CT ∑∆Ms non-idealities, their classification and modeling. They also 

present a low power design strategy that is based on a Figure-of-Merit which uses optimal ∑∆M 

topology for designing CT ∑∆Ms. Design examples of low pass single loop, ΣΔ modulators, with 

single-bit and multi-bit quantizaters are presented. The authors conclude that multi-bit modulators 

offer improved stability and reduce the in-band quantization noise by a factor of (2B -1 )2 in 
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comparison to single-bit modulators where B is the number of bits used in the quantizer. They also 

discuss how single-loop architectures are highly unstable and only through proper selection of the 

scaling coefficients, the architecture can be made stable. As an alternative to single loop 

architecture, they discuss cascaded-loop architectures which consist of connections of low-order 

modulators. Therefore, these topologies require almost no scaling, and can achieve good stability. 

In [3] and [18] K. Kang and P. Stubberud use the delta transformation to model CT ∑∆Ms. 

The delta transform is based on Euler’s forward integration method. The authors compared 

simulation methods such as MATLAB/Simulink, delta transform, CT/DT transformation, SPICE 

modeling and solving differential equations for modeling second, third, fourth and fifth single-bit 

CT ∑∆Ms. The comparison is based on SQNR accuracy, speed and simplicity of the simulation 

method. Also, the authors discuss overloading associated with the quantizer and have given 

conditions on how overloading can be prevented. An analytical root locus method is discussed for 

determining the stability criteria for CT ∑∆Ms having exponential functions in the characteristics 

equations. The analytical root locus method describes the range of the quantizer gains where the 

modulator can function without being unstable. The gains values can also help to determine the 

internal and input signal powers to prevent the CT ∑∆Ms from being unstable. 

1.2. Intention of this work 

Most research work to date has mainly focused on uses of CT ∑∆Ms in various disciplines 

from communications to biomedical applications, advantages of CT ∑∆Ms over DT ∑∆Ms, using 

a single transformation method for converting z-domain to s-domain transfer functions, only one 

type of simulation environment and minimizing nonidealities associated with the modulators. No 

research has been published on how types of numerical integration methods and types of 

simulation methods can be used to predict the performance of CT ∑∆Ms. Only [3] and [18] present 
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simulations using various methods such as such as MATLAB/Simulink, delta transform, CT/DT 

transformation, SPICE modeling and solving differential equations. These simulation methods are 

also compared in [3] and [18]. However, the authors only simulated single-bit CT ∑∆Ms and did 

not simulate multi-bit CT ∑∆Ms. They also did not include the first order CT ∑∆Ms. Also, they 

did not include simulation methods like Simpsons rule, bilinear or trapezoidal integration and 

midpoint integration. They have not done a comparison of various numerical integration methods. 

Also, they have not done the frequency domain analysis of the simulation methods.  

In this thesis, methods for simulating single-bit and multi-bit CT ∑∆Ms are developed. These 

methods are compared with respect to simulated signal to noise ratio, dynamic range, total elapsed 

time, frequency response and performance which includes accuracy, simplicity, and speed of the 

simulation method. The various methods of simulations include the bilinear transform or 

trapezoidal integration, impulse invariance transform, midpoint integration, Simpson’s rule, delta 

transform or Euler’s forward integration rule, Simulink and SPICE modeling. The CT ∑∆Ms have 

been extended from first order up to fifth order with one, two and three bit quantizers. Also, the 

frequency domain analysis is done for all the orders of CT ∑∆Ms. 

1.3. Organization of the thesis 

In this thesis, Chapter 2 reviews various components and metrics of analog to digital 

converters; operating principles of ∑∆Ms; several types of ∑∆Ms; various numerical integration 

methods such as the bilinear transform or trapezoidal integration, impulse invariance transform, 

midpoint integration, Simpson’s rule and delta transform or Euler’s forward integration rule for 

modeling CT ∑∆Ms and the frequency response comparison of the numerical integration methods. 

Chapter 3 is about literature review on various numerical integration methods and simulation 

methods that are used for simulating CT ∑∆Ms. 
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In Chapter 4, the first order, second order, third order, fourth order and fifth order CT ∑∆Ms 

are represented in block diagrams and their STFs and NTFs are determined. Also, the STFs and 

NTFs are designed using Chebyshev Type 2 filter and coefficients are calculated by comparing 

the designed STFs and NTFs with the determined STFs and NTFs from the block diagrams. 

Chapter 5 describes the simulation of the first order, second order, third order, fourth order 

and fifth order CT ∑∆Ms with one, two and three bit quantizers using the numerical integration 

methods and Simulink. In this chapter, comparison is done on all the simulation methods which is 

based on total computation time, SNR, dynamic range and simplicity of the simulation method. 

Also, the frequency domain analysis is done for these CT ∑∆Ms in order to prove the correctness 

of the proposed numerical integration s-domain to z-domain transformation formulas. 

Chapter 6 summarizes all the work done in this thesis along with the future work.  
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Chapter 2 

BACKGROUND 

Sigma-delta modulation is a method that has been applied to both analog to digital converters 

(ADCs) and digital to analog converters (DACs). Both Sigma (∑) and delta (∆) are Greek letters 

and with respect to sigma delta modulation, the ∑ represents accumulation or integration 

operations and the ∆ represents the difference operation. Thus, sigma-delta (∑∆) modulation 

usually refers to the operation of accumulating the differences of two signals in a feedback loop.   

2.1 Analog to Digital Conversion: 

In a conventional ADC operation, an analog signal is sampled at a certain sampling frequency 

and subsequently quantized into a digital signal. The general ADC process can be modeled by 

three subsystems, an anti-aliasing filter (AAF), a sampler, and a quantizer [3] as shown in Fig. 2.1. 

If the input to an ADC is an analog or continuous time signal x(t), then the output, y(n) is a discrete 

time signal with an amplitude that is quantized. After these three basic components of an ADC 

operation, an encoder converts y(n) into the desired number representation such as sign+ 

magnitude or 2’s compliment.  

 

Figure 2.1: Components of an analog to digital converter (ADC) 

2.1.1  Anti-alias filter (AAF): 

The first component of an ADC operation is an anti-aliasing filter (AAF) which bandlimits 

the analog input signal, x(t). Anti-alias filters remove frequency components above half of the 
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sampling frequency which can fold into the signal’s band of interest during the subsequent 

sampling process [3]. Ideally, the AAF is an lowpass filter (LPF) with a cut-off frequency of fc 

which equals half the input signal’s sampling frequency.  

2.1.2   Sampler: 

The second component is a sampler, which converts the filtered continuous-time-signal 𝑥𝑎(𝑡) 

into a discrete-time sequence 𝑥(𝑛) by extracting the amplitudes of the signal 𝑥𝑎(𝑡) at integer 

multiples of the sampling period, 𝑇𝑠, such that  𝑥(𝑛)  =  𝑥𝑎(𝑛𝑇𝑠).          (2.1) 

The filtered continuous-time signal, 𝑥𝑎(𝑡), must be sampled at a minimum sampling rate 𝑓𝑠 which 

is twice the signal’s maximum or highest frequency i.e. 𝑓𝑠 ≥  2𝑓𝑚. Sampling at or above 𝑓𝑠 prevents 

signal loss due to aliasing which is an effect that causes higher frequency components to become 

indistinguishable from lower frequency components when sampled. If 𝑓𝑠 ≥  2𝑓𝑚, then the 

sampling period 𝑇𝑠 will be  𝑇𝑠  ≤  12𝑓𝑚                                                                                  (2.3) 

and the input signal can be recovered from its samples 𝑥𝑎(𝑛𝑇𝑠). The highest or maximum signal 

frequency, 𝑓𝑚, is the Nyquist frequency and twice the Nyquist frequency, 2𝑓𝑚, is the Nyquist rate 

which is also the minimum sampling rate required to prevent the signal from aliasing when 

sampled. 

 Based on sampling frequency, ADCs can be broadly classified as Nyquist-rate converters or 

oversampling converters. 

2.1.2.1 Nyquist-rate Converters: 

Nyquist-rate converters operate at or near the Nyquist rate, 2fm, which is twice the signal’s 

maximum frequency, fm. In practice, Nyquist-rate converters are difficult to design because they 
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have zero transition band to cut off unwanted high frequency signals for their filter. Also, because 

Nyquist-rate converters require various operations such as amplification, comparison, etc. that 

must be performed with high accuracy and precision, the intrinsic precision of the integrated 

circuits (ICs) components can limit a Nyquist rate ADC to 12-bits of accuracy [13]. To achieve 

more than 12 bits of accuracy, Nyquist-rate converters mostly depend on correction techniques 

such as DEM and self-calibration. As a result, Nyquist-rate converters are suitable for applications 

requiring moderate resolution conversion of wide bandwidth signals. 

Various Nyquist rate ADC architectures include flash, dual-slope, pipeline, and successive 

approximation register (SAR) converters.  

2.1.2.2 Oversampling Converters:  

Oversampling converters operate at rates much greater than the signal’s Nyquist rate. An 

ADC’s oversampling ratio (OSR) is defined as 𝑂𝑆𝑅 =  𝑓𝑠2𝑓𝑚                                                                        (2.4) 

where 𝑓𝑠  is the sampling frequency and 𝑓𝑚 is the maximum signal frequency. With oversampling, 

anti-aliasing filters do not have a zero-transition band width but instead have a gentle roll off in 

their transition band which will make them less costly and easier to design. Thus, oversampling 

converters can require less power, and use less chip area. Also, the resolution of a Nyquist-rate 

ADC can be increased by increasing the oversampling rate of the converter. Thus, oversampling 

converters can achieve higher resolution than the resolution obtained by Nyquist-rate converters. 

Sigma-delta modulators are popular oversampling ADCs [4].  

To illustrate how oversampling can be used to increase a converter’s resolution, consider a B-

bit Nyquist-rate converter and a B-bit oversampling converter. A B-bit quantizer’s noise power is 

the same for both the Nyquist-rate and oversampling converters. However, for an oversampling 
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converter the out of band noise from the quantizer can be filtered out. The output of an 

oversampling ADC can be lowpass filtered from - 
𝑓𝑠2  to 

𝑓𝑠2  . This implies that out of the total 

quantization noise, it keeps only 
1𝑂𝑆𝑅 of the noise while 

𝑂𝑆𝑅−1𝑂𝑆𝑅   out of band noise from the quantizer 

can be filtered out from the signal’s frequency band of interest.  

 

(a) 

 

 

(b) 

Figure 2.2: Spectral effect of oversampling. (a) Total quantization noise and in-band 

quantization noise for OSR = 1; (b) Total quantization noise and in-band quantization noise for 

OSR = 4 

Fig.2.2 illustrates how oversampling converters reduce the quantization noise. As shown in 

Fig. 2.2, oversampling and filtering the total quantization noise reduces the in-band quantization 
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noise power by a factor of 
1𝑂𝑆𝑅 . Because the quantization noise power of an oversampled ADC is 

inversely proportional to the ADC’s OSR, an oversampling ADC’s signal to noise ratio (SNR) can 

be increased by increasing its OSR. The only drawback of oversampling ADCs is that 

oversampling increases the quantizer’s performance requirements. Nevertheless, oversampling 

converters can achieve higher data rates, higher speeds and higher resolutions than Nyquist-rate 

converters [6]. In many situations, oversampling ∑∆M ADCs can obtain higher resolutions than 

Nyquist-rate converters without the need of component matching. Oversampling converters are 

normally used for moderate or narrow bandwidth operations such as audio and instrumentation. 

2.1.3    Quantizer: 

The third component of an ADC operation is the quantizer. Quantization is the process of 

converting continuous amplitudes to discrete amplitudes. A quantizer transforms a discrete time, 

continuous amplitude signal into digital signal which has a finite number of amplitude levels. In 

Fig. 2.1, the quantizer block is quantizing the sequence 𝑥(𝑛) into a 𝐵-bit number where B is the 

number of bits used by the quantizer. The quantizer maps the continuous amplitude of 𝑥(𝑛) into a 

discrete set of amplitudes and its operation can be represented mathematically by the 

transformation 𝑦(𝑛)  =  𝑄[𝑥(𝑛)]                                                                  (2.2) 

where 𝑥(𝑛) is a discrete sampled signal, 𝑦(𝑛) is a B-bit digital signal and Q is the non-linear 

transformation representing the quantization operation. Quantization is a noninvertible process 

because an infinite number of continuous input amplitude values are converted into a finite number 

of discrete output amplitudes, and hence even the ideal quantization process inherently introduces 

quantization errors into the output signal. Because a quantizer is a non-linear device, it introduces 

nonlinearities into the output signal.  
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Quantizers can have either uniformly and non-uniformly spaced quantization levels. If all the 

levels of a quantizer’s output are equally spaced in a quantizer, it is a uniform quantizer. For a 

uniform quantizer, the quantization process is defined by the number, B, of bits and the 

quantization interval, ∆, where ∆ is often referred to as the quantization step-size. For a B bit 

quantizer, the number of equally spaced quantization levels, L, is 𝐿 =  2𝐵.         (2.5) 

If quantizer that has 2B discrete amplitudes, the quantizer is said to have B-bits of resolution. 

The range, 𝑅, of the quantizer is 𝑅 =  (2𝐵 –  1) ∆.         (2.6) 

Therefore, if a B bit quantized input signal, x(k) is bounded such that 𝑋𝑚𝑖𝑛 ≤  𝑥(𝑘) ≤  𝑋𝑚𝑎𝑥, 

the quantizer’s range, 𝑋𝑚𝑎𝑥 −  𝑋𝑚𝑖𝑛,, can be covered by a uniform step size, ∆, of  ∆ =  𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛2𝐵−1 .          (2.7) 

For example, if a 2-bit quantized input signal, 𝑥(𝑘) is bounded such that  

     −1 ≤  𝑥(𝑘)  ≤  1,             

then the range R, of quantizer is 2 because 𝑋𝑚𝑎𝑥 −  𝑋𝑚𝑖𝑛 =  2. The number of quantization level 

is 2𝐵  =  22 =  4, and therefore, the quantization step size is, ∆ =  222−1 = 23.  Similarly, for a 

single-bit quantized signal 𝑥(𝑘) that has the same bounds, the range is, 𝑅 =  2. The number of 

quantization levels is 2𝐵  =  21 =  2, and therefore, the quantization step size is ∆ =  21−1 = 2. 

These examples are illustrated in Fig. 2.3. 
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     (a)          (b) 

Figure 2.3: (a) Single-Bit Quantization; (b) 2-Bit Quantization  

Generally, a quantizer with higher number of bits B and lower ∆ will have higher resolution. Digital 

signals with higher resolution has less quantization noise than a digital signal with lower 

resolution.  

Because the quantization process in non-linear, it is often modeled linearly as shown in 

Fig. 2.4 to simplify its analysis. 

 

Figure 2.4 Equivalent linear model of a quantizer 

In Fig. 2.4, the quantizer is modeled as a linear gain k with an additive random error signal e(n) so 

that the quantizer’s output can be written as  

                         𝑦(𝑛)  =  𝑄[𝑥(𝑛)]  =  𝐾𝑥(𝑛)  +  𝑒(𝑛)      (2.8) 

where x(n) is the quantizer’s input and K is the quantizer’s gain. This model assumes that 

a) The error sequence, e(n) is a stationary random process. 

b) The probability density of the error sequence is uniform over the range of values of the 

quantization error. 
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c) The error sequence is uncorrelated with the input sequence. 

d) The error sequence is a white noise process; i.e. it is a sequence of uncorrelated random 

variables. 

Equation (2.8) implies that the quantization error can be written as 𝑒(𝑛)  =  𝑄[𝑥(𝑛)] –  𝐾𝑥(𝑛). 
This quantization error depends on the quantization method (truncation or rounding) and the 

number of equally spaced quantization levels. Quantization in fixed-point architectures is almost 

always performed by rounding instead of truncation, and rounding errors have a range of [−∆/2, ∆/2]. As mentioned above, the error sequence  𝑒(𝑛) can be modeled as a uniformly 

distributed random process over the errors range which implies that 𝑒(𝑛) is uniformly distributed 

over, [−∆/2, ∆/2]. Therefore, the amplitude of the quantization noise’s probability density 

function, P(e), has an amplitude of 
1∆ for − ∆2  ≤  𝑒(𝑛)  ≤  ∆2  as shown in Fig 2.5.  

 

Figure 2.5 Probability density function of error sequence 𝑒(𝑛) 

The expected value, 𝐸, or mean of the error 𝑒(𝑛) is 

𝐸[𝑒(𝑛)]  =  𝑚𝑒(𝑛) =  ∫  1∆ +∆/2
−∆/2 𝑑𝑒(𝑛) =  0. 

  and the quantization error power, 𝑃𝑒, is 𝑃𝑒  =  𝐸(𝑒2) 

      = 𝜎𝑒(𝑛)2 − 𝑚𝑒(𝑛)2   
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            =  𝜎𝑒(𝑛)2
 

                  =  ∫  𝑒2  1∆ +∆/2−∆/2 𝑑𝑒 

              =  1 ∆ (  ∆324 +   ∆324 ) 

                                    =    ∆212             (2.9) 

where 𝜎𝑒(𝑛)2
 is the variance of 𝑒(𝑛). If the quantizer rounds to B + 1 bits and if the range of ∆ 

is from −1 +  ∆2   ≤  ∆ ≤ 1 −  ∆2  then ∆ =   2−𝐵 and equation (2.9) can be written as 

𝜎𝑒(𝑛)2 =  2−2𝐵 12  .         (2.10) 

2.2 Performance Metrics: 

The performance of any ADC is measured by metrics such as signal to noise ratio (SNR) and 

dynamic range (DR) which compare the output signal power with the output noise power.  

2.2.1 Signal to Noise Ratio (SNR):  

The SNR of an ADC is the ratio of the output signal power to the output noise power, i.e.  𝑆𝑁𝑅 =  𝑃𝑠𝑃𝑒         (2.11) 

where 𝑃𝑠 is the ADC’s output signal power and 𝑃𝑒 is the ADC’s output quantization noise power. 

In decibels (dB),                                                                                                                                  𝑆𝑁𝑅(dB)  = 10log10 ( 𝑃𝑦𝑃𝑒)        (2.12) 

If the ADC’s output and quantization noise both have zero means, then 𝑃𝑠  =  𝜎𝑠2 and 𝑃𝑒  =  𝜎𝑒2. 
Assuming 𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛 = 2 −  ∆, then 𝜎𝑒(𝑛)2 =  2−2𝐵12 , and    

𝑆𝑁𝑅 (dB)  =  10log10 (𝜎𝑠2𝜎𝑒2) 

          =  10log10(12𝜎𝑠22−2𝐵) 
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=  20𝐵log10(2)  +  10log10(12)  + 10log10(𝜎𝑠2) =  6.02𝐵 +  10.8 +  10log10(𝜎𝑠2)    (2.13) 

If the input is a full-scale sinewave, then 

𝜎𝑠2  =  12 

and      𝑆𝑁𝑅(dB) =  6.02𝐵 +  7.8dB.     (2.14)  

For the total number of bits, 𝐵’, where 𝐵’ =  𝐵 + 1,  𝑆𝑁𝑅 (dB)  =  6.02𝐵’ +  1.78dB.     (2.15) 

The above equation can be used to calculate the ADC’s effective number of bits (ENOB) which is 

defined as 

 𝐸𝑁𝑂𝐵 =  𝑆𝑁𝑅(𝑑𝐵)−1.766.02 .      (2.16) 

ENOB determines the resolution of an ADC. Equation (2.16) implies that an ADC with 6dB more 

SNR has one additional bit of ENOB [3].  

The SNR of an oversampled ADC can be calculated as 𝑆𝑁𝑅 (𝑑𝐵)𝑜𝑣𝑒𝑟𝑠𝑎𝑚𝑝𝑙𝑒𝑑  =  6.02𝐵’ +  1.78dB +  10log10(𝑂𝑆𝑅).       (2.17) 

Equation (2.17) shows that doubling an ADC’s OSR will increase its SNR by 3dB.       

2.2.2    Dynamic Range (DR)                                                                                                                                           

Dynamic Range (DR) is the ratio of the power of the maximum detectable input signal that 

can be applied to an ADC without significantly degrading its performance to the power of the 

minimum detectable signal. DR is typically expressed in decibels (dBs). The smallest detectable 

signal can be determined by the power spectral density of the ADC’s noise floor. For an ADC with 

a constant noise spectrum such as white noise, DR is equivalent to SNR. But, when the noise floor 

does not have same values and has peaks, the ADC’s dynamic range is less than its SNR. In the 
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non-uniform power spectral density noise case, the smallest detectable signal is determined where 

the noise floor’s power spectral density is largest. 

2.3 Operating Principles of Sigma Delta Modulators (∑∆Ms): 

∑∆Ms achieve high resolution signal conversion by using a loop filter and a clocked quantizer. 

