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Abstract

The paper deals with frequency estimation methods of sine-wave signals for a few signal cycles and consists

of two parts. The first part contains a short overview where analytical error formulae for a signal distorted by

noise and harmonics are presented. These formulae are compared with other accurate equations presented

previously by the authors which are even more accurate below one cycle in the measurement window. The

second part contains a comparison of eight estimation methods (ESPRIT, TLS, Prony LS, a newly developed

IpDFT method and four other 3-point IpDFT methods) in respect of calculation time and accuracy for an

ideal sine-wave signal, signal distorted by AWGN noise and a signal distorted by harmonics. The number of

signal cycles is limited from 0.1 to 3 or 5. The results enable to select the most accurate/ fastest estimation

method in various measurement conditions. Parametric methods are more accurate but also much slower

than IpDFT methods (up to 3000 times for the number of samples equal to 5000). The presented method is

more accurate than other IpDFT methods and much faster than parametric methods, which makes it possible

to use it as an alternative, especially in real-time applications.

Keywords: DFT spectrum interpolation, short-time frequency estimation, statistical analysis, Prony LS,

TLS, ESPRIT.
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1. Introduction

The digital processing of sine-wave signals is the fundamental issue in many areas of sci-

ence technology and it is employed e.g. in telecommunications, acoustics, electronics, analysis

of mechanical vibrations, biomedical applications, renewable energy systems [1–6]. Obtaining

the signal frequency value is often the primary goal of this processing [7]. In practice, such sig-

nals are often distorted by noise and harmonics and their analysis has to meet some speed and

accuracy requirements. The basic estimation methods are basically divided regarding the calcu-

lation domain. Methods in the time domain are based on analysis of consecutive signal values,

whereas methods in the frequency domain are based on analysis of various signal spectrum es-

timators. The second domain is often used mainly because of better accuracy of the provided

results. In this paper also another division (parametric and nonparametric methods can be here

distinguished) of estimation methods is used in respect of the initial signal model assumptions
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and the way of calculation of the parameters [8–13]. The main advantage of the first group is

its very good accuracy. However, these methods are also computationally complex, so that there

is necessary to select an appropriate model order. Moreover, they are often hard to implement

in real-time systems. In this group there are e.g. subspace methods (Pisarenko, MUSIC – Multi-

ple Signal Classification, ESPRIT – Estimation of Signal Parameters via Rotational Invariance

Techniques, MN – Minimum Norm, etc.), parametric modelling methods (AR – Autoregressive,

MA – Moving Average, ARMA – Autoregressive Moving Average), Prony’s method and its modi-

fications, TLS (Total Least Squares). The second group contains classical methods of the Fourier

analysis where the Fourier resolution is the frequency resolution. In this case, the estimation ac-

curacy is much lower and there at least two or three signal cycles should be analysed to obtain

better resolution and acceptable results. Moreover, these methods are not computationally com-

plex and their implementation is straightforward, what makes them still very popular in many

real-time applications. Over the last years, some efforts to make complex calculations possibly

fast and to improve the estimation accuracy have been made. For example, in some parametric

methods the Gohberg–Semencul procedure can be used to solve equations based on the Toeplitz

matrix while the spectrum interpolation is widely used to improve accuracy in the Fourier meth-

ods [14]. In particular, the spectrum interpolation methods (IpDFT – Interpolated DFT) have

been very popular in the recent years, as well as MWIDFT (Multipoint Weighted Interpolation

of DFT) methods where spectrum points around the main lobe are weighted properly in depen-

dence on the method [6, 15–24]. To reduce the spectrum leakage time windows other than the

rectangle window are used. Very popular are I class Rife-Vincent (MSD – Maximum Sidelobe

Decay) windows which belong to the cosine windows. They have very good properties (which

can be changed using various values of the window order) in the frequency domain and their

spectrum equation has a simple, analytical form which has a great importance in formulating the

estimators’ equations.

In the recent years, a new IpDFT method has been presented in several papers, e.g. [6, 19–

22], that include analytical formulas, simulations and experiments in real-time systems using a

DSP processor. It is based on the 3-point spectrum interpolation, MSD windows and the Fast

Fourier Transform procedure. The method enables to determine frequency of sine-wave signals

for observed cycles below two (or even one) which has a great importance in real-time systems.

The method is also universal (there are no crucial assumptions on the signal model) and the value

can be determined in a non-iterative way. It offers a very good accuracy and calculation speed

because of using the FFT transform. Recently, the authors of [23] tried to compare this method

to their own. They also presented analytical formulas for errors’ equations for a signal distorted

by wideband noise and harmonic components. However, they are probably not familiar with the

papers [20, 21] from 2015 and 2016, where there were presented the MSE error as well as the

error equation in the presence of harmonic components.