Fig. 2.6 shows the three main components of a ∑∆M. The components are: 

a)  A loop filter  

b)  A Clocked Quantizer, or ADC 

c)  A Feedback digital to analog converter (DAC) 

 

Figure 2.6: General discrete-time ∑∆M 

Quantizers and ADCs are non-linear devices which make the behavior of the modulator 

difficult to analyze [5]. However, the analysis can be simplified by replacing the quantizer with 

the linear additive noise model in Fig. 2.4. Using this quantizer model, the ∑∆M can be represented 

by the linear model shown in Fig. 2.7. 
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Figure 2.7: A discrete-time ∑∆M linear model 

Using the linear model in Fig. 2.7, the signal transfer function (STF) and noise transfer 

function (NTF) of the discrete-time ∑∆M can be written as     𝑆𝑇𝐹(𝑧) =  𝑌(𝑧)𝑋(𝑧)  = 𝐺(𝑧)1+𝐻(𝑧)𝐺(𝑧)𝐷𝐴𝐶(𝑧)      (2.18) 

 and    𝑁𝑇𝐹(𝑧) =  𝑌(𝑧)𝑄(𝑧) = 11+𝐻(𝑧)𝐺(𝑧)𝐷𝐴𝐶(𝑧) ,          (2.19) 

respectively. The modulator’s output, 𝑌(𝑧), can now be written as 𝑌(𝑧)  =  𝑁𝑇𝐹(𝑧)𝑄(𝑧)  +  𝑆𝑇𝐹(𝑧)𝑋(𝑧)   

Y(z) = 11+𝐻(𝑧)𝐺(𝑧)𝐷𝐴𝐶(𝑧) 𝑄(𝑧) + 
𝐺(𝑧)1+𝐻(𝑧)𝐺(𝑧)𝐷𝐴𝐶(𝑧) 𝑋(𝑧)   (2.20) 

Similarly, Fig. 2.8 shows the block diagram of a continuous-time ∑∆M. 

 

Figure 2.8: General continuous-time ∑∆M 

The continuous-time ∑∆M in Fig. 2.8 can be modeled by the linear model shown in Fig. 2.9. 

 

Figure 2.9: A continuous-time ∑∆M linear model 
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Using the linear model in Fig. 2.9, the signal transfer function (STF) and noise transfer function 

(NTF) of the continuous-time ∑∆M can be written as     𝑆𝑇𝐹(𝑠)  =  𝑌(𝑠)𝑋(𝑠) =  𝐺(𝑠)1+𝐻(𝑠)𝐺(𝑠)𝐷𝐴𝐶(𝑠)      (2.21) 

 and    𝑁𝑇𝐹(𝑠)  =  𝑌(𝑠)𝑄(𝑠) =   11+𝐻(𝑠)𝐺(𝑠)𝐷𝐴𝐶(𝑠) ,     (2.22) 

respectively and modulator’s output, Y(s), can now be written as 𝑌(𝑠)  =  𝑁𝑇𝐹(𝑠)𝑄(𝑠)  +  𝑆𝑇𝐹(𝑠)𝑋(𝑠)    

Y(s) = 
11+𝐺(𝑠)𝐻(𝑠)𝐷𝐴𝐶(𝑠) 𝑄(𝑠) + 𝐺(𝑠)1+𝐺(𝑠)𝐻(𝑠)𝐷𝐴𝐶(𝑠) 𝑋(𝑠)    (2.23) 

For both discrete-time and continuous-time ∑∆Ms, a ∑∆M’s loop filter is designed in such a way 

that it attenuates the quantizer’s noise in the required frequency band of interest and passes the 

input signal to the ∑∆M’s output without attenuation [2]. The STF is designed in such a way that 

the loop filter’s gain is approximately unity in the passband. For a lowpass ∑∆M, the ∑∆M’s STF 

is a lowpass filter and the NTF is a high pass filter so that it can suppress the quantization noise in 

the ∑∆M’s STF’s passband [7]. 

2.4 Classification of Sigma Delta Modulators (∑∆Ms): 

∑∆Ms are typically classified based on number of bits in the quantizer, number of quantizers, 

order of loop filter, the STF and NTF characteristics and the type of circuit components used in 

the loop filter circuitry.  

2.4.1   Number of bits in a quantizer: 

Depending on the number of bits that are used in a ∑∆M’s quantizer, ∑∆Ms can be classified 

as either single-bit ∑∆Ms or multi-bit ∑∆Ms. Single-bit CT ∑∆Ms are intrinsically linear because 

their quantizers have only two levels of quantization and thus one quantization step-size. Thus, 

mismatches of quantization step sizes do not exist and highly linear data conversion is realizable 
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with single-bit ∑∆Ms. Multi-bit ∑∆Ms have multiple quantization levels, and thus they have 

mismatched quantization step sizes. As a result, they exhibit nonlinearities in their transfer 

characteristics which can negatively influence the performance of the ∑∆M. Also, the additional 

analog circuitry required for multi-bit ∑∆Ms increases the design complexity and the overall cost 

of the design. An advantage of ∑∆Ms with multi-bit quantizers is that they generate approximately 

6dB less quantization noise for every additional bit, and therefore, the signal to noise ratio (SNR) 

of multi-bit ∑∆Ms increases 6dB for every bit added to the quantizer. In this thesis, simulations 

are done for both single-bit and multi-bit CT ∑∆Ms. 

2.4.2    Number of quantizers employed: 

∑∆Ms that have only one quantizer are called single-loop ∑∆Ms, whereas ∑∆Ms that have 

more than one quantizer are often termed cascaded-loop ∑∆Ms. Cascaded topologies are relatively 

more stable and can achieve more performance than single loop ∑∆Ms but cascaded-loop ∑∆Ms 

require tighter constraints on circuit specifications and mismatch than single-loop ∑∆Ms [3]. 

2.4.3    Order of the loop filter: 

∑∆Ms can be classified by the order of their loop filters. Orders of loop filters range from first 

order to higher order. As the order of the modulator increases, the quantization noise can be 

suppressed more over the frequencies of interest and a significant improvement in the ∑∆M’s 

performance can be achieved. However, modulators with higher order loop filters are less stable, 

have increased design complexity, increased costs and increased power consumption.   

2.4.4 STF and NTF characteristics: 

Depending on the characteristics of the ∑∆M’s STF and NTF characteristics, ∑∆Ms can be 

classified as either a lowpass (LP) ∑∆Ms or bandpass (BP) ∑∆Ms. Lowpass ∑∆Ms sample signals 

of interest from DC to a specific frequency. Therefore, low pass ∑∆Ms have NTFs with highpass 
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shapes and STFs with lowpass shapes. On the other hand, bandpass ∑∆Ms sample signals from 

one specific frequency to another frequency and therefore they have NTFs with bandstop shapes 

and STFs with bandpass shapes. 

2.4.5     Loop filter Circuitry: 

Based on the circuit components used in the loop filter, ∑∆Ms can be classified as either 

discrete time (DT) ∑∆Ms or continuous time (CT) ∑∆Ms. DT ∑∆Ms use discrete time circuits 

such as switched current or switched capacitor circuits in their loop filters whereas CT ∑∆Ms use 

continuous time circuits such as 𝑅𝐶 or 𝐺𝑚𝐶 integrators in their loop filters.  In (DT) ∑∆Ms, 

sampling is done outside of the loop filter whereas in (CT) ∑∆Ms, sampling is done inside the 

loop filter. 

The classification of ∑∆Ms based on number of bits in the quantizer, number of quantizers, 

order of loop filter, the STF and NTF characteristics and the type of circuit components used in 

the loop filter circuitry have been summarized in Table 2.1. 

Criteria Classification 

The number of bits in a quantizer • Single-bit ∑∆M 

• Multi-bit ∑∆M 

The number of quantizers employed • Single-loop ∑∆M 

• Cascaded ∑∆M 

The order of loop filter • First-order ∑∆M 

• Higher-order ∑∆M 

Signal Transfer Function (STF) Characteristic • Lowpass ∑∆M 

• Bandpass ∑∆M 

Loop filter circuitry • Discrete time ∑∆M 

• Continuous-time ∑∆M 

Table 2.1: Classification of ∑∆Ms 
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2.5 Discrete models of CT ∑∆M: 

Because CT ∑∆Ms are mixed signals systems, discrete models of the analog circuitry are 

required to simulate modulators digitally. Various transformation techniques can be used to model 

and design the modulators. Continuous time ∑∆Ms are often modeled in Laplace transform’s s 

domain and discrete time ∑∆Ms are often modeled in z-transform’s z domain. To simulate a CT 

∑∆M, the Laplace transform’s s-domain variable needs to be converted to the z-transform’s z-

domain variable. If H(s) is the transfer function of a continuous-time filter, an equivalent digital 

transfer function H(z) can be obtained simply by replacing s by some function  𝑠 =  𝑓(𝑧)       (2.27) 

in H(s). In this case, the equivalent discrete transfer function H(z) would be  𝐻(𝑧)  =  𝐻(𝑠)|𝑠 = 𝑓(𝑧) =  𝐻[𝑓(𝑧)].    (2.28) 

If H(s) and f(z) are rational functions of s and z, respectively, then H(z) is a rational function of z. 

 For a causal analog system to be stable, the poles of H(s) must be in the left-half of the s-

plane and for a causal digital system to be stable, the poles of H(z) (stable) must be inside the z-

plane’s unit circle. When converting a continuous time transfer function, H(s), to an equivalent 

discrete time transfer function, H(z), the mapping f(z) must transform the left-half of the s-plane 

inside the z-plane’s unit circle to preserve stability in H(z) [12].  

Numerical integration methods can transform from s-domain transfer functions to z-domain 

transfer functions. The numerical integration methods used in this thesis for modeling CT ∑∆Ms 

in the discrete time domain are the bilinear transform, or trapezoidal integration; impulse 

invariance transform; midpoint integration; Simpson’s rule and the delta transform, or Euler’s 

forward integration. 
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2.5.1 Impulse Invariance Transformation: 

The impulse invariance transformation method maps the transfer function in s-domain into z-

domain transfer functions so that both models have similar impulse responses. The impulse 

invariance transform generates a discrete model by sampling the impulse response of the analog 

system. Therefore, if an analog system has the continuous-time impulse response ha(t), and is 

sampled at a period of T, then the impulse invariance method selects the discrete time impulse 

response h(n) as     ℎ(𝑛) =  ℎ𝑎(𝑛𝑇).                  (2.29) 

The sampling process of ha(t) can be modelled by the system in Fig. 2.9. 

            ∑ 𝛿𝑎(𝑡 − 𝑘𝑇)∞𝑘=−∞  

 

Figure 2.10:  Model of the sampling process 

As shown in Fig. 2.10, 

   𝑥𝑠(𝑡) =  𝑥𝑎(𝑡) ∑ 𝛿𝑎(𝑡 − 𝑘𝑇)∞𝑘=−∞  =  ∑ 𝑥𝑎  (𝑘𝑡) 𝛿𝑎(𝑡 − 𝑘𝑇)∞𝑘=−∞    (2.30) 

where 𝛿𝑎(𝑡) is the Dirac Delta function. The Laplace transform of 𝑋(𝑠) is 

     𝑋(𝑠) = ∫ 𝑥𝑠(𝑡)𝑒−𝑠𝑡𝑑𝑡∞−∞ .      (2.31)  

Substituting (2.30) into (2.31), 

     𝑋(𝑠)  =  ∫ ∑ 𝑥𝑎(𝑘𝑡)∞𝑘=−∞ 𝛿𝑎(𝑡 − 𝑘𝑇)𝑒−𝑠𝑡𝑑𝑡∞−∞  

                = ∑ 𝑥𝑎(𝑘𝑡)∞𝑘=−∞ ∫ 𝛿𝑎(𝑡 − 𝑘𝑇)𝑒−𝑠𝑡𝑑𝑡∞−∞  

               =  ∑ 𝑥𝑎(𝑘𝑡)∞𝑘=−∞ 𝑒−𝑠𝑘𝑇 

               =  𝑋(𝑧)|𝑧 = 𝑒𝑠𝑇                      (2.32) 
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which implies 𝐻(𝑒𝑗𝑤)  =  1𝑇 ∑ 𝐻𝑎(𝑗 𝑤𝑇 − 𝑗 2𝜋𝑘𝑇 )∞𝑘=−∞      (2.33) 

where 𝐻(𝑒𝑗𝑤) is the Fourier transform of ℎ(𝑛) and 𝐻𝑎(𝑗𝑤) is the Fourier transform of ha(t). 

Equation (2.33) shows that 𝐻𝑎(𝑗Ω)  =  0 for Ω ≥  𝜋𝑇 to prevent aliasing.  

To apply the impulse invariance transformation, the s-domain transfer function 𝐻(𝑠) is 

expanded into partial fractions. The pole of each partial fraction is transformed to a digital pole in 

the z-domain. The transfer function 𝐻(𝑧) is found by combining the partial fractions using the z-

domain poles. For example, using partial fraction expansion, an analog transfer function can be 

written as 𝐻(𝑠) =  ∑ 𝑏𝑘(𝑠−𝑎𝑘)         (2.34) 

 Using impulse invariance transformation, the equivalent discrete transfer function, 𝐻(𝑧), can now 

be written as  𝐻(𝑧) =  ∑ 𝑏𝑘(1− 𝑒−𝑎𝑘𝑇𝑧−1)          (2.35) 

The impulse invariance transformation method maps the transfer functions in s-domain into 

z-domain transfer functions so that both models have similar impulse responses. The 

transformation 𝑧 =  𝑒𝑠𝑇 maps the analog frequencies  
−𝜋𝑇   ≤ Ω ≤  𝜋𝑇 into 𝜋 ≤  𝑤 ≤  𝜋. It also maps 

−𝜋𝑇   ≤ Ω ≤  3𝜋𝑇  into 𝜋 ≤  𝑤 ≤  𝜋. This causes aliasing. One advantage of impulse invariance 

mapping is that it preserves stability of the system. A disadvantage is that because the transform 

samples in the time domain aliasing can occur in the frequency domain.  In Fig. 2.11, only the left- 

half of the s-plane maps inside the z-plane’s unit circle. The right-half of s-plane maps outside of 

the z-plane’s  unit circle. The impulse invariance transformation process can be shown in Fig. 2.11. 
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Figure 2.11: s-domain to z-domain transformation using Impulse Invariance 

The impulse invariance transformation only maps poles. Since, all the poles in the s-plane map 

inside the z-plane’s unit circle, it preserves the stability of the system. 

2.5.2 Matched z-transform: 

The matched z-transform method uses the same pole mapping process as in the impulse 

invariance method, but the zeros are handled in a different way. The matched z-transform method 

uses impulse invariance transformation method to map zeros as well as poles [9].  Fig. 2.12 shows 

the matched z-transformation process. 

 

Figure 2.12: s-domain to z-domain transformation of poles and zeros using Matched z-transform 

To illustrate consider the analog transfer function,  

𝐻(𝑠)  =  ∏ (𝑠−𝑏𝑘)𝑄𝑘=1∏ (𝑠−𝑎𝑘)𝑃𝑘=1          (2.36) 

Using the matched z-transformation method, its equivalent discrete time transfer function is  
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𝐻(𝑧)  =  ∏ (1− 𝑒−𝑏𝑘𝑇𝑧−1)𝑄𝑘=1∏ (1− 𝑒−𝑎𝑘𝑇𝑧−1)𝑃𝑘=1 .      (2.37) 

Thus, the matched z transformation has same digital poles as that of impulse invariance method 

but normally has different discrete domain zeros. Since both poles and zeros are mapped 

separately, this transformation method is more general and applicable to all kinds of analog filters. 

Since all the left-half plane poles are mapped inside the z-plane’s unit-circle, the transformation 

preserves the stability of the system. The matched z-transform method has the same disadvantage 

as impulse invariance transformation method in that the signal suffers from aliasing if the sampling 

frequency is not fast enough. The impulse invariance transformation method is more popular than 

matched z-transformation [10]. 

2.5.3 Bilinear Transformation (or Trapezoidal Integration):  

The bilinear Transformation is a very commonly used mapping method and is based on the 

trapezoid rule. For numerical integration, the trapezoidal rule is a numerical integration method 

that approximates the area under a curve by using trapezoids [3]. 

 

Figure 2.13: Numerical Integration using Trapezoidal Integration 

For example, the area under the curve in Fig. 2.13. for the interval nT-T ≤ t ≤ nT would 

approximated by the shaded trapezoid. The approximating formula is ∫ 𝑥(𝑡)𝑑𝑡𝑛𝑇𝑛𝑇−𝑇  ≅ 𝑇2 [𝑥(𝑛𝑇 −  𝑇) + 𝑥(𝑛𝑇)]        (2.38) 
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Using the trapezoidal integration rule, a definite integral over the interval 0 ≤  𝑡 ≤  𝑛𝑇 where n 

is a positive integer can be calculated by first-order difference equation 

y(nT) ≅ ∫ 𝑥(𝑡)𝑑𝑡𝑛𝑇−𝑇0  + ∫ 𝑥(𝑡)𝑑𝑡𝑛𝑇𝑛𝑇−𝑇 = 𝑦(𝑛𝑇 − 𝑇) + ∫ 𝑥(𝑡)𝑑𝑡𝑛𝑇𝑛𝑇−𝑇    (2.39) 

Substituting (2.38) into (2.39),  𝑦(𝑛𝑇) ≅ 𝑦(𝑛𝑇 − 𝑇) + 
𝑇2 [𝑥(𝑛𝑇 − 𝑇) + 𝑥(𝑛𝑇)]     (2.40) 

Taking the z-transform of (2.40), 

Y(z) = Y(z)z-1 + 
𝑇2 [X(z)z-1 + X(z)] 

which implies that 

𝑌(𝑧)𝑋(𝑧) =  𝑇2 1+𝑧−11−𝑧−1         (2.41) 

To relate the trapezoidal integration transfer function in (2.41) to the s-domain, consider   

 y(𝑡)  =  ∫ 𝑥(𝜏)𝑑𝜏𝑡0         (2.42) 

which has the Laplace transform 𝑌(𝑠)  =  ℒ {∫ 𝑥(𝜏)𝑑𝜏𝑡0 }  =  1𝑠 𝑋(𝑠)      (2.43) 

which implies that 

 H(s) = 
𝑌(𝑠)𝑋(𝑠) = 

1𝑠.        (2.44) 

Comparing (2.44) and (2.41), 

    
1𝑠 →𝑇(1+𝑧−1 )2(1−𝑧−1) .         (2.45) 

which described the bilinear transformation. 

The bilinear transformation maps the entire jΩ axis from the s-plane into the unit circle from 

the z-plane i.e. 𝐻𝑎(𝑗Ω) for ∞ ≤  Ω ≤  ∞ maps into 𝐻(𝑒𝑗𝑤) for −𝜋 ≤  𝑤 ≤  𝜋. The bilinear 

transformation can be viewed as a two-step mapping where the first step maps the entire s-plane 
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into a strip between 
−𝜋𝑇   ≤ jΩ ≤  𝜋𝑇 on the s-plane and the second step uses impulse invariance 

transformation 𝑧 =  𝑒𝑠𝑇to map the s-plane to z-plane. Fig. 2.15. graphically illustrates this 2-step 

transformation process.  

 

Figure 2.14: s-plane to z-plane transformation using Bilinear Transformation 

The first mapping in Fig.2.14 is  

 s = 
2𝑇 𝑡𝑎𝑛ℎ (𝑠′𝑇2 ).        (2.46) 

The second step is impulse invariance 𝑧 =  𝑒𝑠𝑇 in (2.32) which implies that                𝑠′ = 
1𝑇 ln(𝑧).        (2.47) 

Substituting (2.47) into (2.46), 

              s = 
2𝑇 𝑡𝑎𝑛ℎ ( 12 ln (𝑧)).       (2.48) 

Because, 

     𝑡𝑎𝑛ℎ(𝑥)  =  𝑠𝑖𝑛ℎ(𝑥)𝑐𝑜𝑠ℎ(𝑥) 
            =  𝑒𝑥 −  𝑒−𝑥𝑒𝑥 +  𝑒−𝑥 

 =  1 −  𝑒−2𝑥1 +  𝑒−2𝑥               (2.49) 

 Using (2.49), (2.48) can be written as 

s = 
2𝑇 1− 𝑒−𝑙𝑛 (𝑧)1+ 𝑒−𝑙𝑛 (𝑧) = 

2𝑇 1− 𝑒−ln (𝑧−1)1+ 𝑒−ln (𝑧−1)                (2.50) 
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(2.50) implies that 

s → 2𝑇 1−𝑧−11+ 𝑧−1.        (2.51) 

which is the bilinear transformation. 

2.4.4 Delta transform (or Forward Euler Integration): 

The delta transform is based on Forward Euler integration method and has the special property 

that as the delta transform sample time approaches zero, the delta transform converges towards its 

continuous-time counterpart, the Laplace transform [3]. 

 

Figure 2.15: Numerical Integration using Forward Euler Integration 

Fig. 2.15 illustrates forward Euler Integration method. As shown in Fig. 2.15, the area under 

a curve for the interval 𝑛𝑇 −  𝑇 ≤  𝑡 ≤  𝑛𝑇 can be approximated by ∫ 𝑥(𝑡)𝑑𝑡𝑛𝑇𝑛𝑇−𝑇  ≅ 𝑇𝑥(𝑛𝑇 − 𝑇).       (2.52) 

Using forward Euler Integration, a definite integral over the interval 0 ≤  𝑡 ≤  𝑛𝑇, where n is a 

positive integer can be calculated by first-order difference equation, 

 𝑦(𝑛𝑇) = ∫ 𝑥(𝑡)𝑑𝑡𝑛𝑇−𝑇0 + ∫ 𝑥(𝑡)𝑑𝑡𝑛𝑇𝑛𝑇−𝑇 = 𝑦(𝑛𝑇 − 𝑇 ) + ∫ 𝑥(𝑡)𝑑𝑡𝑛𝑇𝑛𝑇−𝑇    (2.53) 

Substituting (2.52) into (2.53),  𝑦(𝑛𝑇)  =  𝑦(𝑛𝑇 − 𝑇 )  +  𝑇𝑥(𝑛𝑇 − 𝑇)      (2.54) 

Taking the z- transform of (2.54), 

Y(z) = Y(z)z-1 + T [X(z)z-1] 
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which implies that 

𝑌(𝑧)𝑋(𝑧) = 
𝑇𝑧−11−𝑧−1.         (2.55) 

Comparing (2.44) and (2.55),  

1𝑠  → 𝑇𝑧−11− 𝑧−1          (2.56) 

Therefore, the delta transform relates the transfer function in s-domain, H(s), to transfer function 

in z-domain, H(z), by the relation  

s → 1−𝑧−1𝑇𝑧−1 .         (2.57) 

For the delta transform,  𝛿 →  1−𝑧−1𝑇𝑧−1 .         (2.58) 

which implies that 𝛿𝑇𝑧−1 → 1 − 𝑧−1         (2.59) 

For stability in the z-transform, all the poles should lie inside the unit circle i.e. |z| < 1. Therefore, 

for the stability in the 𝛿-transform, all the system’s poles must lie inside the region |1 + 𝛿𝑇 | < 1. 

This region of stability is defined by a unit circle of radius,  
1𝑇 centered at  − 1𝑇 . Therefore, as the 

sampling time, T approaches zero, the stability region of the delta transform becomes the left half 

plane which is equivalent to that of the Laplace transform. Thus, the delta-transform has superior 

performances at high sample rates compared to other CT-DT transformations because the discrete 

time models approach the equivalence CT models when the delta transform has a small sampling 

time. 
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2.4.5 Midpoint Integration Rule 

 

Figure 2.16: Numerical Integration using Midpoint Integration 

The midpoint integration rule approximates the area under a curve using a rectangle. As shown 

in Fig. 2.16, the area under a curve for the interval range nT - T ≤ 𝑡 ≤ nT + T can be approximated 

by a rectangle of length 2T and height 𝑥(𝑛𝑇 − 𝑇). The approximating formula is 

                                   ∫ 𝑥(𝑡)𝑑𝑡 ≅ 𝑥(𝑛𝑇−𝑇)+ 𝑥(𝑛𝑇+𝑇) 2 . 2T      𝑛𝑇+𝑇𝑛𝑇− 𝑇      

     ≅ 2𝑇𝑥(𝑛𝑇)     (2.60) 

Therefore, a definite integral over the interval 0 ≤ t ≤ nT, where n is a positive integer can be 

calculated by first-order difference equation 𝑦(𝑛𝑇) = ∫ 𝑥(𝑡)𝑑𝑡𝑛𝑇−2𝑇0  + ∫ 𝑥(𝑡)𝑑𝑡𝑛𝑇𝑛𝑇−2𝑇  

=  𝑦(𝑛𝑇 − 2𝑇 ) + ∫ 𝑥(𝑡)𝑑𝑡𝑛𝑇𝑛𝑇−2𝑇     (2.61) 

Substituting (2.60) into (2.61),  𝑦(𝑛𝑇)  =  𝑦(𝑛𝑇 − 2𝑇 )  +  2𝑇𝑥(𝑛𝑇 − 𝑇)    (2.62) 

Taking the z- transform of (2.62), 

Y(z) = Y(z)z-2 + 2T [X(z)z-1] 

which implies that 

𝑌(𝑧)𝑋(𝑧)  = 
2𝑇𝑧−11− 𝑧−2.       (2.63)  
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Comparing (2.44) and (2.60),  

1𝑠  → 2𝑇𝑧−11− 𝑧−2        (2.64) 

Therefore, we can relate H(s) and H(z) by the relation  

s → 1−𝑧−22𝑇 𝑧−1.      (2.65) 

Because, midpoint integration approximates the area under a curve using rectangles instead of 

using more accurate geometrics such as trapezoids as in the trapezoidal integration method, this 

method is not most accurate method of numerical integration. 

2.4.6 Simpsons Rule 

 

Figure 2.17: Numerical Integration using Simpsons Rule 

Simpsons rule is a numerical integration method that is derived from a parabolic integration 

method [12]. Fig. 2.17 illustrates Simpson’s rule’s integration method. As shown in Fig. 2.17, the 

area under the curve for the interval range 𝑛𝑇 −  𝑇 ≤ 𝑡 ≤  𝑛𝑇 +  𝑇 is approximated by  ∫ 𝑥(𝑡)𝑑𝑡𝑛𝑇+𝑇𝑛𝑇−𝑇  ≅ 𝑇3 [𝑥(𝑛𝑇 + 𝑇) + 4𝑥(𝑛𝑇) + 𝑥(𝑛𝑇 − 𝑇)]   (2.66) 

Therefore, a definite integral over the interval 0 ≤ t ≤ nT, where n is a positive integer can be 

calculated by first-order difference equation 𝑦(𝑛𝑇) = ∫ 𝑥(𝑡)𝑑𝑡𝑛𝑇−2𝑇0  + ∫ 𝑥(𝑡)𝑑𝑡𝑛𝑇𝑛𝑇−2𝑇 = 𝑦(𝑛𝑇 − 2𝑇) + ∫ 𝑥(𝑡)𝑑𝑡𝑛𝑇𝑛𝑇−2𝑇    (2.67) 

Substituting (2.66) into (2.67),  𝑦(𝑛𝑇) = 𝑦(𝑛𝑇 − 2𝑇) + 
𝑇3 [𝑥(𝑛𝑇 − 2𝑇) + 4𝑥(𝑛𝑇 −  𝑇) + 𝑥(𝑛𝑇) ]  (2.68) 
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Applying the z-transformation to (2.68), 

Y(z) – Y(z) z-2 = 
𝑇3( Xz-2 + 4 X(z)z-1 + X(z))    𝑌(𝑧)(1 – z-2) = 𝑋(z) (z-2 + 4z-1 + 1) 

which implies that   

𝑌(𝑧)𝑋(𝑧)  =  𝑇3 
1+4𝑧−1+𝑧−21− 𝑧−2  .        (2.69) 

Comparing (2.44) and (2.69),  

1𝑠  →𝑇3 
1+4𝑧−1+𝑧−21− 𝑧−2          (2.70) 

Therefore, Simpson’s rule relates H(s) to H(z) by the relation  

s →3𝑇 
1− 𝑧−21+4𝑧−1+𝑧−2     (2.71) 

Because Simpson’s rule uses a sequence of parabolic segments instead of straight lines, it is 

typically more accurate than midpoint and trapezoidal integration rule. The disadvantage of 

Simpson’s rule is that it is a more complex integration method than trapezoidal, midpoint or Euler’s 

integration rules. To apply Simpson’s rule for definite integrals using difference equations, the 

integral of the first interval is approximated using the trapezoidal integration rule. 

2.4.7 Summary  

 The numerical integration methods used in this thesis along with their s-domain to z-

domain transformation functions are summarized in Table 2.2. 
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S.N.   Numerical Integration Methods Transformation 

1. Impulse Invariance Transformation 𝑠 =  1−𝑧−1𝑇   

2. Bilinear Transformation (Trapezoidal Integration) 𝑠 =  2𝑇 1−𝑧−11+ 𝑧−1.  

3. Delta Transformation (Euler Forward Integration) 𝑠 =  1−𝑧−1𝑇 𝑧−1   

4. Midpoint Integration s =  1−𝑧−22𝑇 𝑧−1 

5. Simpsons Rule s =  3(1− 𝑧−2)𝑇(1+4𝑧−1+𝑧−2) 
Table 2.2:  Numerical Integration Methods along with their s-z transformation functions 

2.6 Frequency Response Comparison of Numerical Integration Methods: 

Fig. 2.18 shows the ratio of the magnitude response of all the numerical integration methods 

such as bilinear transform or trapezoidal integration, impulse invariance transformation, midpoint 

integration, Simpson’s rule and delta transform or Euler’s forward integration to the ideal 

integrator’s magnitude response, | 1𝑗𝑤 |. This can be calculated by letting 𝑧 =  𝑒𝑥𝑝(𝑗𝑤) in (2.45), 

(2.51), (2.56), (2.64) and (2.70).  
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Figure 2.18: Ratio of each of the numerical integration magnitude response to an 

integrator’s magnitude response, | 1𝑗𝑤 | 

The sampling period for numerical integration, T, is chosen so that the ∑∆M’s sampling 

period, 𝑇𝑠, is an integer multiple of T, that is, 𝑇𝑠 =  𝑘𝑇 where k is any positive integer. Fig 2.18 

can be used to select the appropriate value of k to preserve frequency. It can be depicted from the 

plot that, Simpson’s Rule provide an accurate approximation for k ≥ 1 while the Delta require k ≥ 

5, the Bilinear and Impulse Invariance transformation require k ≥ 10 and the Midpoint Integration 

require k ≥ 15 for accurate frequency approximations. This shows Simpson’s rule is closer to the 

ideal integration and Midpoint integration is most deviated from the ideal integration result. 
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Chapter 3 

LITERATURE REVIEW 

Although there has been a lot of research going on CT ∑∆Ms in recent years, there has been 

few research on the numerical integration methods and simulation methods used for modeling CT 

∑∆Ms. Since integrator is one of the major circuit element of the CT ∑∆M, proper research should 

be done while choosing what type of integration method works best for modeling CT ∑∆M. 

Similarly, the choice of the simulation method is also very critical for improving the performance 

requirements of the CT ∑∆M. Therefore, in this chapter, the research works on various numerical 

integration methods and simulation methods used for simulating and modeling CT ∑∆M has been 

discussed. 

3.1   Numerical Integration Methods used in CT ∑∆M: 

Numerical integration methods can be used to transform s-domain transfer functions to z-

domain transfer functions.  As a result, CT ∑∆M can be modeled in the discrete time domain using 

various numerical integration methods such as the bilinear transform or trapezoidal integration, 

the impulse invariance transform, the matched-z transform, midpoint integration, Simpson’s rule 

and the delta transform, or Euler’s forward integration. However, there has not been a lot of 

research on using numerical integration methods to model CT ∑∆Ms. Some of the important 

research work on numerical integration methods in CT ∑∆Ms is discussed in this chapter. 

In [3] and [18], K. Kang and P. Stubberud model CT ∑∆Ms using the delta transformation, 

which is based on Euler’s forward integration method, to convert from the s-domain to z-domain. 

As the integration sampling period is reduced, the delta transform approaches the Laplace 

transformation, and thus, the discrete system’s zeros and poles approach the continuous system’s 
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zeros and poles, respectively. Thus, by increasing the transform’s sampling rate, a delta 

transform’s discrete model can better represent an equivalent continuous model.  

For the delta transform, the relation between a transfer function in s-domain, H(s), and a z-

domain transfer function H(z) is related by  1𝑠   →  𝑇𝑑𝑧−11− 𝑧−1           (3.1) 

where 𝑇𝑑 is the numerical integration sampling rate. To apply the transformation in (3.1), the 

system’s integrators are replaced by the z-transform in (3.1) and converted into difference 

equations. The resulting delta transform model is simulated using MATLAB. In [3] and [8], 

second, third, fourth and fifth order single-bit CT ∑∆Ms were simulated. All the modulators have 

a sampling frequency of 1 GHz (𝑇𝑠=1e-9) and a bandwidth of 20 MHz. The NTFs are Chebyshev 

Type 2 highpass filters with cut-off frequencies near the ∑∆M’s bandwidth and the STFs 

approximate Chebyshev Type 2 lowpass filters. The authors accomplished this by using the NTF’s 

denominator and a Chebyshev Type 2 filter numerator. The authors implement their CT ∑∆Ms 

using cascade of integrator feedback (CIFB) architecture. Simulations of CIFB implementation 

assume the use of both RC and 𝐺𝑚𝐶 integrators. The authors compare the simulation methods 

which include MATLAB/Simulink, delta transform, CT/DT transformation, SPICE modeling and 

solving differential equations. The comparison is with respect to speed which is based on total 

elapsed time taken for the simulation, accuracy which is based on the value of SQNR and 

simplicity. For the comparison, six second order, third order, fourth order and fifth order single-

bit CT ∑∆Ms were simulated. A numerical integration oversampling ratio of 10 is used for all 

simulations. The simulation parameters include excess loop delays that are multiples of the ∑∆M’s 

sampling rate i.e. 2.5T, 2T, 1.5T, 1T, 0.5T and 0T. The authors include separate tables for 

comparing SQNR, SQNR difference between the simulation methods, the percentage of SQNR 
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difference, elapsed time and performance of simulation in terms of simplicity, accuracy and speed. 

The tables show that the delta transform method results in accurate simulations compared to other 

simulation methods such as Simulink, SPICE modeling and solving differential equations. The 

simulation time for the delta transform model was about ten times the simulation time for modeling 

the CT ∑∆M by using the CT/DT transformation. The result is because the delta transform 

calculates 10 times more loop filter signal values at times other than the ∑∆Ms’ sampling times. 

Although not the fastest method, the delta transform is a very simple method that yields accurate 

results very close to that of SPICE simulation. Thus, the authors concluded that at reasonable 

speeds and without much difficulty, the delta transform can be used to get accurate results. 

In [5], J. A. Cherry and W. M. Snelgrove use the impulse-invariant transformation to map DT 

domain transfer functions to CT domain transfer functions. The authors use a design procedure 

that starts by determining an H(z) and then transform it into equivalent H(s) by using the impulse-

invariant transformation. In [5], two modulators are considered equivalent if for same input 

waveform the quantizer input voltages are same at sampling instants; i.e, H(s) and H(z) are 

equivalent if 𝑞(𝑛)  =  𝑞𝑐(𝑡)|𝑡=𝑛𝑇 for all n         (3.2) 

where 𝑞(𝑛) and 𝑞𝑐(𝑡) are the quantizer inputs of the DT ∑∆M and CT ∑∆M, respectively. The 

authors also argue that if the modulators satisfy (3.2), then the output and the noise-performance 

of the equivalent modulators will also be identical.  

To illustrate this method, consider the equivalent DT ∑∆M and CT ∑∆M shown in Fig. 3.1.  
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Figure 3.1: The block diagrams of a) DT ∑∆M and b) CT ∑∆M 

If both the CT ∑∆M’s and DT ∑∆M ‘s open-loop filter’s impulse responses are identical at the 

sampling instants then ℎ(𝑛) = ℎ(𝑡)|𝑡=𝑛𝑇           (3.3) 

which implies that  ʑ−1{𝐻𝑑𝐷𝐴𝐶(𝑧)𝐻𝑑(𝑧)} =  ℒ−1{𝑅(𝑠)𝐻𝑐(𝑠)}|𝑡=𝑛𝑇       (3.4) 

where ʑ−1, ℒ−1, 𝑅(𝑠) , 𝐻𝑐(𝑠) and 𝐻𝑑(𝑧) represent the inverse z-transform, the inverse Laplace 

transform, the CT DAC transfer function, the continuous-time loop filter and the discrete-time 

loop filter, respectively. Because 𝐻𝑑𝐷𝐴𝐶(𝑧) = 1, (3.4) can be simplified to ʑ−1{𝐻𝑑(𝑧)} =  ℒ−1{𝑅(𝑠)𝐻𝑐(𝑠)}|𝑡=𝑛𝑇 .         (3.5) 

The transformation in (3.4) is the impulse-invariance transformation. Thus, to calculate an H(s) 

for a CT ∑∆M with identical noise shaping behavior as that of H(z) for a DT ∑∆M, H(z) is 

expanded into partial fractions. The authors then use a table they created to transform the poles of 

H(z) to s-domain poles using the following formula, 

    𝑠𝑘  =  ln(𝑧𝑘).                      (3.6) 
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Table 3.1: s-domain equivalent of z-domain poles 

The authors table is shown in Table 3.1. Using Table 3.1, each partial fraction z-domain pole of 

H(z) is converted into an equivalent s-domain pole. After that the s-domain poles are combined 

with a rectangular DAC pulse shape to get H(s). The pulse shape 𝑟(𝑡) has a magnitude of 1 from 

α to β which implies that  

𝑟(𝛼, 𝛽)(𝑡)   = {1, 𝛼 ≤ 𝑡 < 𝛽, 0 ≤ 𝛼 < 𝛽 ≤ 1  0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        (3.7) 

which implies that 

𝑅(𝑠) =  𝑒−𝛼𝑇𝑠 − 𝑒−𝛽𝑇𝑠 𝑠           (3.8)  

and 𝐻𝑐(𝑠) =  𝐻(𝑠)𝑅(𝑠).           (3.9)  

where 𝐻(𝑠) is the transfer function of the equivalent CT ∑∆M, 𝑅(𝑠) is the transfer function 

of the pulse shape 𝑟(𝑡) and 𝐻𝑐(𝑠) is the transfer function of the required continuous-time loop 

filter. Thus, to determine a CT loop filter, a DT loop filter that meets the required performance 
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specifications is designed and then the equivalent CT loop filter based on the CT ∑∆M DAC pulse 

shape is obtained by using the impulse invariance transform. 

In their book “Continuous Time Sigma Delta Analog to Digital Conversion” [4], Ortmanns 

and F. Gerfers use the impulse-invariant transformation and modified z-transformation for DT to 

CT transformation. The authors recommend designing a CT ∑∆M by designing a DT loop filter 

H(z), simulating the ideal DT ∑∆M to speed up the design procedure and then proceed with a DT 

domain to CT domain conversion to obtain the equivalent CT ∑∆M. The authors use an impulse 

invariance transformation technique similar to the one used by J. A. Cherry and W. M. Snelgrove 

in [5]. The authors also use Table 3.1 to transform z-domain poles to their equivalent s-domain 

pole and discuss on the possibility of transforming every DT loop filter into an equivalent CT loop 

filter. 

 The authors use a modified z-transform which is an extension of the general z-transform 

because it calculates discrete system behavior at all instants of time and this property is very useful 

for mixed signal and multirate sampled systems. As in the impulse invariance transformation, the 

discrete-time loop transfer function is calculated first and compared with the original discrete-time 

loop transfer function. This transform can be written as 𝐻(𝑧)  =  ∑ 𝑍𝑚{𝐻(𝑠)𝑅𝐷𝐴𝐶(𝑠)}𝑖                  (3.10)  

where H(s) is multiplied with the desired system function 𝑅𝐷𝐴𝐶(𝑠) of the DAC and 𝑍𝑚 is the 

modified z-transform. In (3.10), m is the delay factor and is a very important parameter when using 

the modified z-transform. The value of m is normalized and bounded in the range 0 < m < 1, where 

0 means the previous sample instant and 1 means the next sample instant. An additional delay 

parameter is introduced for every time instance when there is change in the CT loop filter’s 

behavior. For an ideal NRZ DAC pulse: 
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• The rising edge of the DAC pulse at t = 0 is the first instant, which results in 

  𝑚1 = 1 − 0𝑇𝑠 = 1.  
• The falling edge at t = 𝑇𝑠 is the second instant. Therefore, 𝑚2 yields 𝑚2 = 1 −  𝑇𝑠𝑇𝑠 = 0.  

Next, each of the loop filter’s term is mapped with respect to all the time instances according to 

Table 3.2. 

 

Table 3.2: Modified z-transform for corresponding loop filter order 

Finally, the coefficients of the CT ∑∆M’s loop transfer function are obtained by comparing 

coefficients with the original DT ∑∆M’s loop filter function. 

In [21], J. Talebzadeh and I. Kale present a general formula that uses the impulse invariant 

transformation to convert nth-order DT ∑∆Ms to equivalent nth-order CT ∑∆Ms. The authors use 

a method of determining an equivalent CT ∑∆M from a DT ∑∆M that is similar to the method 

used by J. A. Cherry and W. M. Snelgrove in [5] and M. Ortmanns and F. Gerfers in [4]. This 

method uses the impulse invariance transformation equation in (3.4). The authors also consider 
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using DAC waveforms that are similar to the DAC waveforms in (3.5) and (3.6). They also derive 

an equivalent z-domain transfer function of a CT ∑∆M. For first order s-domain equations, the z-

domain equivalent formula they derive is 𝐻1𝑑(𝑧) =  𝑇 𝛽− 𝛼𝑧−1      (3.11) 

which implies that 

 
1𝑠 → 𝑇 (𝛽− 𝛼)𝑧−11− 𝑧−1       (3.12) 

 

Table 3.3: CT-to-DT transformation for rectangular DAC waveforms 

The authors provide a conversion formula table which is shown in Table (3.3) for the impulse 

invariance transformation and compare the table with conversion table given in [4] and [5]. A 

comparison of the tables shows that y1 in second order term and y2 in third order term are different. 

To validate their formula, the authors use the formula to convert a single loop fourth order DT 

∑∆M into a single loop fourth order CT ∑∆M. They implemented it in a three-bit fourth-order DT 

∑∆M with an OSR of 64 and converted it into a three-bit fourth-order CT ∑∆M using their 
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formula. They used the Schreier toolbox for the conversion and used NonReturn-to-Zero 

(NRZ) DAC waveforms. An extra feedback was given to compensate for excess loop delay. The 

values of 𝛼 and 𝛽 were chosen as 0.2 and 1.2 respectively. A sinusoidal input signal of 0.7 V 

amplitude and a frequency 61.34 KHz was applied to both modulators. The SNR obtained from 

the CT ∑∆M was around 130.21 dB and that from DT ∑∆M was 130.37 dB with a bandwidth of 

625 MHz and clock frequency of 80 MHz Similar output spectra and in-band noise has been 

observed for both CT ∑∆M and DT ∑∆M. Their block diagrams of equivalent fourth-order CT 

∑∆M and DT ∑∆M are shown in Fig 3.2. 

 

 

Figure 3.2: The block diagram of fourth-order:  a) DT ∑∆M and b) CT ∑∆M 

Similarly, the obtained combined output spectra of DT ∑∆M and CT ∑∆M is given in Fig 3.3.  
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Figure 3.3: The combined output spectra of fourth-order DT ∑∆M and CT ∑∆M  

In Fig. 3.3, it can be observed that the spectra and in-band noise of both DT ∑∆M and CT ∑∆M 

are similar. Thus, the authors concluded that the resulting CT ∑∆M modulator performed like the 

initial discrete-time ∑∆M without any degradation in performance. Therefore, similar results of 

both DT ∑∆M and CT ∑∆M supports the validity of the formula described in their paper. 

3.2   Simulation Methods used in CT ∑∆M: 

CT ∑∆Ms are comparatively more difficult to design and simulate than DT ∑∆Ms because of 

the mixed signal nature of CT ∑∆Ms which use both analog and digital circuits in their loops [3]. 

Several approaches for simulating CT ∑∆Ms have been developed and implemented such as using 

SystemC-AMS, difference equations, Simulink, Verilog-AMS, VHDL-AMS, Cadence, SPICE 

modeling and solving and implementing differential equations analytically and numerically. Each 

simulation method has a tradeoff between various metrics such as speed, accuracy, and simplicity. 

In this section, we will discuss some relevant papers on simulation methods used for CT ∑∆Ms. 

In [22], G. Zheng, S. P. Mohanty and E. Kougianos compare MATLAB/Simulink and Verilog 

analog and mixed signal (AMS) simulation models of a single-bit CT ∑∆M. Digital languages 

such as VHDL, Verilog, SystemVerilog and SystemC are used to simulate discrete-time systems; 
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and languages such as VHDL-AMS, Verilog-AMS, and SystemC-AMS are used to simulate 

analog and mixed signal systems. In [22], a CT ∑∆M is designed for a biomedical application that 

require a signal bandwidth of 10 KHz and at least 10-bits of resolution. Fig. 3.4 shows the design 

flow used to design CT ∑∆M in [22]. 

 

Figure 3.4: Proposed system level design flow of Continuous Time (CT) ∑∆ 

Because the design methods for DT ∑∆Ms are more mature than for CT ∑∆Ms, the authors 

first designed a DT ∑∆M to meet the required specifications and performance parameters using 

MATLAB delta-sigma toolbox. After the system-level synthesis and design of the DT ∑∆M, the 

DT ∑∆M design was mapped to a CT ∑∆M topology. To synthesize the DT ∑∆M, the NTF was 

designed first using the MATLAB synthesizeNTF function provided in MATLAB’s delta sigma 

design toolbox. The synthesized NTF function uses design specifications such as the order of the 

∑∆M, oversampling ratio (OSR), quantization levels and out-of-band gain (OBG). OBG 

determines the gain for signal at the sampling frequency and offers lower in-band noise but at the 
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cost of increasing instability and higher jitter noise. The NTF was then evaluated in the frequency 

domain to verify that the ∑∆M meets the performance requirements and is also stable. To ensure 

that the outputs of all the stages of the modulator to be bounded, the authors performed required 

dynamic range scaling. The scaling is done by bounding the integrators outputs to the allowable 

range that is determined by the range of the power supply. For DT-CT conversion, the authors 

selected a cascade of integrators with feedforward (CIFF) loop filter architecture; and computed 

the coefficients for the loop filter of the CT ∑∆M architecture by using simulations to match the 

impulse responses of the integrators of the CT ∑∆M and DT ∑∆M. The authors wrote a script in  

MATLAB to control the simulation flow, and to numerically determine the CT ∑∆M’s loop filter 

coefficients. After determining the CT ∑∆M coefficients, the CT ∑∆M was modeled in Verilog-

AMS and Simulink. Simulink contains built-in libraries of quantizers, integrators, summers, etc 

and a behavioral model of the CT ∑∆M can be easily built using Simulink. For Verilog-AMS, the 

behavioral model can be built by creating symbols and writing Verilog code to describe the 

symbols. After the dynamic range scaling, the proper dynamically scaled loop filters coefficients 

were determined. Thus, an equivalent CT ∑∆M of the DT ∑∆M was obtained. 

 The authors also modeled two critical non-idealities of the CT ∑∆M, finite gain bandwidth 

product of the integrator and clock jitter of the quantizer. The authors used Simulink with ideal 

building blocks such as a sampling clock that has no jitter and integrators with infinite gain 

bandwidth. As a result, clock jitter and finite gain bandwidth were not modeled using Simulink. 

However, the authors model these non-idealities using Verilog-AMS. To model the finite gain 

bandwidth product, the authors created a Verilog-AMS algorithm that model the integrator with 

the proper component values of the resistors, capacitors and operational amplifiers. To model clock 

jitter, the authors used the Verilog-AMS function $rdist_normal.  
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The authors compared the Simulink and Verilog-AMS CT ∑∆M models using simulation 

speed, simplicity, performance and accuracy. Simulation performance and accuracy was 

determined by comparing the CT ∑∆M’s power spectral density with the power spectral density 

of DT ∑∆M. Using Simulink’s Ode23s type solver, the authors observed that while maintaining 

comparable accuracy of both simulation methods, the Simulink simulation required almost double 

simulation time the Verilog-AMS simulation. The authors state this result may be due to setting 

the relative tolerance of the Simulink simulation to be half of the Verilog-AMS relative tolerance. 

The authors conclude that Simulink model was simpler to set up because Simulink has the required 

blocks in its library and it was even simpler to modify the designs. However, modeling non-

idealities such as clock-jitter using Simulink was difficult because the blocks in Simulink do not 

model clock jitter. Verilog-AMS can easily model non-idealities with a few lines of code, that can 

be easily integrated with the actual circuit parameters. The authors concluded that Simulink is very 

suitable for system modeling in high level and Verilog-AMS tool is suitable for lower level system 

modeling that includes non-idealities. 

In [3] and [18], K. Kang and P. Stubberud compare simulation methods such as SPICE 

modeling, MATLAB/Simulink, delta transform, CT/DT transformation, and solving differential 

equations for simulating second, third, fourth and fifth single-bit CT ∑∆Ms. The comparison is 

with respect to speed which is based on total elapsed time taken for the simulation, accuracy which 

is based on the value of SQNR and also simplicity of the simulation method. SPICE simulations 

begin with macro level simulations by using ideal components such as voltage controlled current 

sources or voltage controlled voltage sources and ideal quantizers. After meeting the performance 

specifications using the macro level ideal components, a little higher level or transistor level 

systems such as transconductance amplifiers, operational amplifiers, and digital to analog 
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converters (DACs) can be replaced for macrolevel components to observe the non-ideal effects 

such as finite bandwidths, finite amplifier gains, parasitic capacitances and quantizer metastability. 

Since the non-ideal effects such as clock jitter and finite gain bandwidth product can be easily 

reflected in the circuit, SPICE simulation is expected to give more accurate results. 

MATLAB/Simulink simulations are relatively fast and simple to implement. In Simulink, 

modeling is done by selecting the required functional blocks for the continuous-time integrators, 

summers, gains, quantizers, input signals, clocks, DACs and so on. However, the non-idealities 

cannot be modeled in Simulink because Simulink’s blocks are ideal blocks. In [3] and [18], the 

delta transform was used to model CT ∑∆Ms by converting the differential equations to difference 

equations using (2.72). The resulting difference equations were implemented using MATLAB 

code. In [3] and [18], the authors also used differential equations to simulate CT ∑∆M. When 

using differential equations, the non-ideal effects such as finite bandwidths and finite amplifier 

gains can be modeled using the equations. The modulator’s performance was determined by 

solving differential equations numerically or analytically using the modulator’s input signal and 

the output signal form the quantizer’s feedback to determine the input signal at the quantizer’s next 

sample. The authors observed that this method is faster than SPICE but comparatively slower and 

not as simple as the other methods. The simulation results obtained by solving the differential 

equations were closest to the simulations results obtained by SPICE simulation. SQNRs obtained 

by delta transform method were observed to be very close to those obtained using SPICE 

simulations which the authors assume is the most accurate method of simulation. Similarly, CT/DT 

transform simulation results in [3] and [8] are also similar to that of SPICE. SQNR results obtained 

from simulation methods such as Simulink are noticeably different to those obtained by SPICE. 

The authors report that SPICE modeling is the slowest method whereas CT/DT transformation 
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method which takes only few seconds to complete is the fastest method. Simulink is the second 

fastest method but also the simplest method of simulating CT ∑∆Ms.  

In [23], P.  Benabes and C. Tugui use Simulink and VHDL-AMS to model CT sigma delta 

modulators. Because transistor level simulators such as Cadence and PSpice require large 

computation times, the authors suggest using effective high-level system modeling using software 

such as Simulink to reduce the computation time. The authors present a design methodology that 

uses software tools to translate analog circuits in Cadence schematics into macro-models for 

VHDL-AMS and MATLAB/Simulink. This process is shown in the Fig. 3.5. 

 

Figure 3.5: Macro-model extraction framework 

The authors used CADENCE’s Open Command Environment for Analysis (OCEAN) 

software to control and interface various software tools such as MATLAB and Cadence 

SPECTRE. OCEAN started all the simulations. The results of the simulation were read by 

MATLAB by using Cadence functions via Cadence’s Virtuoso Multi-Mode Simulation (MMSIM) 

Spectre/RF toolbox. MATLAB then automated the analog simulation process, extracted the s-

domain models of the transfer functions, combined the gains, offsets and nonlinearities and, 
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synthesized the required macro-model. After this, the macro-model was used by 

MATLAB/Simulink and VHDL-AMS.  

The transfer function was modeled using four types of macro-models, Current Controlled 

Current Source (CCCS), Voltage Controlled Current Source (VCCS), Voltage Controlled Voltage 

Source (VCVS), and, Current Controlled Voltage Source (CCVS). These macro models can be 

implemented in Simulink blocks and VHDL-AMS modules and can be used for implementation 

in system level. For example, Fig. 3.6 shows a Simulink macro-model of VCVS type. 

 

Figure 3.6: VCVS Simulink macro-model 

The authors claim that all unipolar/differential circuits and all multiple-input multiple-output 

designs can be extracted with these Simulink models. The model extraction technique was applied 

to sixth-order CT ∑∆M and for this, MATLAB CADENCE interface started common mode and 

did differential AC analyses on the circuit inputs and separate AC analyses was done for the 

outputs. The extraction algorithm depended on the complexity on the transistor-level function in 

terms of the zeros and poles versus the maximum order of the selected s-model. To provide offsets 

extraction, DC analyses was done on the input and output. A transient analysis was performed to 

determine the system’s impulse response and verify the stability of the design. In this way, the 

entire CT ∑∆M was simulated using CADENCE at the transistor-level and Simulink and VHDL-

AMS at the macro model level. The authors performed simulation of sixth-order CT ∑∆M and this 
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resulted in a considerable speed improvement over SPICE and resulted in consistent results. 

Ode15s type solver was used in Simulink. For 1000 output samples, SPICE simulation required 

3h37m1s whereas Simulink simulation required 7m8s and VHDL-AMS simulation required 

6m41s. VHDL-AMS was observed to be the fastest method of simulation. Therefore, in this paper, 

the authors developed a Simulink – CADENCE – VHDL-AMS framework for the model 

extraction and this system level implementation was applied for designing sixth-order CT ∑∆M. 

The authors concluded that this method resulted in a consideration amount of speed improvement 

and consistent results. 

In [24], M. Webb and H. Tang present a system-level simulation of CT ∑∆M in 

MATLAB/Simulink. In this paper, the authors described methods on how CT ∑∆M non-idealities 

such as clock jitter, operational amplifier noise, integrator non-idealities, finite DC gain, slew rate, 

finite bandwidth, amplifier saturation and transconductor nonlinearity can be implemented in 

Simulink. After modeling the nonidealities associated with the ideal functional blocks of a CT 

∑∆M, the authors derived a complete fourth-order CT ∑∆M block diagram that modeled all the 

non-idealities. The authors claim that the derived block diagram’s specifications can further be 

applied as inputs in circuit-level designs.  

The authors use Simulink’s sign block to model a single-bit quantizer. To model the 

quantizer’s clock jitter which is variation in the quantizer’s clock period, a normally distributed 

random number with zero mean is added to the sample time in the Simulink’s sign block. This can 

be done as     𝐶𝑜𝑚𝑝𝑎𝑟𝑎𝑡𝑜𝑟𝑇𝑖𝑚𝑒 =  𝑇𝑠  +  𝑟𝑎𝑛𝑑𝑛 ∗  𝑠𝑡𝑑𝑑𝑒𝑣                                      (3.13) 

where MATLAB’s function 𝑟𝑎𝑛𝑑𝑛 generates a normally distributed random number with zero 

mean. The desired standard deviation is achieved by multiplying 𝑟𝑎𝑛𝑑𝑛 with a scaling factor 
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𝑠𝑡𝑑𝑑𝑒𝑣. This results in non-uniform sampling and whitening of the quantization noise which 

degrades the SNR. The authors found experimentally that 𝑠𝑡𝑑𝑑𝑒𝑣 must be less than 5.6𝑒 − 4𝑇𝑠 to 

prevent SNR degradation of more than 10dB.  

The authors use Simulink’s gain block to model an amplifier. To model amplifier noise, the 

authors add a normally distributed random number with zero mean to the amplifier’s output. 

Because of the NTF, the noise at the first integrator adds the most noise power to the CT ∑∆M’s 

output so the authors introduce noise only at the first integrator. 

Since most of the CT ∑∆M nonidealities are in located in the integrator, the authors designed 

a non-ideal integrator model that models the integrator nonidealities such as finite bandwidth, slew 

rate, finite gain, and saturation time. Fig.3.7 shows this non-ideal integrator model. 

 

Figure 3.7: Model of non-ideal integrator 

For example, in Fig. 3.7, the finite DC gain was obtained by subtracting a fraction of output from 

the input of the integrator which is contained in the gain block in the feedback loop.  

The slew rate and the finite bandwidth of the amplifier are modeled in the user-defined 

function before the summer which is shown in Fig. 3.7. This function implements the following 

condition: 
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    (3.14) 

where Ɛ is defines the condition, Vin is the input voltage, SR is the slew rate, 𝑇𝑠 is the sampling 

rate and 𝑡𝑠𝑙 is non-linear settling time. When the authors examined each stage of the modulator, 

they discovered that the signal change rate increased with each successive integrator stage. The 

authors conclude that the ∑∆M’s signal that has the maximum rate of change is the signal at the 

quantizer’s input or the last integrator’s output. But the SR of first integrator is also very important 

to allow the signal to be as analogous as possible to the original signal and thus is as important as 

the last integrator to have the best overall SR. Therefore, for slew rate and finite bandwidth 

modeling the function must be included at each stage.  

To model the saturation of the amplifiers, the Saturation block from Simulink is included after 

the integrator as shown in Fig. 3.7.  

To model the integrator non-linearity, a user-defined block was used to implement the 

function  𝑚 =  𝑣 +  𝑛 ∗  𝑣3         (3.15) 

where 𝑚 is the output integrator non-linearity, 𝑣 is the input value and n is the non-linearity 

coefficient. The user-defined block is shows in Fig. 3.8 before the first integrator. It was seen that 

the non-linearity at the first integrator has mostly effected the SNR but the effect is slowly getting 

negligible at the consequent stages. The non-ideality coefficient of value 0.01 was applied to the 

first integrator only. A finite gain of 5000, the saturation levels of ± 1.25, slew rate of 100 V/𝜇sec, 

p-p jitter of 7.25 sec, RMS noise of 10 𝜇V and finite bandwidth of 300 MHz were used. Fig. 3.8 
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shows the overall functional block implementation of a fourth-order CT ∑∆M including all the 

non-idealities that was used in Simulink. 

 

  Figure 3.8: CT ∑∆M model including all main non-idealities 

The authors designed a single-bit fourth order CT ∑∆M for Wide Band Code-Division- 

Multiple-Access (WCDMA) communications system that needed a SNR of at least 70 dB at an 

input signal bandwidth of 3.84 MHz. An oversampling ratio of 40 was selected and thus the 

sampling frequency was 152.6 MHz. The maximum input amplitude of 0.631 was chosen. The 

authors then compared the SNRs and PSDs of Simulink simulations using both ideal integrators 

and non-ideal integrators. Fig. 3.9 shows the plots comparing ideal and non-ideal integrators based 

on SNR and PSD of the CT ∑∆M. 

 

(a)                                                                  (b) 

Figure 3.9: Comparison of ideal and non-ideal CT ∑∆M based on a) SNR b) PSD 
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The authors noticed that the non-ideal block implementation influenced the SNR and PSD of 

the system since it included all the non-idealities. Thus, the authors conclude that the derived non-

ideal CT ∑∆M block specifications in Simulink can be used as inputs in the circuit level design. 

The paper also suggests an efficient way of viewing a circuit before fabricating and testing an 

actual CT ∑∆M circuit. 
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Chapter 4 

IMPLEMENTATION 

CT ∑∆Ms are more difficult to design and simulate than DT ∑∆Ms because of the mixed- 

signal nature of the feedback loop which use both analog and digital circuits. A CT ∑∆M’s NTF 

and STF can be determined using various methods. In this thesis, the STFs and NTFs are designed 

using Chebyshev Type 2 filters. After determining a CT ∑∆M’s STF and NTF, the STF and NTF 

are implemented in a hardware architecture. In this chapter, the CT ∑∆M architectures are 

represented by block diagrams. The subsequent block diagrams are then converted into difference 

equations, and using these different equations, the architecture’s NTFs and STFs are determined. 

These STFs and NTFs are compared with the NTFs and STFs obtained from Chebyshev Type 2 

filters and the coefficients for the CT ∑∆M’s architectures can be calculated.  

Common hardware architectures for CT ∑∆Ms include cascade of resonators feedforward 

(CRFF), cascade of resonators feedback (CRFB), cascade of integrators feedforward (CIFF)and 

cascade of integrators feedback (CIFB) implementations. The feedback architectures feedback the 

modulator output to each integrator while the feedforward architectures feed a signal which is the 

sum of the input signal and all integrator outputs at the input of the quantizer. Single loop feedback 

architectures have more signal distortion than single loop feedforward architectures because the 

amplifier nonlinearities in single loop feedback architectures generate harmonic distortion which 

depends on the amplifier’s input signal. However, feedforward architectures require more circuitry 

and thus require more power than feedback architectures. 

In most ∑∆M architectures, integrators are implemented using 𝑅𝐶 integrators or 𝐺𝑚𝐶 

integrators. 𝑅𝐶 integrators have better linearity for larger output signal swings than 𝐺𝑚𝐶 

integrators having similar specifications. The linearity of the 𝐺𝑚𝐶 integrators can be improved by 
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adding additional linearization circuitry but the added circuitry adds phase in the feedback loop 

that can negatively affect the modulator’s stability. In this thesis, cascade of integrators feedback 

(CIFB) architecture is used for implementing CT ∑∆Ms and the CIFB architecture is implemented 

using RC integrators.  

In this thesis, the CT ∑∆M NTFs are designed as highpass Chebyshev Type 2 filters. After 

determining a NTF, a STF is designed as a low pass filter that uses the numerator of a lowpass 

Chebyshev Type 2 filter and denominator of the NTF. For this thesis, all CT ∑∆Ms have a 

sampling rate of 1GHz and a signal bandwidth of 20 MHz. All first order, second order, third 

order, fourth order and fifth order CT ∑∆Ms with their block diagrams are described as below. 

4.1 First-Order lowpass CT ∑∆M 

Fig. 4.1 shows the block diagram of a first-order lowpass CT ∑∆M implemented using CIFB 

architecture. As shown in Fig. 4.1, the first order lowpass CT ∑∆M consists of a single integrator. 

 

Figure 4.1: First-order lowpass CT ∑∆M block diagram 

By inspecting Fig. 4.1, 𝑌(𝑠)  =  𝑘𝛹(𝑠)  +  𝐸(𝑠)                 (4.1) 𝐸(𝑠)  =  𝑄[𝑋(𝑠)] –  𝐾𝛹(𝑠)        (4.2) 
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and 𝑀(𝑠) =  𝐷𝐴𝐶(𝑠)𝐷𝑒𝑙𝑎𝑦(𝑠)      (4.3) 

where 𝑋(𝑠) is the modulator’s input, 𝑌(𝑠) is the modulator’s output, 𝛹(𝑠) is the input to the 

quantizer and 𝐸(𝑠) is the additive random error signal that represents the quantizer noise. Also 

from Fig. 4.1, the integrator’s output, 𝑄1(𝑠), the quantizer’s input, 𝛹(𝑠), and the CT ∑∆M’s 

output, 𝑌(𝑠), can be determined as 𝑄1(𝑠) = {𝑏0𝑋(𝑠) − 𝑎0𝑀(𝑠)𝑌(𝑠)} 1𝑠     (4.4) 

and 𝛹(𝑠) = 𝑏1𝑋(𝑠) − 𝑎1𝑀(𝑠)𝑌(𝑠) + 𝑐0𝑄1(𝑠)     (4.5) 

Substituting (4.4) into (4.5) and the resulting equation into (4.1), the STF and NTF of the first 

order lowpass CT ∑∆M shown in Fig. 4.1 can be written as 𝑁𝑇𝐹(𝑠) =  
𝑌(𝑠)𝐸(𝑠) =  

 𝑘1 +𝑎1𝑘𝑀(𝑠)+ 𝑎0𝑐0𝑘𝑀(𝑠)1𝑠 =  𝑠(1𝑘+𝑎1𝑀(𝑠))𝑠+ 𝑎0𝑐0𝑀(𝑠) (4.6) 

and  

𝑆𝑇𝐹(𝑠) = 
𝑌(𝑠)𝑋(𝑠)   = 

 𝑏1𝑘+ 𝑏0𝑐0𝑘1𝑠1 +𝑎1𝑘𝑀(𝑠)+ 𝑎0𝑐0𝑘𝑀(𝑠)1𝑠  = 
 𝑏1𝑠+ 𝑏0𝑐0𝑀(𝑠)[(1𝑘+𝑎1)𝑠+ 𝑎0𝑐0] (4.7) 

To determine a desired NTF, a highpass Chebyshev Type 2 filter with a cut-off frequency near 

the CT ∑∆M’s 20 MHz bandwidth is designed. After determining the NTF, the STF is then 

designed as a lowpass filter using the numerator of a lowpass Chebyshev Type 2 filter and the 

NTF’s denominator. For this thesis, a sampling rate of 1GHz and a signal bandwidth of 20MHz is 

used. The following MATLAB code shows an example of the design of such first-order lowpass 

CT ∑∆M STF and NTF. 
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[NTFnum, NTFden] = cheby2(1, 16, 2*pi*22e6, 'high', 's'); % NTF 

NTF = tf(NTFnum, NTFden); 

[STFnum, STFden] = cheby2(1, 20, 2*pi*850e6, 's'); % STF 

STFnum = STFnum/STFnum(end) * NTFden(end); 

STF = tf(STFnum, NTFden); 

The above code produces 𝑁𝑇𝐹(𝑠) =  𝑠𝑠 +8.66𝑒08            (4.8) 

and 𝑆𝑇𝐹(𝑠) =  8.66𝑒08 𝑠 +8.66𝑒08           (4.9) 

Equations (4.6) and (4.7) are compared with (4.8) and (4.9), respectively, to calculate the 

coefficients 𝑎0, 𝑎1, 𝑏0, 𝑏1, and, 𝑐0 in Fig 4.1. In this thesis, k is set to unity. Fig 4.2 shows the 

magnitude response of the NTF in (4.8) and the STF in (4.9).  

 

Figure 4.2: STF/NTF magnitude response of first-order lowpass CT ∑∆M 

Fig 4.2 shows that for frequencies below 20MHz, the magnitude response of the NTF is almost 

much less than one and hence the quantization noise will be attenuated for frequencies below 20 

MHz. Fig 4.2also shows that the magnitude response of the STF is approximately one for 
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frequencies below 20 MHz which implies that signal frequencies are passed within the signal’s 

bandwidth without significant attenuation.  

4.2 Second-Order lowpass CT ∑∆M 

Fig. 4.3 shows the block diagram of a CIFB implementation of a second-order lowpass CT 

∑∆M. As shown in Fig. 4.3, a second-order lowpass CT ∑∆M has two integrators. 

 

Figure 4.3: Second-order lowpass CT ∑∆M block diagram 

In Fig. 4.3, 𝑋(𝑠) is the modulator’s input, 𝑌(𝑠) is the modulator’s output, 𝑄1(𝑠) is the first 

integrator’s output, 𝑄2(𝑠) is the second integrator’s output, 𝛹(𝑠) is the input to the quantizer and 𝐸(𝑠) is the additive random error signal that represents the quantizer noise. From Fig. 4.3, 𝑄1(𝑠),  𝑄2(𝑠), 𝛹(𝑠) and, 𝑌(𝑠) can be determined as 𝑌(𝑠)  =  𝑘𝛹(𝑠)  +  𝐸(𝑠)         (4.10)  𝑄1(𝑠) = {𝑏0𝑋(𝑠) − 𝑎0𝑀(𝑠)𝑌(𝑠) + 𝑔0𝑄2(𝑠)} 1𝑠         (4.11) 

𝑄2(𝑠) = {𝑏1𝑋(𝑠) − 𝑎1𝑀(𝑠)𝑌(𝑠) + 𝑐0𝑄1(𝑠)} 1𝑠    (4.12) 𝛹(𝑠) = 𝑏2𝑋(𝑠) − 𝑎2𝑀(𝑠)𝑌(𝑠) + 𝑐1𝑄2(𝑠)        (4.13) 

Substituting (4.11) into (4.12), solving for 𝑄2(𝑠), substituting this expression into (4.13) and the 

resulting expression into (4.10), the STF and NTF of the second order lowpass CT ∑∆M in Fig. 

4.3 can be written as 
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𝑁𝑇𝐹(𝑠)  = 𝑌(𝑠)𝐸(𝑠) =  𝑠2− 𝑔0𝑐0(1 +𝑎2𝑘𝑀(𝑠))𝑠2+𝑎1𝑐1𝑘𝑀(𝑠)𝑠+ (𝑎0𝑐0𝑐1−𝑔0𝑎2𝑐0)𝑘𝑀(𝑠)− 𝑔0𝑐0  (4.14) 

and 𝑆𝑇𝐹(𝑠) =  𝑌(𝑠)𝑋(𝑠) =  𝑘( 𝑏2𝑠2+𝑏1𝑐1𝑠+ 𝑏0𝑐0𝑐1 − 𝑔0𝑏2𝑐0)(1 +𝑎2𝑘𝑀(𝑠))𝑠2+𝑎1𝑐1𝑘𝑀(𝑠)𝑠+ (𝑎0𝑐0𝑐1−𝑔0𝑎2𝑐0)𝑘𝑀(𝑠)− 𝑔0𝑐0    (4.15)     

To determine a desired NTF, a highpass Chebyshev Type 2 filter with a cut-off frequency near 

the CT ∑∆M’s 20 MHz bandwidth is designed. After determining the NTF, the STF is designed 

as a lowpass filter using the numerator of a lowpass Chebyshev Type 2 filter and the poles of the 

NTF as the denominator. The following MATLAB code shows an example of the design of such 

a second-order lowpass CT ∑∆M. 

[NTFnum, NTFden] = cheby2(2, 37, 2*pi*22e6, 'high', 's'); % NTF 

NTF = tf(NTFnum, NTFden); 

[STFnum, STFden] = cheby2(2, 40, 2*pi*750e6, 's'); % STF 

STFnum = STFnum/STFnum(end) * NTFden(end); 

STF = tf(STFnum, NTFden); 

The above code produces 𝑁𝑇𝐹(𝑠) =  s2 − 2.384e−07 s + 9.554e15s2  + 1.155e09 s + 6.764e17       (4.16) 

and  𝑆𝑇𝐹(𝑠) =  0.01523s2+ 6.764e17s2 + 1.155e09 s + 6.764e17        (4.17)  

Equations (4.14) and (4.15) are compared with (4.16) and (4.17), respectively, to calculate the CT 

∑∆M’s coefficients 𝑎0, 𝑎1, 𝑎2, 𝑏0, 𝑏1, 𝑏2, 𝑐0, 𝑐1, and,  𝑔0 in Fig. 4.3. Fig 4.4 shows the magnitude 

response of the NTF in (4.16) and the STF in (4.17).  
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Figure 4.4: STF/NTF magnitude response of second-order lowpass CT ∑∆M 

Fig. 4.4 shows that for frequencies below 20 MHz, the magnitude response of the second-

order NTF is much less than one and hence the quantization noise is attenuated at frequencies 

below 20 MHz.  Fig. 4.4 also shows that the magnitude response of the STF is approximately one 

for frequencies below 20 MHz which implies that the signal frequencies are passed within the 

signal’s bandwidth without significant attenuation. The dips in the magnitsude responses are due 

to the presence of a zero in the STF and NTF transfer functions. 

4.3 Third-Order lowpass CT ∑∆M 

Fig. 4.5 shows the block diagram of a CIFB implementation of a third-order lowpass CT 

∑∆M. As shown in Fig. 4.5, a third-order lowpass CT ∑∆M has three integrators. 
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Figure 4.5: Third-order lowpass CT ∑∆M block diagram 

In Fig. 4.5, 𝑋(𝑠) is the modulator’s input, 𝑌(𝑠) is the modulator’s output, 𝑄1(𝑠) is the output of 

the first integrator, 𝑄2(𝑠) is the output of the second integrator, 𝑄3(𝑠) is the output of the third 

integrator, 𝛹(𝑠) is the input to the quantizer and  𝐸(𝑠) is the additive random error signal that 

represents the quantization noise. From Fig. 4.5, 𝑄1(𝑠), 𝑄2(𝑠), 𝑄3(𝑠), 𝛹(𝑠), and, 𝑌(𝑠) can be 

determined as  𝑌(𝑠)  =  𝑘𝛹(𝑠)  +  𝐸(𝑠)         (4.18)   𝑄1(𝑠) = {𝑏0𝑋(𝑠) − 𝑎0𝑀(𝑠)𝑌(𝑠)} 1𝑠       (4.19) 

𝑄2(𝑠) = {𝑏1𝑋(𝑠) − 𝑎1𝑀(𝑠)𝑌(𝑠) + 𝑐0𝑄1(𝑠) +  𝑔0𝑄3(𝑠)} 1𝑠   (4.20)  

𝑄3(𝑠) = {𝑏2𝑋(𝑠) − 𝑎2𝑀(𝑠)𝑌(𝑠) + 𝑐1𝑄2(𝑠)} 1𝑠     (4.21) 𝛹(𝑠) = 𝑏3𝑋(𝑠) − 𝑎3𝑀(𝑠)𝑌(𝑠) + 𝑐2𝑄3(𝑠)      (4.22) 

Substituting (4.19) into (4.20), (4.20) into (4.21) and solving for 𝑄3(𝑠), substituting this expression 

into (4.22) and the resulting expression into (4.18), the STF and NTF of the third-order lowpass 

CT ∑∆M in Fig. 4.5 can be written as 𝑁𝑇𝐹(𝑠) = 𝑠(𝑠2− 𝑔0𝑐1)(1 +𝑎3𝑘𝑀(𝑠))𝑠3+𝑎2𝑐2𝑘𝑀(𝑠)𝑠2+ ((𝑎1𝑐1𝑐2−𝑔0𝑎3𝑐1)𝑘𝑀(𝑠)−𝑔0𝑐1)𝑠− 𝑎0𝑐0𝑐1𝑐2𝐾𝑀(𝑠)     (4.23) 

and 
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𝑆𝑇𝐹(𝑠) =  𝑘(𝑏3𝑠3+ 𝑏2𝑐2𝑠2+(𝑏1𝑐1𝑐2−𝑔0𝑏3𝑐1)𝑠+ 𝑏0𝑐0𝑐1𝑐2 )(1 +𝑎3𝑘𝑀(𝑠))𝑠3+𝑎2𝑐2𝑘𝑀(𝑠)𝑠2+ ((𝑎1𝑐1𝑐2−𝑔0𝑎3𝑐1)𝑘𝑀(𝑠)−𝑔0𝑐1)𝑠− 𝑎0𝑐0𝑐1𝑐2𝐾𝑀(𝑠)                   (4.24) 

The NTF and STF of such a third-order CT ∑∆M can be designed using a design method 

similar to the ones used for the first and second order CT ∑∆Ms.  The following MATLAB code 

shows an example of the design of such a third-order lowpass CT ∑∆M that has a bandwidth of 

20 MHz and a sampling rate of 1 GHz. 

[NTFnum, NTFden] = cheby2(3, 60, 2*pi*22e6, 'high', 's'); % NTF 

 NTF = tf(NTFnum, NTFden; 

[STFnum, STFden] = cheby2(3, 62, 2*pi*850e6, 's'); % STF 

STFnum = STFnum/STFnum(end) * NTFden(end); 

STF =tf(STFnum, NTFden); 

The above code produces 𝑁𝑇𝐹(𝑠) =  s3  + 2.126e−07 s2+ 1.433e16 s + 1.147e11s3 + 1.731e09 s2 + 1.512e18 s + 6.603e26     (4.25) 

and  𝑆𝑇𝐹(𝑠) =  1.736e07 s2  + 6.603e26s3+ 1.731e09 s2  + 1.512e18 s + 6.603e26      (4.26)  

Equations (4.23) and (4.24) are compared with (4.25) and (4.26), respectively, to calculate the 

coefficients 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝑐0, 𝑐1, 𝑐2, 𝑔0, and,  𝑔1 in Fig. 4.5. Fig 4.6 shows the 

magnitude response of the STF and NTF of third-order lowpass CT ∑∆M given in (4.25) and 

(4.26) respectively. 
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Figure 4.6: STF/NTF magnitude response of third-order lowpass CT ∑∆M 

4.4 Fourth-Order lowpass CT ∑∆M 

Fig. 4.7 shows the block diagram of a CIFB implementation of a fourth-order lowpass CT 

∑∆M. As shown in Fig. 4.7, a fourth-order lowpass CT ∑∆M has four integrators. 

 

Figure 4.7: Fourth-order lowpass CT ∑∆M block diagram 

In Fig. 4.7, 𝑋(𝑠) is the modulator’s input, 𝑌(𝑠) is modulator’s output, 𝑄1(𝑠) is the output of the 

first integrator, 𝑄2(𝑠) is the output of the second integrator, 𝑄3(𝑠) is the output of the third 

integrator, 𝑄4(𝑠) is the output of the fourth integrator, 𝛹(𝑠) is the input to the quantizer and  𝐸(𝑠) 

is the additive random error signal that represents the quantization noise. From Fig. 4.7, 𝑄1(𝑠), 𝑄2(𝑠), 𝑄3(𝑠), 𝑄4(𝑠), 𝛹(𝑠), and, 𝑌(𝑠) can be determined as 
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𝑌(𝑠)  =  𝑘𝛹(𝑠)  +  𝐸(𝑠)             (4.27)   𝑄1(𝑠) = {𝑏0𝑋(𝑠) − 𝑎0𝑀(𝑠)𝑌(𝑠) + 𝑔0𝑄2(𝑠) } 1𝑠      (4.28) 

𝑄2(𝑠) = {𝑏1𝑋(𝑠) − 𝑎1𝑀(𝑠)𝑌(𝑠) + 𝑐0𝑄1(𝑠)}  1𝑠                (4.29) 

𝑄3(𝑠) = {𝑏2𝑋(𝑠) − 𝑎2𝑀(𝑠)𝑌(𝑠) + 𝑐1𝑄2(𝑠) + 𝑔1𝑄4(𝑠)}  1𝑠      (4.30) 

𝑄4(𝑠) =  {𝑏3𝑋(𝑠) − 𝑎3𝑀(𝑠)𝑌(𝑠) + 𝑐2𝑄3(𝑠)}  1𝑠     (4.31) 𝛹(𝑠) = 𝑏4𝑋(𝑠) − 𝑎4𝑀(𝑠)𝑌(𝑠) + 𝑐3𝑄4(𝑠)       (4.32) 

Substituting (4.28) into (4.29), (4.29) into (4.30), (4.30) into (4.31) and solving for 𝑄4(𝑠), 

substituting this expression into (4.32) and the resulting expression into (4.27), the STF and NTF 

of the fourth order lowpass CT ∑∆M in Fig. 4.7 can be written as 𝑁𝑇𝐹(𝑠) =
 (𝑠2− 𝑔0𝑐0)(𝑠2− 𝑔1𝑐2)(1 +𝑎4𝑘𝑀(𝑠))𝑠4+𝑎3𝑐3𝑘𝑀(𝑠)𝑠3+ {(𝑎2𝑐2𝑐3−𝑔0𝑎4𝑐0− 𝑔1𝑎4𝑐2)𝑘𝑀(𝑠)− (𝑔0𝑐0+𝑔1𝑐2)}𝑠2+𝑘𝑀(𝑠)(𝑎1𝑐1𝑐2𝑐3−𝑔0𝑎3𝑐0𝑐3)𝑠+(𝑎0𝑐0𝑐1𝑐2𝑐3+𝑔0𝑎2𝑐0𝑐2𝑐3+ 𝑔0𝑔1𝑏4𝑐0𝑐2)𝑘𝑀(𝑠)+ 𝑔0𝑔1𝑐0𝑐1𝑐2𝑐3   

            (4.33) 

and 𝑆𝑇𝐹(𝑠) =
𝑘{(𝑏4𝑠4+ 𝑏3𝑐3𝑠3+(𝑏2𝑐2𝑐3−𝑔0𝑏4𝑐0− 𝑔1𝑏4𝑐2)𝑠2+(𝑏1𝑐1𝑐2𝑐3−𝑔0𝑏3𝑐0𝑐3)𝑠+(𝑏0𝑐0𝑐1𝑐2𝑐3−𝑔0𝑏2𝑐0𝑐2𝑐3+ 𝑔0𝑔1𝑏4𝑐0𝑐1𝑐2𝑐3)}(1 +𝑎4𝑘𝑀(𝑠))𝑠4+𝑎3𝑐3𝑘𝑀(𝑠)𝑠3+ {(𝑎2𝑐2𝑐3−𝑔0𝑎4𝑐0− 𝑔1𝑎4𝑐2)𝑘𝑀(𝑠)− (𝑔0𝑐0+𝑔1𝑐2)}𝑠2+𝑘𝑀(𝑠)(𝑎1𝑐1𝑐2𝑐3−𝑔0𝑎3𝑐0𝑐3)𝑠+(𝑎0𝑐0𝑐1𝑐2𝑐3+𝑔0𝑎2𝑐0𝑐2𝑐3+ 𝑔0𝑔1𝑏4𝑐0𝑐2)𝑘𝑀(𝑠)+ 𝑔0𝑔1𝑐0𝑐1𝑐2𝑐3   

            (4.34) 

The NTF and STF of such a fourth-order CT ∑∆M can be designed using a design method similar 

to the ones used for the first, second and third-order CT ∑∆Ms.  The following MATLAB code 

shows an example of the design of such a fourth-order lowpass CT ∑∆M that has a bandwidth of 

20 MHz and a sampling rate of 1 GHz. 
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[NTFnum, NTFden] = cheby2(4, 85, 2*pi*22e6, 'high', 's'); % NTF 

NTF = tf(NTFnum, NTFden); 

[STFnum, STFden] = cheby2(4, 75, 2*pi*950e6, 's'); % STF 

STFnum = STFnum/STFnum(end) * NTFden(end); 

STF =tf(STFnum, NTFden); 

The above code produces 𝑁𝑇𝐹(𝑠) =  s4 − 4.091e−07 s3  + 1.911e16 s2 − 4.727e11 s + 4.564e31s4  + 2.467e09 s3 + 3.062e18 s2  + 2.229e27 s + 8.116e35       (4.35) 

and  𝑆𝑇𝐹(𝑠) =  7.991e−05 s4 − 5.035e−11 s3 + 2.278e16 s2− 9.782e09 s + 8.116e35 s4+ 2.467e09 s3+ 3.062e18 s2 + 2.229e27 s + 8.116e35    (4.36)  

Equations (4.33) and (4.34) are compared with (4.35) and (4.36), respectively, to calculate the 

coefficients 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑐0, 𝑐1, 𝑐3, 𝑔0, and 𝑔1 given in Fig. 4.7. Fig 4.8 shows 

the magnitude response of the STF and NTF of the fourth-order lowpass CT ∑∆M given in (4.35) 

and (4.36) respectively. 

 

Figure 4.8: STF/NTF magnitude response of fourth-order lowpass CT ∑∆M 
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The two dips in each STF and NTF’s magnitude response are due to the presence of two zeros in 

both STF’s and NTF’s transfer function. 

4.5 Fifth-Order lowpass CT ∑∆M 

Fig 4.9 shows the block diagram of a general fifth-order lowpass CT ∑∆M. The fifth-order 

lowpass CT ∑∆M consists of five integrators. 

 

Figure 4.9: Fifth-order lowpass CT ∑∆M block diagram 

In Fig. 4.9, 𝑋(𝑠) is the modulator’s input, 𝑌(𝑠) is the modulator’s output, 𝑄1(𝑠) is first integrator’s 

output, 𝑄2(𝑠) is the second integrator’s output, 𝑄3(𝑠) is the third integrator’s output, 𝑄4(𝑠) is the 

fourth integrator’s output, 𝑄5(𝑠) is the fifth integrator’s output, 𝛹(𝑠) is the input to the quantizer 

and  𝐸(𝑠) is the additive random error signal that represents the quantization noise. From Fig. 4.9, 𝑄1(𝑠), 𝑄2(𝑠) , 𝑄3(𝑠), 𝑄4(𝑠), 𝑄5(𝑠), 𝛹(𝑠), and, 𝑌(𝑠) can be determined as 𝑌(𝑠)  =  𝑘𝛹(𝑠)  +  𝐸(𝑠)             (4.37)   𝑄1(𝑠) = {𝑏0𝑋(𝑠) − 𝑎0𝑀(𝑠)𝑌(𝑠)}  1𝑠           (4.38) 

𝑄2(𝑠) = {𝑏1𝑋(𝑠) − 𝑎1𝑀(𝑠)𝑌(𝑠) + 𝑐0𝑄1(𝑠) + 𝑔0𝑄3(𝑠)} 1𝑠    (4.39) 

    𝑄3(𝑠) = {𝑏2𝑋(𝑠) − 𝑎2𝑀(𝑠)𝑌(𝑠) + 𝑐1𝑄2(𝑠)}  1𝑠      (4.40) 

𝑄4(𝑠) =  {𝑏3𝑋(𝑠) − 𝑎3𝑀(𝑠)𝑌(𝑠) + 𝑐2𝑄3(𝑠) + 𝑔1𝑄5(𝑠)} 1𝑠    (4.41) 

𝑄5(𝑠) = {𝑏4𝑋(𝑠) − 𝑎4𝑀(𝑠)𝑌(𝑠) + 𝑐3𝑄4(𝑠)} 1𝑠      (4.42) 𝛹(𝑠) = 𝑏5𝑋(𝑠) − 𝑎5𝑀(𝑠)𝑌(𝑠) + 𝑐4𝑄5(𝑠)       (4.43) 
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Substituting (4.38) into (4.39), (4.39) into (4.40), (4.40) into (4.41), (4.41) into (4.42) and solving 

for 𝑄5(𝑠), substituting this expression into (4.43) and the resulting expression into (4.37), the STF 

and NTF of the fifth-order lowpass CT ∑∆M in Fig. 4.9 can be written as 𝑁𝑇𝐹(𝑠)  =
 𝑠(𝑠2− 𝑔0𝑐1)(𝑠2− 𝑔1𝑐2)(1 +𝑎5𝑘𝑀(𝑠))𝑠5+𝑎4𝑐4𝑘𝑀(𝑠)𝑠4+ {(𝑎3𝑐3𝑐4−𝑔0𝑎5𝑐1− 𝑔1𝑎5𝑐5)𝑘𝑀(𝑠)− (𝑔0𝑐1+𝑔1𝑐3)}𝑠3+𝑘𝑀(𝑠)(𝑎2𝑐2𝑐3𝑐4−𝑔0𝑎4𝑐1𝑐4)𝑠2+{ 𝑘𝑀(𝑠)(𝑎1𝑐1𝑐2𝑐3𝑐4−𝑔0𝑎3𝑐1𝑐3𝑐4+ 𝑔0𝑔1𝑎5𝑐1𝑐3𝑐4)+𝑔0𝑔1𝑎5𝑐1𝑐2𝑐3𝑐4}𝑠+𝑘𝑀(𝑠)𝑎0𝑐0𝑐1𝑐2𝑐3𝑐4   

              (4.44) 

and 𝑆𝑇𝐹(𝑠) =
  𝑘{(𝑏5𝑠5+ 𝑏4𝑐4𝑠4+(𝑏3𝑐3𝑐4−𝑔0𝑏5𝑐1− 𝑔1𝑏5𝑐5)𝑠3+(𝑏2𝑐2𝑐3𝑐4−𝑔0𝑏4𝑐1𝑐4)𝑠2+(𝑏1𝑐1𝑐2𝑐3𝑐4−𝑔0𝑏3𝑐1𝑐3𝑐4+ 𝑔0𝑔1𝑏5𝑐1𝑐3)𝑠+𝑏0𝑐0𝑐1𝑐2𝑐3𝑐4}(1 +𝑎5𝑘𝑀(𝑠))𝑠5+𝑎4𝑐4𝑘𝑀(𝑠)𝑠4+ {(𝑎3𝑐3𝑐4−𝑔0𝑎5𝑐1− 𝑔1𝑎5𝑐5)𝑘𝑀(𝑠)− (𝑔0𝑐1+𝑔1𝑐3)}𝑠3+𝑘𝑀(𝑠)(𝑎2𝑐2𝑐3𝑐4−𝑔0𝑎4𝑐1𝑐4)𝑠2+{ 𝑘𝑀(𝑠)(𝑎1𝑐1𝑐2𝑐3𝑐4−𝑔0𝑎3𝑐1𝑐3𝑐4+ 𝑔0𝑔1𝑎5𝑐1𝑐3𝑐4)+𝑔0𝑔1𝑎5𝑐1𝑐2𝑐3𝑐4}𝑠+𝑘𝑀(𝑠)𝑎0𝑐0𝑐1𝑐2𝑐3𝑐4   

  (4.45) 

Similarly, the following MATLAB code shows the example of such a fifth-order lowpass CT ∑∆M 

that has a bandwidth of 20 MHz and a sampling rate of 1 GHz. 

[NTFnum, NTFden] = cheby2(5, 107, 2*pi*22e6,'high', 's'); % NTF 

NTF = tf(NTFnum, NTFden); 

[STFnum, STFden] = cheby2(5, 115, 2*pi*950e6, 's'); % STF 

STFnum = STFnum/STFnum(end) * NTFden(end); 

STF =tf(STFnum, NTFden); 

The above MATLAB code produces 𝑁𝑇𝐹(𝑠) =  s5 + 7.332e−07 s4 + 2.388e16 s3 + 1.444e12 s2+ 1.141e32 s + 2.088e29s5 + 3.002e09 s4 + 4.53e18 s3 + 4.232e27 s2 + 2.445e36 s + 7.061e44    (4.46) 

 

and  
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𝑆𝑇𝐹(𝑠) =  1.738e05 s4 + 2.477e25 s2+ 7.061e44s5 + 3.002e09 s4 + 4.53e18 s3 + 4.232e27 s2 + 2.445e36 s + 7.061e44      (4.47)  

Equations (4.44) and (4.45) are compared with (4.46) and (4.47), respectively, to calculate the 

coefficients 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑏0, 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑐0, 𝑐1, 𝑐3, 𝑐4, 𝑔0, and 𝑔1 given in Fig. 4.9. Fig 

4.10 shows the magnitude response of the STF and NTF of fifth-order lowpass CT ∑∆M given in 

(4.46) and (4.47) respectively. 

 

Figure 4.10: STF/NTF magnitude response of fifth-order lowpass CT ∑∆M 

4.6 SUMMARY 

Table 4.1 summarizes the STFs and NTFs of CIFB implementations of first, second, third, 

fourth and fifth order CT ∑∆Ms. Table 4.2 summarizes the desired STF and NTF transfer functions 

of first, second, third, fourth and fifth order CT ∑∆Ms used in this thesis. 
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 Order                          Implementation 

 STF  𝑏1𝑠 + 𝑏0𝑐0𝑀(𝑠)[(1𝑘 + 𝑎1)𝑠 + 𝑎0𝑐0] 
1st NTF 

 𝑠(1𝑘 + 𝑎1𝑀(𝑠))𝑠 +  𝑎0𝑐0𝑀(𝑠) 

 STF 𝑘( 𝑏2𝑠2 + 𝑏1𝑐1𝑠 +  𝑏0𝑐0𝑐1  −  𝑔0𝑏2𝑐0)(1 + 𝑎2𝑘𝑀(𝑠))𝑠2 + 𝑎1𝑐1𝑘𝑀(𝑠)𝑠 + (𝑎0𝑐0𝑐1 − 𝑔0𝑎2𝑐0)𝑘𝑀(𝑠) − 𝑔0𝑐0  
2nd NTF 𝑠2 − 𝑔0𝑐0(1 + 𝑎2𝑘𝑀(𝑠))𝑠2 + 𝑎1𝑐1𝑘𝑀(𝑠)𝑠 +  (𝑎0𝑐0𝑐1 − 𝑔0𝑎2𝑐0)𝑘𝑀(𝑠) −  𝑔0𝑐0 

 STF 𝑘(𝑏3𝑠3 + 𝑏2𝑐2𝑠2 + (𝑏1𝑐1𝑐2 − 𝑔0𝑏3𝑐1)𝑠 +  𝑏0𝑐0𝑐1𝑐2 )(1 + 𝑎3𝑘𝑀(𝑠))𝑠3 + 𝑎2𝑐2𝑘𝑀(𝑠)𝑠2 +  ((𝑎1𝑐1𝑐2 − 𝑔0𝑎3𝑐1)𝑘𝑀(𝑠) − 𝑔0𝑐1)𝑠 − 𝑎0𝑐0𝑐1𝑐2𝐾𝑀(𝑠)  
3rd NTF 𝑠(𝑠2 − 𝑔0𝑐1)(1 + 𝑎3𝑘𝑀(𝑠))𝑠3 + 𝑎2𝑐2𝑘𝑀(𝑠)𝑠2 +  ((𝑎1𝑐1𝑐2 − 𝑔0𝑎3𝑐1)𝑘𝑀(𝑠) − 𝑔0𝑐1)𝑠 − 𝑎0𝑐0𝑐1𝑐2𝐾𝑀(𝑠) 

 STF 𝑘{(𝑏4𝑠4 +  𝑏3𝑐3𝑠3 + (𝑏2𝑐2𝑐3 − 𝑔0𝑏4𝑐0 − 𝑔1𝑏4𝑐2)𝑠2 + (𝑏1𝑐1𝑐2𝑐3 − 𝑔0𝑏3𝑐0𝑐3)𝑠 + (𝑏0𝑐0𝑐1𝑐2𝑐3 − 𝑔0𝑏2𝑐0𝑐2𝑐3 + 𝑔0𝑔1𝑏4𝑐0𝑐1𝑐2𝑐3)}(1 + 𝑎4𝑘𝑀(𝑠))𝑠4 + 𝑎3𝑐3𝑘𝑀(𝑠)𝑠3 + {(𝑎2𝑐2𝑐3 − 𝑔0𝑎4𝑐0 − 𝑔1𝑎4𝑐2)𝑘𝑀(𝑠) − (𝑔0𝑐0 + 𝑔1𝑐2)}𝑠2 + 𝑘𝑀(𝑠)(𝑎1𝑐1𝑐2𝑐3 − 𝑔0𝑎3𝑐0𝑐3)𝑠 +(𝑎0𝑐0𝑐1𝑐2𝑐3 + 𝑔0𝑎2𝑐0𝑐2𝑐3 +  𝑔0𝑔1𝑏4𝑐0𝑐2)𝑘𝑀(𝑠) + 𝑔0𝑔1𝑐0𝑐1𝑐2𝑐3
 

4th NTF (𝑠2 − 𝑔0𝑐0)(𝑠2 − 𝑔1𝑐2)(1 + 𝑎4𝑘𝑀(𝑠))𝑠4 + 𝑎3𝑐3𝑘𝑀(𝑠)𝑠3 + {(𝑎2𝑐2𝑐3 − 𝑔0𝑎4𝑐0 − 𝑔1𝑎4𝑐2)𝑘𝑀(𝑠) − (𝑔0𝑐0 + 𝑔1𝑐2)}𝑠2 + 𝑘𝑀(𝑠)(𝑎1𝑐1𝑐2𝑐3 − 𝑔0𝑎3𝑐0𝑐3)𝑠 +(𝑎0𝑐0𝑐1𝑐2𝑐3 + 𝑔0𝑎2𝑐0𝑐2𝑐3 +  𝑔0𝑔1𝑏4𝑐0𝑐2)𝑘𝑀(𝑠) + 𝑔0𝑔1𝑐0𝑐1𝑐2𝑐3
 

 STF 𝑘{(𝑏5𝑠5 + 𝑏4𝑐4𝑠4 + (𝑏3𝑐3𝑐4 − 𝑔0𝑏5𝑐1 −  𝑔1𝑏5𝑐5)𝑠3 + (𝑏2𝑐2𝑐3𝑐4 − 𝑔0𝑏4𝑐1𝑐4)𝑠2 + (𝑏1𝑐1𝑐2𝑐3𝑐4 − 𝑔0𝑏3𝑐1𝑐3𝑐4 + 𝑔0𝑔1𝑏5𝑐1𝑐3)𝑠+𝑏0𝑐0𝑐1𝑐2𝑐3𝑐4}(1 + 𝑎5𝑘𝑀(𝑠))𝑠5 + 𝑎4𝑐4𝑘𝑀(𝑠)𝑠4 + {(𝑎3𝑐3𝑐4 − 𝑔0𝑎5𝑐1 −  𝑔1𝑎5𝑐5)𝑘𝑀(𝑠) − (𝑔0𝑐1 + 𝑔1𝑐3)}𝑠3 + 𝑘𝑀(𝑠)(𝑎2𝑐2𝑐3𝑐4 − 𝑔0𝑎4𝑐1𝑐4)𝑠2 +{ 𝑘𝑀(𝑠)(𝑎1𝑐1𝑐2𝑐3𝑐4 − 𝑔0𝑎3𝑐1𝑐3𝑐4 + 𝑔0𝑔1𝑎5𝑐1𝑐3𝑐4) + 𝑔0𝑔1𝑎5𝑐1𝑐2𝑐3𝑐4}𝑠 + 𝑘𝑀(𝑠)𝑎0𝑐0𝑐1𝑐2𝑐3𝑐4  

5th NTF 𝑠(𝑠2 − 𝑔0𝑐1)(𝑠2 − 𝑔1𝑐2)(1 + 𝑎5𝑘𝑀(𝑠))𝑠5 + 𝑎4𝑐4𝑘𝑀(𝑠)𝑠4 + {(𝑎3𝑐3𝑐4 − 𝑔0𝑎5𝑐1 −  𝑔1𝑎5𝑐5)𝑘𝑀(𝑠) − (𝑔0𝑐1 + 𝑔1𝑐3)}𝑠3 + 𝑘𝑀(𝑠)(𝑎2𝑐2𝑐3𝑐4 − 𝑔0𝑎4𝑐1𝑐4)𝑠2 +{ 𝑘𝑀(𝑠)(𝑎1𝑐1𝑐2𝑐3𝑐4 − 𝑔0𝑎3𝑐1𝑐3𝑐4 + 𝑔0𝑔1𝑎5𝑐1𝑐3𝑐4) + 𝑔0𝑔1𝑎5𝑐1𝑐2𝑐3𝑐4}𝑠 + 𝑘𝑀(𝑠)𝑎0𝑐0𝑐1𝑐2𝑐3𝑐4  

Table 4.1: (First, Second, Third, Fourth and Fifth) Order CT ∑∆M STF and NTF 
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 Order                                  Calculated STFs and NTFs 

 STF 8.66𝑒08 𝑠 + 8.66𝑒08   
1st NTF 𝑠𝑠 + 8.66𝑒08   
 STF 0.01523 s2 +  6.764e17s2  +  1.155e09 s +  6.764e17 

2nd NTF s2  −  2.384e − 07 s +  9.554e15s2 +  1.155e09 s +  6.764e17  

 STF 1.736e07 s2   +  6.603e26s3 +  1.731e09 s2   +  1.512e18 s +  6.603e26 

3rd NTF s3   +  2.126e − 07 s2 +  1.433e16 s +  1.147e11s3  +  1.731e09 s2  +  1.512e18 s +  6.603e26  

 STF 7.991e − 05 s4  −  5.035e − 11 s3  +  2.278e16 s2 −  9.782e09 s +  8.116e35 s4 +  2.467e09 s3 +  3.062e18 s2  +  2.229e27 s +  8.116e35  

4th NTF s4  −  4.091e − 07 s3   +  1.911e16 s2  −  4.727e11 s +  4.564e31s4   +  2.467e09 s3  +  3.062e18 s2   +  2.229e27 s +  8.116e35  

 STF 1.738e05 s4  +  2.477e25 s2 +  7.061e44s5  +  3.002e09 s4  +  4.53e18 s3  +  4.232e27 s2  +  2.445e36 s +  7.061e44 

5th NTF s5  +  7.332e − 07 s4  +  2.388e16 s3  +  1.444e12 s2 +  1.141e32 s +  2.088e29s5  +  3.002e09 s4  +  4.53e18 s3  +  4.232e27 s2  +  2.445e36 s +  7.061e44  

Table 4.2: (First, Second, Third, Fourth and Fifth) Order CT ∑∆M Simulated STFs and NTFs 
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Chapter 5 

COMPARISION OF THE SIMULATION METHODS 

DT ∑∆Ms can be accurately modeled using difference equations because DT ∑∆Ms are 

simply made up of gains and delays; however, CT ∑∆Ms are more difficult to design and simulate 

than DT ∑∆Ms because of the mixed-signal nature of CT ∑∆Ms which use both analog and digital 

circuits in their loop filters. CT ∑∆Ms can be simulated using various approaches such as using 

MATLAB/Simulink, numerical integration methods such as the delta transform, SPICE modeling 

and solving differential equations. Each simulation method has a tradeoff between various metrics 

such as speed, accuracy, and simplicity.  

The various methods of simulations used in this thesis include the bilinear transform or 

trapezoidal integration, the impulse invariance transform, midpoint integration, Simpson’s rule, 

the delta transform or Euler’s forward integration rule and Simulink. These methods are used to 

simulate single-bit and multi-bit CT ∑∆Ms extending from first order to fifth order. These methods 

are compared with respect to accuracy which is obtained using signal to noise ratio (SNR) and 

dynamic range (DR), speed of simulation method or total elapsed time, and simplicity of the 

simulation method. Also, frequency domain analysis is done for all numerical methods and is 

compared to the CT ∑∆M’s frequency domain analysis and the correctness of the numerical 

integration s-domain to z-domain transformation formulas is shown. 

5.1   Bilinear Transform or Trapezoidal Integration 

 In (2.45), the bilinear transform or trapezoidal integration method relates the transfer function 

in s-domain, 𝐻(𝑠), and z-domain transfer function 𝐻(𝑧) using the relation 

     
1𝑠  →  𝑇2 1+𝑧−11−𝑧−1.       (5.1) 
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The transformation changes the s-domain integrators in a CT block diagram to z-domain 

integrators using bilinear transformation or trapezoidal integration as shown in Fig. 5.1. 

   y 

 

Figure 5.1: Trapezoidal Integrator Block Transformation  

For example, if the continuous time integrators in the second order CT ∑∆M block diagram shown 

in Fig 4.3 are replaced by their bilinear transform equivalents shown in Fig. 5.1, then the block 

diagram in Fig. 5.2 shows the DT bilinear transformation model of CT ∑∆M in Fig.4.3. The 

bilinear transformation’s sampling rate 𝑇 is chosen to be less than the CT ∑∆M’s sampling rate, 𝑇𝑠 .   

 

Figure 5.2: Second-order lowpass DT model ∑∆M block diagram using Trapezoidal Integration 

The block diagram in Fig. 5.2 can be used to determine difference equations that can be 

implemented in MATLAB. The following code implements the block diagram in Fig. 5.2. 

% Analysis of 2nd Order sigma delta modulator using Trapezoidal Integration 

for n = start: finish, 

% First state 

qdot(n,1) = b0 * x(n) - a0 * ydac(n-1) + g0 * q(n-1,2); 

q(n,1) = (T/2) * (qdot(n,1) + qdot(n-1,1)) + q(n-1,1); 

1𝑠 
𝑇(1 + 𝑧−1)2(1 − 𝑧−1) 
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% Second state 

qdot(n,2) = b1 * x(n) - a1 * ydac(n-1) + c0 * q(n,1); 

q(n,2) = (T/2) * (qdot(n,2) + qdot(n-1,2)) + q(n-1,2); 

% Input to quantizer 

Ψ(n) = b2 * x(n) + c1 * q(n,2) - a2 * ydac(n-1); 

% Quantizer 

yq(n) = sign(Ψ(n)); 

% DAC 

y(n) = y(n-1); 

if rem(n, TrapOSR) == 0,% Update quantizers every Delta samples 

y(n) = yq(n); 

end 

ydac(n) = y(n-D); % excess loop delay between quantizer and DAC 

end 

5.2   Impulse Invariance Transform 

In Table 2.2, the impulse invariance transform relates transfer function in s-domain, 𝐻(𝑠), to 

a z-domain transfer function 𝐻(𝑧) using the relation 1𝑠 → 𝑇1−𝑧−1.      (5.2) 

The transformation changes the s-domain integrators in a CT block diagram to z-domain 

integrators using impulse invariance transformation shown in Fig. 5.3. 

 

 

Figure 5.3: Impulse-Invariance Integrator Block Transformation 

Fig. 5.4 shows the block diagram of the CT ∑∆M in Fig. 4.3 where the integrators have been 

replaced by the impulse invariance equivalents.  

 

𝑇1 − 𝑧−1 
1𝑠 
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Figure 5.4: Second-order lowpass DT model ∑∆M block diagram using Impulse Invariance 

Transformation 

The difference equations describing the block diagram in Fig. 5.4 have been implemented in 

MATLAB using the following code: 

% Analysis of 2nd Order sigma delta modulator using Impulse Invariance Transformation 

for n = start: finish, 

% First state 

qdot(n,1) = b0 * x(n) - a0 * ydac(n-1) + g0 * q(n-1,2); 

q(n,1) = T *(qdot(n,1)) + q(n-1,1); 

% Second state 

qdot(n,2) = b1 * x(n) - a1 * ydac(n-1) + c0 * q(n,1); 

q(n,2) = T * (qdot(n,2)) + q(n-1,2); 

% Input to quantizer 

Ψ(n) = b2 * x(n) + c1 * q(n,2) - a2 * ydac(n-1); 

% Quantizer 

yq(n) = sign(Ψ(n)); 

% DAC 

y(n) = y(n-1); 

if rem(n, ImpulseOSR) == 0,% Update quantizers every Delta samples 

y(n) = yq(n); 

end 

𝑇1 − 𝑧−1 
𝑇1 − 𝑧−1 
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ydac(n) = y(n-D); % excess loop delay between quantizer and DAC 

end 

5.3  Midpoint Integration 

In (2.64), the midpoint integration method relates the transfer function in s-domain, 𝐻(𝑠), and 

z-domain transfer function 𝐻(𝑧) using the relation 1𝑠  → 2𝑇𝑧−11− 𝑧−2 .          (5.3) 

The transformation changes the s-domain integrators in a CT block diagram to z-domain 

integrators using midpoint integration shown in Fig. 5.5. 

 

 

Figure 5.5: Midpoint Integrator Block Transformation 

Fig. 5.6 shows the block diagram of the CT ∑∆M in Fig. 4.3 where the integrators have been 

replaced by the midpoint integration equivalents. 

  

Figure 5.6: Second-order lowpass DT model ∑∆M block diagram using Midpoint Integration 

The difference equations describing the block diagram in Fig. 5.6 have been implemented in 

MATLAB using the following code: 

% Analysis of 2nd Order sigma delta modulator using Midpoint Integration 

2𝑇𝑧−11 − 𝑧−2 
2𝑇𝑧−11 − 𝑧−2 

2𝑇𝑧−11− 𝑧−2  
1𝑠 
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for n = start: finish, 

% First state 

qdot(n,1) = b0 * x(n) - a0 * ydac(n-1) + g0 * q(n-2,2); 

q(n,1) = 2 * T * (qdot(n-2,1)) + q(n-2, 1); 

% Second state 

qdot(n,2) = b1 * x(n) - a1 * ydac(n-1) + c0 * q(n,1); 

q(n,2) = 2 * T * (qdot(n-2,2)) + q(n-2,2); 

% Input to quantizer 

Ψ(n) = b2 * x(n) + c1 * q(n,2) - a2 * ydac(n-1); 

% Quantizer 

yq(n) = sign(Ψ(n)); 

% DAC 

y(n) = y(n-1); 

if rem(n, MidpointOSR) == 0,% Update quantizers every Delta samples 

y(n) = yq(n); 

end 

ydac(n) = y(n-D); % excess loop delay between quantizer and DAC 

end      

5.4   Simpson’s Rule 

In (2.70), Simpson’s rule relates an s-domain transfer function 𝐻(𝑠) to a z-domain transfer 

function 𝐻(𝑧) using the relation 1𝑠  → 3𝑇 
1− 𝑧−21+4𝑧−1+𝑧−2.       (5.4) 

The transformation changes the s-domain integrators in all the block diagram to z-domain 

integrators using Simpson’s integration rule shown in Fig. 5.7. 

 

 

Figure 5.7: Simpsons Rule’s Integrator Block Transformation 

3𝑇 
1− 𝑧−21+4𝑧−1+𝑧−2 

1𝑠 
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Fig. 5.8 shows the block diagram of the CT ∑∆M in Fig. 4.3 where the integrators have been 

replaced by the Simpson’s rule integration equivalents. 

   

Figure 5.8: Second-order lowpass DT model ∑∆M block diagram using Midpoint Integration 

The difference equations describing the block diagram in Fig. 5.8 have been implemented in 

MATLAB using the following code: 

% Analysis of 2nd Order sigma delta modulator using Simpson’s Integration Rule 

for n = start: finish, 

% First state 

qdot(n,1) = b0 * x(n) - a0 * ydac(n-1) + g0 * q(n-2,2); 

q(n,1) = (T * ((qdot(n,1) + 4 * qdot(n-1,1) + qdot(n-1,1)) + 3 * q(n-2,1))/3; 

% Second state 

qdot(n,2) = b1 * x(n) - a1 * ydac(n-1) + c0 * q(n,1); 

q(n,2) = (T * ((qdot(n,2) + 4 * qdot(n-1,2) + qdot(n-1,2)) + 3 * q(n-2,2))/3; 

% Input to quantizer 

Ψ(n) = b2 * x(n) + c1 * q(n,2) - a2 * ydac(n-1); 

% Quantizer 

yq(n) = sign(Ψ(n)); 

% DAC 

y(n) = y(n-1); 

if rem(n, SimpsonsOSR) == 0,% Update quantizers every Delta samples 

y(n) = yq(n); 

𝑇(1 + 4𝑧−1 + 𝑧−2)3(1 −  𝑧−2)  
𝑇(1 + 4𝑧−1 + 𝑧−2)3(1 −  𝑧−2)  
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end 

ydac(n) = y(n-D); % excess loop delay between quantizer and DAC 

end     

5.5   Delta Transform or Euler’s Forward Integration Rule 

 In (2.56), the delta transform or Euler’s forward integration method relates transfer function 

in s-domain, 𝐻(𝑠), to a z-domain transfer function 𝐻(𝑧) using the relation 1𝑠  → 𝑇𝑧−11− 𝑧−1 .         (5.5) 

The transformation changes the s-domain integrators in a CT block diagram to z-domain 

integrators using delta transformation shown in Fig. 5.9.  

 

 

Figure 5.9: Delta Integrator Block Transformation 

Fig. 5.10 shows the block diagram of the CT ∑∆M represented in Fig. 4.3 where the integrators 

have been replaced by the delta transform equivalents.  

  

Figure 5.10: Second-order lowpass DT model ∑∆M block diagram using Midpoint Integration 

The difference equations describing the block diagram in Fig. 5.10 have been implemented in 

MATLAB using the following code: 

𝑇𝑧−11 − 𝑧−1 
𝑇𝑧−11 − 𝑧−1 

𝑇𝑧−11− 𝑧−1  
1𝑠 
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% Analysis of 2nd Order sigma delta modulator using Delta Transform 

for n = start: finish, 

% First state 

qdot(n,1) = b0 * x(n) - a0 * ydac(n-1) + g0 * q(n-1,2); 

q(n,1) = T * qdot(n-1,1) + q(n-1,1); 

% Second state 

qdot(n,2) = b1 * x(n) - a1 * ydac(n-1) + c0 * q(n,1); 

q(n,2) = T * qdot(n-1,2) + q(n-1,2); 

% Input to quantizer 

Ψ(n) = b2 * x(n) + c1 * q(n,2) - a2 * ydac(n-1); 

% Quantizer 

yq(n) = sign(Ψ(n)); 

% DAC 

y(n) = y(n-1); 

if rem(n, DeltaOSR) == 0,% Update quantizers every Delta samples 

y(n) = yq(n); 

end 

ydac(n) = y(n-D); % excess loop delay between quantizer and DAC 

end   

5.6 MATLAB/Simulink 

Modeling schematics in Simulink is often simple because the required blocks can be dragged 

and connected and simulated easily. Also, simulations with Simulink do not take much simulation 

time. However, the accuracy of the Simulink depends on the proper selection of the Simulink 

models [8]. Also, since the blocks used in Simulink are ideal blocks, non-idealities in real circuits 

are not modeled easily in Simulink simulations. 

MATLAB/Simulink provides a set of solvers and each Simulink solver uses a particular 

method to solve a model. Since, the models are represented by difference equations, the solver 
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applies numerical methods to solve the equations. Simulink solvers are classified as either 

continuous solvers or discrete solvers in terms of nature of states in the Simulink model. 

Continuous solvers use numerical integration methods to compute the continuous states of a model 

and these solvers depend on individual blocks to compute values of discrete states at each step. 

Discrete solvers are used only for solving purely discrete models. Solvers are classified in terms 

of step-size as either a fixed-step solver or a variable-step solver. Lower step size usually results 

in more accurate simulation but at the cost of an increase in simulation time. For the fixed-step 

solver, the step-size is fixed throughout the simulation either by the user at the start of simulation 

or is fixed automatically by the solver. For a variable-step solver, the step size varies dynamically 

during the simulation depending upon the dynamics of the solver. When the states of any model 

vary rapidly, the step-size is reduced but when the states of a model vary slowly, the step-size is 

increased. Depending upon number of steps, solvers can be classified as either one-step or 

multistep continuous solvers, and depending upon the order, solvers are classified as either single-

order or variable-order solvers. Also, the solvers are categorized as implicit and explicit solvers. 

Implicit solvers are used for solving problems that are stiff whereas explicit solvers are used for 

solving problems that are non-stiff. If the desired solution of any differential equation varies slowly 

but there are closer solutions of the differential equation which vary rapidly, then this type of 

problem is classified as a stiff-problem and stiff problems are solved by using implicit solvers. 

They have to be suitable for both slowly and quickly varying dynamic models. But for non-varying 

continuous dynamics, explicit solvers are efficient as they can use larger step-sizes and this also 

reduces the computation time.  

The classification of Simulink solvers has been summarized in Table 5.1. 

Note: The desired solution to a differential equation varies very slowly in stiff problems. But there are closer solutions that vary rapidly. But for non-stiff problems, 

the desired solution to a differential equation varies rapidly. 
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Criteria Classification 

▪ Order of the Solver ▪ Single-Order Solver 

▪ Variable-Order Solver 

▪ Number of steps ▪ One-step Solver 

▪ Multistep Solver 

▪ Nature of states ▪ Continuous Solvers 

▪ Explicit Solvers 

▪ Step-size used in Computation ▪ Fixed-step Solvers 

▪ Variable-step Solvers 

▪ Nature of the problem ▪ Implicit Solvers 

▪ Explicit Solvers 

Table 5.1: Classification of Simulink Solvers 

For this thesis, the Simulink solvers used for modeling CT ∑∆Ms are variable-step explicit 

solvers and they are: 

• Ode23: Solver uses Runge-Kutta, Bogacki and Shampine (2, 3) pair explicit 

method for numerically integrating differential equations. Three function 

evaluations per steps are used in Ode23 solver. 

• Ode45: Solver uses Runge-Kutta, Dormand-Prince (4, 5) pair explicit method for 

solving ordinary differential equations. It uses six function evaluations to calculate 

fourth-order and fifth order accurate solutions. It is the default solver of Simulink 

especially designed for solving models with continuous states. 

The Simulink schematics of first, second, third, fourth and fifth-order CT ∑∆Ms using 3-

bit quantizers are shown in Fig. 5.12, Fig. 5.13, Fig. 5.14, Fig. 5.15, and Fig. 5.16 respectively. 
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Figure 5.11: Simulink model for a three-bit first-order CT ∑∆M 

 

Figure 5.12: Simulink model for a three-bit second-order CT ∑∆M 
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Figure 5.13: Simulink model for a three-bit third-order CT ∑∆M 

 

Figure 5.14: Simulink model for a three-bit fourth-order CT ∑∆M 
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Figure 5.15: Simulink model for a three-bit fifth-order CT ∑∆M 

5.7  Simulation Method Comparison 

To compare the five numerical integration methods (delta transform, impulse invariance, 

midpoint integration, Simpson’s rule and trapezoidal integration) and two CT ∑∆M Simulink 

solver models (ode23 and ode45), five first, second, third, fourth and fifth order single-bit, two-bit 

and three-bit CT ∑∆Ms are simulated. The specifications are given in Table 5.1. 

Specification  

Number of bits in the quantizer 1, 2, 3 

Order of the loop filter 1, 2, 3, 4, 5 

∑∆M Sampling Frequency 1 GHz 

∑∆M Bandwidth 20 MHz 

Input Frequency 1 MHz (1st order), 19MHz (2nd order, 4th order, 5th  

Order), 10MHz (3rd  order) 

Integration Over Sampling Ratio (OSR) 10 

Table 5.2: Simulation Condition 
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The signal to noise ratios (SNRs), dynamic ranges (DRs) and the total simulation time values 

of all single-bit, two-bit and three-bit CT ∑∆Ms using all the simulation methods have been 

tabulated in the sections that follow. Also, the magnitude spectrum of all the simulation methods 

are compared. For calculating the SNR, the total signal power has been divided by the total noise 

power. For calculating the DR, the ratio of the signal power has been divided by the maximum 

noise signal power multiplied by the number of noise signals in the required bandwidth of 20 MHz. 

Both the SNR and DR values have been converted into decibels (dBs). For calculating the 

simulation time, MATLAB’s builtin function cputime has been used during the code 

simulation. The average SNRs, DRs and the values of total simulation time have been calculated 

for all simulation methods and all orders of CT ∑∆Ms. 

5.7.1 First Order CT ∑∆M Simulation Results 

Table 5.3 shows the signal to noise ratios, dynamic ranges and the total simulation times 

obtained from the first-order single-bit CT ∑∆M simulations.  

Simulation Methods SNR (dB) DR (dB) Time (sec) 

Delta Transform 35.17 15.57 0.36 

Impulse Invariance 34.89 15.44 0.36 

Midpoint Integration 34.41 15.63 0.43 

Simpsons Rule 34.89 15.49 0.43 

Trapezoidal Integration 35.00 15.54 0.39 

Simulink (Ode45) 32.95 15.55 0.90 

Simulink (Ode23) 33.04 15.54 0.78 

Table 5.3: SNR, DR and total simulation time for first-order single-bit CT ∑∆M 

Fig. 5.16 shows the magnitude spectrum of all the simulation methods for first-order single-bit 

CT∑∆Ms. 
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a) 

 

b) 

Figure 5.16: The combined output magnitude spectrum of the simulation methods for first-order 

single-bit CT ∑∆M a) full-magnitude spectrum b) half-magnitude spectrum 

Table 5.4 shows the signal to noise ratios, dynamic ranges and the total simulation times 

obtained from the first-order two-bit CT ∑∆M simulations.  
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Simulation Methods SNR (dB) DR (dB) Time (sec) 

Delta Transform 37.83 15.57 0.37 

Impulse Invariance 37.72 15.57 0.42 

Midpoint Integration 37.73 15.61 0.38 

Simpsons Rule 37.75 15.55 0.43 

Trapezoidal Integration 37.89 15.53 0.38 

Simulink (Ode45) 37.22 15.53 0.97 

Simulink (Ode23) 37.71 15.55 0.78 

Table 5.4: SNR, DR and total simulation time for first-order two-bit CT ∑∆M 

Fig. 5.17 shows the magnitude spectrum of all the simulation methods for first-order two-bit CT 

∑∆Ms. 

 

      a) 
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      b) 

Figure 5.17: The combined output magnitude spectrum of the simulation methods for first-order 

two-bit CT ∑∆M a) full-magnitude spectrum b) half-magnitude spectrum 

Table 5.5 shows the signal to noise ratios, dynamic ranges and the total simulation times 

obtained from the first-order three-bit CT ∑∆M simulations.  

Simulation Methods SNR (dB) DR(dB) Time (sec) 

Delta Transform 38.34 15.57 0.37 

Impulse Invariance 38.24 15.53 0.43 

Midpoint Integration 38.25 15.51 0.39 

Simpsons Rule 38.21 15.49 0.43 

Trapezoidal Integration 38.30 15.54 0.39 

Simulink (Ode45) 38.30 15.56 0.91 

Simulink (Ode23) 38.22 15.55 0.77 

Table 5.5: SNR, DR and total simulation time for first-order three-bit CT ∑∆M 

Fig. 5.18 shows the magnitude spectrum of all the simulation methods for first-order three-bit CT 

∑∆Ms. 
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a) 

 

b) 

Figure 5.18: The combined output magnitude spectrum of the simulation methods for first-

order three-bit CT ∑∆M a) full-magnitude spectrum b) half-magnitude spectrum 
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5.7.2 Second Order CT ∑∆M Simulation Results 

Table 5.6 shows the signal to noise ratios, dynamic ranges and the total simulation times 

obtained from the second order single-bit CT ∑∆M simulations.  

Simulation Methods SNR (dB) DR (dB) Time (sec) 

Delta Transform 51.84 41.38 0.48 

Impulse Invariance 50.34 38.76 0.50 

Midpoint Integration 50.31 38.39 0.46 

Simpsons Rule 51.93 39.33 0.65 

Trapezoidal Integration 51.41 38.38 0.50 

Simulink (Ode45) 35.59 15.64 0.93 

Simulink (Ode23) 35.27 14.84 0.92 

Table 5.6: SNR, DR and total simulation time for second-order single-bit CT ∑∆M 

Fig.5.19 shows the magnitude spectrum of all the simulation methods for second order single-bit  

CT ∑∆Ms. 

 

a) 
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b) 

Figure 5.19: The combined output magnitude spectrum of the simulation methods for second-

order single-bit CT ∑∆M a) full-magnitude spectrum b) half-magnitude spectrum 

Table 5.7 shows the signal to noise ratios, dynamic ranges and the total simulation times 

obtained from the second order 2-bit CT ∑∆M simulations.  

Simulation Methods SNR (dB) DR (dB) Time (sec) 

Delta Transform 58.50 47.90 0.53 

Impulse Invariance 58.56 47.59 0.50 

Midpoint Integration 58.32 46.04 0.53 

Simpsons Rule 59.40 44.98 0.65 

Trapezoidal Integration 58.52 43.63 0.51 

Simulink (Ode45) 37.31 15.18 1.07 

Simulink (Ode23) 35.53 15.36 0.99 

Table 5.7: SNR, Dynamic Range and total simulation time for Second Order (2-bit) CT ∑∆M 

Figure5.20 shows the magnitude spectrum of all the simulation methods for second-order two-bit  

CT ∑∆Ms. 
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a) 

 

b) 

Figure 5.20: The combined output magnitude spectrum of the simulation methods for second-

order 2-bit CT ∑∆M a) full-magnitude spectrum b) half-magnitude spectrum 

Table 5.8 shows the signal to noise ratios, dynamic ranges and the total simulation times 

obtained from the second-order three-bit CT ∑∆M simulations.  

 



99 
 

Simulation Methods SNR (dB) DR (dB) Time (sec) 

Delta Transform 66.59 54.50 0.53 

Impulse Invariance 66.42 53.33 0.50 

Midpoint Integration 66.40 52.16 0.53 

Simpsons Rule 66.72 54.17 0.67 

Trapezoidal Integration 66.37 51.93 0.51 

Simulink (Ode45) 38.27 15.33 1.11 

Simulink (Ode23) 38.24 15.42 0.95 

Table 5.8: SNR, Dynamic Range and total simulation time for second-order three-bit CT ∑∆M 

Fig. 5.21 shows the magnitude spectrum of all the simulation methods for second-order three-bit 

CT ∑∆Ms. 

 

a) 
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b) 

Figure 5.21: The combined output magnitude spectrum of the simulation methods for second-

order three-bit CT ∑∆M a) full-magnitude spectrum b) half-magnitude spectrum 

5.7.3 Third Order CT ∑∆M Simulation Results 

Table 5.9 shows the signal to noise ratios, dynamic ranges and the total simulation times 

obtained from the third order single-bit CT ∑∆M simulations.  

Simulation Methods SNR (dB) DR (dB) Time (sec) 

Delta Transform 58.97 47.25 0.57 

Impulse Invariance 55.66 44.92 0.54 

Midpoint Integration 59.12 46.85 0.54 

Simpsons Rule 61.44 47.33 0.83 

Trapezoidal Integration 60.29 46.77 0.56 

Simulink (Ode45) 37.28 15.09 1.09 

Simulink (Ode23) 37.10 15.50 1.04 

Table 5.9: SNR, Dynamic Range and total simulation time for third order single-bit CT ∑∆M 
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Fig. 5.22 shows the magnitude spectrum of all the simulation methods for third-order single-bit 

CT ∑∆Ms. 

 

a) 

 

      b) 

Figure 5.22: The combined output magnitude spectrum of the simulation methods for third-order 

single-bit CT ∑∆M a) full-magnitude spectrum b) half-magnitude spectrum 
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Table 5.10 shows the signal to noise ratios, dynamic ranges and the total simulation times 

obtained from the third order 2-bit CT ∑∆M simulations.  

Simulation Methods SNR (dB) DR (dB) Time (sec) 

Delta Transform 69.11 58.69 0.56 

Impulse Invariance 68.80 55.80 0.54 

Midpoint Integration 68.52 57.02 0.55 

Simpsons Rule 69.22 56.89 0.83 

Trapezoidal Integration 68.78 57.38 0.57 

Simulink (Ode45) 37.91 15.14 1.00 

Simulink (Ode23) 38.11 15.49 0.99 

Table 5.10: SNR, Dynamic Range and total simulation time for third-order two-bit CT ∑∆M 

Fig. 5.22 shows the magnitude spectrum of all the simulation methods for third-order single-bit 

CT ∑∆Ms. 

 

a) 
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      b) 

Figure 5.23: The combined output magnitude spectrum of the simulation methods for third-order 

two-bit CT ∑∆M a) full-magnitude spectrum b) half-magnitude spectrum 

Table 5.11 shows the signal to noise ratios, dynamic ranges and the total simulation times 

obtained from the third order three-bit CT ∑∆M simulations.  

Simulation Methods SNR (dB) DR (dB) Time (sec) 

Delta Transform 73.40 59.42 0.54 

Impulse Invariance 72.26 60.25 0.56 

Midpoint Integration 73.93 61.76 0.54 

Simpsons Rule              74.63 62.13 0.83 

Trapezoidal Integration 73.97 61.21 0.55 

Simulink (Ode45) 38.36 15.37 0.99 

Simulink (Ode23) 38.35 15.45 0.89 

Table 5.11: SNR, Dynamic Range and total simulation time for Third Order (3-bit) CT ∑∆M 

Fig. 5.16 shows the magnitude spectrum of all the simulation methods for third-order three-bit CT 

∑∆Ms. 
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      a) 

 

      b) 

Figure 5.24: The combined output magnitude spectrum of the simulation methods for third-order 

three-bit CT ∑∆M a) full-magnitude spectrum b) half-magnitude spectrum 
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5.7.4 Fourth Order CT ∑∆M Simulation Results 

Table 5.12 shows the signal to noise ratios, dynamic ranges and the total simulation times 

obtained from the fourth-order single-bit CT ∑∆M simulations.  

Simulation Methods SNR (dB) DR (dB) Time (sec) 

Delta Transform 65.33 51.51 0.59 

Impulse Invariance 66.02 54.85 0.57 

Midpoint Integration 65.33 55.04 0.57 

Simpsons Rule 66.29 53.92 1.00 

Trapezoidal Integration 66.13 54.92 0.60 

Simulink (Ode45) 37.81 15.92 1.23 

Simulink (Ode23) 37.63 15.60 1.15 

Table 5.12: SNR, Dynamic Range and total simulation time for fourth-order single-bit CT ∑∆M 

Fig. 5.25 shows the magnitude spectrum of all the simulation methods for fourth-order single-bit 

CT ∑∆Ms. 

 

      a) 
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      b) 

Figure 5.25: The combined output magnitude spectrum of the simulation methods for fourth-

order single-bit CT ∑∆M a) full-magnitude spectrum b) half-magnitude spectrum 

Table 5.13 shows the signal to noise ratios, dynamic ranges and the total simulation times 

obtained from the fourth-order two-bit CT ∑∆M simulations. 

Simulation Methods SNR (dB) DR (dB) Time (sec) 

Delta Transform 72.41 61.24 0.59 

Impulse Invariance 72.11 61.18 0.57 

Midpoint Integration 72.12 63.37 0.57 

Simpsons Rule 72.82 60.63 1.00 

Trapezoidal Integration 72.38 59.16 0.59 

Simulink (Ode45) 38.20 15.49 1.18 

Simulink (Ode23) 38.36 14.58 1.17 

Table 5.3: SNR, Dynamic Range and total simulation time for fourth-order two-bit CT ∑∆M 

Figure5.16 shows the magnitude spectrum of all the simulation methods for fourth-order two-bit 

CT ∑∆Ms. 
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      a) 

 

      b) 

Figure 5.26: The combined output magnitude spectrum of the simulation methods for fourth-

order two-bit CT ∑∆M a) full-magnitude spectrum b) half-magnitude spectrum 
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Table 5.14 shows the signal to noise ratios, dynamic ranges and the total simulation times 

obtained from the fourth order three-bit CT ∑∆M simulations.  

Simulation Methods SNR (dB) DR (dB) Time (sec) 

Delta Transform 77.75 65.95 0.60 

Impulse Invariance 77.55 67.36 0.57 

Midpoint Integration 77.62 66.11 0.57 

Simpsons Rule 78.12 68.67 1.04 

Trapezoidal Integration 77.75 65.74 0.60 

Simulink (Ode45) 38.59 15.55 1.40 

Simulink (Ode23) 38.27 15.51 1.21 

Table 5.14: SNR, Dynamic Range and total simulation time for fourth-order three-bit CT ∑∆M 

Fig. 5.27 shows the magnitude spectrum of all the simulation methods for fourth-order three-bit 

CT ∑∆Ms. 

 

a) 
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b) 

Figure 5.27: The combined output magnitude spectrum of the simulation methods for fourth-

order three-bit CT ∑∆M a) full-magnitude spectrum b) half-magnitude spectrum 

5.7.5 Fifth Order CT ∑∆M 

Table 5.15 shows the signal to noise ratios, dynamic ranges and the total simulation times 

obtained from the fifth-order single-bit CT ∑∆M simulations.  

Simulation Methods SNR (dB) DR (dB) Time (sec) 

Delta Transform 68.16 49.74 0.67 

Impulse Invariance 66.42 48.08 0.64 

Midpoint Integration 66.54 47.31 0.64 

Simpsons Rule 68.34 50.07 1.20 

Trapezoidal Integration 66.75 47.41 0.67 

Simulink (Ode45) 38.22 15.53 1.50 

Simulink (Ode23) 38.36 15.62 1.29 

Table 5.15: SNR, Dynamic Range and total simulation time for fifth-order single-bit CT ∑∆M 
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Fig. 5.28 shows the magnitude spectrum of all the simulation methods for first order single-bit CT 

∑∆Ms. 

 

      a) 

 

      b) 

Figure 5.28: The combined output magnitude spectrum of the simulation methods for fifth-order 

single-bit CT ∑∆M a) full-magnitude spectrum b) half-magnitude spectrum 
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Table 5.16 shows the signal to noise ratios, dynamic ranges and the total simulation times 

obtained from the fifth-order two-bit CT ∑∆M simulations.  

Simulation Methods SNR (dB) DR (dB) Time (sec) 

Delta Transform 74.08 58.11 0.67 

Impulse Invariance 75.51 59.26 0.66 

Midpoint Integration 75.38 57.01 0.64 

Simpsons Rule 75.55 54.11 1.20 

Trapezoidal Integration 75.47 57.74 0.66 

Simulink (Ode45) 38.40 15.51 1.50 

Simulink (Ode23) 38.37 15.51 1.36 

Table 5.16: SNR, Dynamic Range and total simulation time for fifth-order two-bit CT ∑∆M 

Fig. 29 shows the magnitude spectrum of all the simulation methods for fifth-order two-bit CT 

∑∆Ms. 

 

a) 
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      b) 

Figure 5.29: The combined output magnitude spectrum of the simulation methods for fifth-

order two-bit CT ∑∆M a) full-magnitude spectrum b) half-magnitude spectrum 

Table 5.17 shows the signal to noise ratios, dynamic ranges and the total simulation times 

obtained from the fifth-order three-bit CT ∑∆M.  

Simulation Methods SNR (dB) DR (dB) Time (sec) 

Delta Transform 80.16 61.39 0.67 

Impulse Invariance 80.12 64.37 0.67 

Midpoint Integration 79.49 62.94 0.66 

Simpsons Rule 80.33 61.60 1.18 

Trapezoidal Integration 80.05 64.66 0.68 

Simulink (Ode45) 38.42 15.57 1.42 

Simulink (Ode23) 38.42 15.55 1.23 

Table 5.17: SNR, Dynamic Range and total simulation time for fifth-order three-bit CT ∑∆M 

Fig. 30 shows the magnitude spectrum of all the simulation methods for fifth order three-bit CT 

∑∆Ms. 
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      a) 

 

      b) 

Figure 5.30: The combined output magnitude spectrum of the simulation methods for fifth-

order three-bit CT ∑∆M a) full-magnitude spectrum b) half-magnitude spectrum 
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5.7.6 Data Comparison 

The tabulated data are compared on the basis of speed that is given by the total simulation 

time taken by the simulation methods and obtained signal to noise ratio in the following sections. 

5.7.6.1     Based on SNR 

In this section, the average calculated SNR values of five single-bit, two-bit and three-bit 

(first, second, third, fourth and fifth order) CT ∑∆Ms as a function of all the simulation methods 

has been shown in charts and the values have been compared. 

 

Figure 5.31: Average SNR of five single-bit, two-bit and three-bit first-order CT ∑∆Ms as a 

function of simulation method 

The SNR values obtained from the first-order CT ∑∆Ms simulation methods do not have 

a noticeable difference. However, there is noticeable difference in the SNR values of single-bit, 

two-bit and three-bit CT ∑∆Ms. The single-bit first-order CT ∑∆Ms have the lowest SNR values 

while the three-bit first-order CT ∑∆Ms have the highest SNR values. This is an expected result 

because the value of signal to noise ratio increases with increasing number of bits. However, the 

SNR value using CT ∑∆M is very high than that theoretical SNR value given by (2.15) which for 

three-bit ADC is around 20 dB.   
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Figure 5.32: Average SNR of five single-bit, two-bit and three-bit second-order CT ∑∆Ms as a 

function of simulation method 

The SNR values obtained from the second-order CT ∑∆Ms simulation methods show that 

the numerical integration methods have better SNR than both the Simulink solver models (ode45 

and ode23). There is noticeable difference in the SNR values of single-bit, two-bit and three-bit 

CT ∑∆Ms. The single-bit CT ∑∆Ms have the lowest SNR values while the three-bit CT ∑∆Ms 

have the highest SNR values. This is an expected result because the value of signal to noise ratio 

increases with increasing number of bits.   
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Figure 5.33: Average SNR of five single-bit, two-bit and three-bit third-order CT ∑∆Ms as a 

function of simulation method 

The SNR values obtained from the third-order CT ∑∆Ms simulation methods also show 

that the numerical integration methods have better SNR than both the Simulink solver models 

(ode45 and ode23). The single-bit CT ∑∆Ms have the lowest SNR values while the three-bit CT 

∑∆Ms have the highest SNR values.  

 

Figure 5.34: Average SNR of five single-bit, two-bit and three-bit fourth-order CT ∑∆Ms as a 

function of simulation method 

The SNR values obtained from the fourth-order CT ∑∆Ms simulation methods also show 

that the numerical integration methods have better SNR than both the Simulink solver models 

(ode45 and ode23). The single-bit CT ∑∆Ms have the lowest SNR values while the three-bit CT 

∑∆Ms have the highest SNR values.  
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Figure 5.35: Average SNR of five single-bit, two-bit and three-bit fifth-order CT ∑∆Ms as a 

function of simulation method 

The SNR values obtained from the fifth-order CT ∑∆Ms simulation methods also show that 

the numerical integration methods have better SNR than both the Simulink solver models (ode45 

and ode23). The single-bit CT ∑∆Ms have the lowest SNR values while the three-bit CT ∑∆Ms 

have the highest SNR values.  

Fig 5.36 shows the chart showing SNR values versus order of the filter by bits using delta 

transform. 

 

Figure 5.36: SNR vs Filter Order by bits using delta transform. 
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Fig 5.37 shows the chart showing the SNR values versus order of the filter by bits using 

impulse invariance method. 

 

Figure 5.37: SNR vs Filter Order by bits using impulse invariance method 

Fig 5.38 shows the chart showing the SNR values versus order of the filter by bits using 

midpoint integration. 

 

Figure 5.38: SNR vs Filter Order by bits using midpoint integration. 

Fig 5.39 shows the chart showing the SNR values versus order of the filter by bits using 

Simpsons rule. 
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Figure 5.39: SNR vs Filter Order by bits using Simpsons rule 

Fig 5.40 shows the chart showing the SNR values versus order of the filter by bits using 

trapezoidal integration. 

 

Figure 5.40: SNR vs Filter Order by bits using trapezoidal integration. 

Fig 5.41 shows the chart showing the SNR values versus order of the filter by bits using 

Simulink(ode45) solver. 
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Figure 5.41: SNR vs Filter Order by bits using Simulink(ode45) solver. 

Fig 5.42 shows the chart showing the SNR values versus order of the filter by bits using 

Simulink(ode23) solver. 

 

Figure 5.42: SNR vs Filter Order by bits using Simulink(ode23) solver 

Fig. 4.43 shows the values of SNR values versus order of filter for one, two and three bit 

all CT ∑∆M simulation methods. 

30

31

32

33

34

35

36

37

38

39

40

1st Order 2nd Order 3rd Order 4th Order 5th Order

1-bit 2-bit 3-bit

31

32

33

34

35

36

37

38

39

1st Order 2nd Order 3rd Order 4th Order 5th Order

1-bit 2-bit 3-bit



121 
 

 

Figure 5.43: SNR vs filter order for one, two and three-bit CT ∑∆M simulation methods 

Overall comparison shows that the SNRs obtained from the numerical integration methods 

are better than that obtained from Simulink simulation. Among the numerical integration methods, 

Simpsons has better SNR than other numerical integration methods. Also, the values of SNR 

increase with increasing number of bits and increasing order of the filter for all the simulation 

methods. 

5.7.6.2 Based on total Simulation Time 

In this section, the average calculated simulation time values of five single-bit, two-bit and 

three-bit (first, second, third, fourth and fifth-order) CT ∑∆Ms as a function of all the simulation 

methods has been shown in charts and the values have been compared. 
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Figure 5.44: Average simulation times of five single-bit, two-bit and three-bit first-order CT 

∑∆Ms as a function of simulation method 

Figure 5.45: Average simulation times of five single-bit, two-bit and three-bit second-order CT 

∑∆Ms as a function of simulation method 
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Figure 5.46: Average simulation times of five single-bit, two-bit and three-bit third-order CT 

∑∆Ms as a function of simulation method 

 

Figure 5.47: Average simulation times of five single-bit, two-bit and three-bit fourth-order CT 

∑∆Ms as a function of simulation method 

0

0.2

0.4

0.6

0.8

1

1.2

1-bit 2-bit 3-bit

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1-bit 2-bit 3-bit



124 
 

 

Figure 5.48: Average simulation times of five single-bit, two-bit and three-bit fifth-order CT 

∑∆Ms as a function of simulation method 

In all the charts, it is seen that almost all the numerical integration methods performed in 

almost same amount of time, but the Simulink models took quite longer simulation time. Among 

the numerical integration methods, Simpsons numerical integration method took maximum 

simulation time. In the Simulink models, Simulink ode45 solver took longer simulation time than 

simulation time taken by Simulink ode23 solver. Overall simulation time comparison shows that 

the default ode45 Simulink solver took maximum time for simulation. 

5.7.6.3 Based on Simplicity  

Table 5.18 shows the ranking of the simulation methods on the basis of simplicity. The 

simulation method with the lowest number of stars is the most difficult simulation method whereas 

the simulation method with the highest number of stars is the simplest simulation method. 
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Simulation Method Simplicity 

Delta Transform *** 

Impulse Invariance *** 

Midpoint Integration *** 

Simpsons Rule *** 

Trapezoidal Integration *** 

Simulink (Ode45) ***** 

Simulink (Ode23) ***** 

Table 5.18: Comparison of simulation methods on the basis of simplicity 

Among the simulation methods, Simulink was the simplest method of simulation because of the 

availability of required blocks in Simulink. Numerical integration methods were comparatively 

difficult because they required derivation of their respective s-domain to z-domain formula and 

after the formula derivation, they had to be implemented in MATLAB code. The overall simulation 

process was complicated. Simpsons numerical integration method was the most difficult 

simulation because it was difficult to derive the difference equations and convert it into MATLAB 

code. 

5.7.7  Frequency domain analysis 

To prove the correctness of the numerical integration s-domain to z-domain transformation 

formula, frequency domain analysis has been done.  MATLAB’s Symbolic Math Toolbox has 

been used to convert the s-domain STFs and NTFs to z-domain STFs and NTFs and the respective 

magnitude response sand phase responses of the NTFs have been plotted.  

Fig. 5.49 shows the comparison of the magnitude response and phase response of s-domain 

NTF and Delta transform’s z-domain NTF. 
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Figure 5.49: s-domain NTF and Delta transform’s z-domain frequency response comparison 

In Fig. 5.49, both the magnitude response and phase response of s-domain NTF and Delta 

transform’s z-domain NTF match and this shows that the formula is correct. 

Fig. 5.50 shows the comparison of the magnitude response and phase response of s-domain 

NTF and Bilinear transform’s z-domain NTF. 
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Figure 5.50: s-domain NTF and Bilinear transform’s z-domain frequency response 

comparison 

In Fig. 5.50, both the magnitude and phase response of s-domain NTF and Bilienar transform’s z-

domain NTF match and this shows that the formula is correct. 

Fig. 5.51 shows the comparison of the magnitude and phase response of s-domain NTF and 

Midpoint Integration’s z-domain NTF. 

 



128 
 

 

Figure 5.51: s-domain NTF and Midpoint integration’s z-frequency response comparison 

In Fig. 5.51, both the magnitude and phase response of s-domain NTF and Midpoint integration’s 

z-domain NTF match and this shows that the formula is correct. 

Fig. 5.52 shows the comparison of the magnitude and phase response of s-domain NTF and 

Simpsons rule’s z-domain NTF. 
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Figure 5.52: s-domain NTF and Simpsons integration’s z-domain frequency response 

comparison 

In Fig. 5.52, both the magnitude and phase response of s-domain NTF and Simpsons rule’s z-

domain NTF match and this shows that the formula is correct. 

Fig. 5.53 shows the comparison of the magnitude and phase response of s-domain NTF and 

Impulse Invariance transformation’s z-domain NTF. 
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Figure 5.53: s-domain NTF and Impulse Invariance Transformation’s z-domain frequency 

response comparison 

In Fig. 5.53, both the magnitude and phase response of s-domain NTF and Impulse Invariance 

transformation’s z-domain NTF match and this shows that the formula is correct. 

Thus, the above magnitude and phase comparison plots prove the correctness of the derived 

s-domain to z-domain transformation formulas. 
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Chapter 6 

CONCLUSION AND FUTURE WORK 

In this thesis, methods for simulating single-bit and multi-bit CT ∑∆Ms are developed. The 

various methods of simulations include the bilinear transform or trapezoidal integration, impulse 

invariance transform, midpoint integration, Simpson’s rule, delta transform or Euler’s forward 

integration rule and Simulink (ode45 and ode23) modeling. These methods are compared with 

respect to simulated signal to noise ratio, dynamic range, total elapsed time, frequency response 

and performance which includes accuracy, simplicity, and speed of the simulation method. The 

CT ∑∆Ms are extended from first order up to fifth order with one, two and three bit quantizers. 

Also, the frequency domain analysis is done for all the orders of CT ∑∆Ms in order to prove the 

correctness of the transformation formulas. 

This thesis describes how the numerical integration methods and Simulink can be used in CT 

∑∆Ms simulations. The correctness of all the numerical integration methods is proved by 

comparing the magnitude reponses and phase responses of the s-domain NTFs and z-domain NTFs 

which is obtained by using the numerical integration s-domain to z-domain formulas. The 

numerical integration methods had better SNR than Simulink models (ode45 and ode23). Among 

the numerical integration method, Simpson’s rule had better SNR. Along with that, the numerical 

integration simulation methods were also faster than Simulink simulations. However, CT ∑∆M 

simulation using Simulink was simpler because of the availability of the required blocks. But while 

comparing the overall advantages, numerical integration methods performed better than Simulink 

models.   

Currently, the proposed work just shows how various numerical integration methods and how 

Simulink can be used to simulate one-bit, two-bit and three-bit first, second, third, fourth and fifth-
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order CT ∑∆Ms. It would be interesting to model various non-idealities such as operational 

amplifier noise, clock jitter, integrator non-idealities, finite DC gain, slew rate, finite bandwidth, 

amplifier saturation and transconductor nonlinearities that are associated with the CT ∑∆Ms.  

Another significant area to work on is the stability of the CT ∑∆Ms. It would be interesting 

to determine the stability criteria and do the stability analysis of the CT ∑∆Ms using methods such 

as analytical root locus. 

Also, since this thesis is limited to just fifth-order CT ∑∆Ms, it would be interesting to work 

on even higher orders CT ∑∆Ms. 
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