There are not many papers dealing with comparison of estimation methods regarding their

accuracy and calculation speed. In [10] the authors compare a method based on the DFT and

the MUSIC method in respect of estimation speed in medical applications. The authors of [25]

compare the AR and DFT-based methods in respect of their accuracy. The more signals were

distorted by noise the more the DFT-based method was preferred and vice versa. The main

conclusions from it can be found in [26] and [27], where a method based on the FFT and the

Prony’s method were compared and the second was more accurate in the case of harmonic com-

ponents being present in an analysed signal. In this paper eight (Prony LS, TLS, ESPRIT and

five 3-point IpDFT methods) estimation methods are compared in respect of both their estima-

tion accuracy and estimation speed. The tests were performed for an ideal sine-wave signal, for

a signal distorted by AWGN noise and for a signal distorted by harmonic components. The re-
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sults enable to select the most accurate/the fastest estimation method in various measurement

conditions.

The first part of this paper (Section 2) is dedicated to a short overview of [6] and [23] and

comparison of the obtained errors’ expressions. In Section 3 eight estimation methods are com-

pared in respect of their accuracy and calculation time. Finally, the conclusions are presented in

Section 4 and the derived formula of expression to obtain values of estimation errors for a signal

distorted by harmonics can be found in Appendix.

2. Comparison of errors’ expressions

The newly presented estimation method was developed for photovoltaic systems where es-

timation of the grid signal plays a great role in the inverter control and the system efficiency.

Moreover, the method is universal and can be used to analyse signals in many other applications,

e.g. to eliminate mechanical oscillations [20]. The maximum estimation time has to be below

two cycles of the grid signal (below 40 ms) because of some requirements, as defined in the

respective standards and directives. A sine-wave signal (e.g. the grid signal) is a special case of

a multi-frequency signal described in the time domain as the sum of M sinusoidal components:

x(t) =
M

∑
L=1

AL sin(2π fLt +ϕL), (1)

where fL is a frequency of L-th component; AL and ϕL are its amplitude and phase, respectively.

In the signal, there can be distinguished the basic component (for L = 1) and harmonic com-

ponents (for L > 1 and fL = L× f1, where L = 2, 3, . . . , M). The analogue signal x(t) is first

sampled with a sampling frequency fs = 1/T and N samples xn (for n = 0, . . . , N −1) using the

H-order MSD windows are obtained. Later, the spectrum is calculated using the FFT transform

and, based on three values Xk−1, Xk, Xk+1, where k is a spectrum line index, the frequency value

is determined in respect of measurement time NT. This normalized value is called λ or CiR (Cy-

cle in Range) and is equal to λL = fLNT [bin]. The method enables to eliminate the impact of the

conjugate’s component on the estimation’s outcome.

The method is based on using the H-order I class Rife-Vincent (MSD) time windows which

belong to the cosine windows’ family defined as [28–30]:

wn =
H−1

∑
h=0

(−1)hah cos

(
2πnh

N

)

, n = 0, . . . , N−1, (2)

where coefficients H for MSD windows are defined as:

a0 =
CH−1

2H−2

22H−2
,

ah =
CH−h−1

2H−2

22H−3
, h = 1, . . . ,H −1,

(3)

where

Cp
m =

(
m

p

)

=
m!

(m− p)!p!
. (4)

Equation (3) were defined by Belega [31] in a heuristic way and proved that it fulfilled the

three conditions defined by Nutall [28]. A direct derivation of (3) from the Rife-Vincent result
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[29] is given in [6] based on the normalization condition: maxn wn = 1. The spectrum for these

windows can be approximated for H > 1, N ≫ 1 and N ≫ λ by [30]:

W (λ ) =
D(λ )

P(λ )
, (5)

where

D(λ ) =
N(2H −2)!

π22H−2
sin(πλ )e− jπλ , (6)

P(λ ) = λ
H−1

∏
h=1

(h2 −λ 2) =

H

∏
h=0

(h2 −λ 2)

(−λ )(H −λ )(H +λ )
. (7)

For H = 1 and H = 2 the spectra of the rectangular and Hanning windows are obtained,

respectively. The DFT spectrum of signal xn is:

X(λ ) =
N−1

∑
n=0

xnwne− j2πnλ/N . (8)

If there is only the basic component in the signal or the spectrum leakage from harmonic

components is properly reduced, the spectrum (8) is:

X(λ ) =
A1

2 j
e jϕ1W (λ −λ1)−

A1

2 j
e− jϕ1W (λ +λ1), (9)

where −λ1 is a value of frequency for the conjugate component (image component) in the spec-

trum. Taking into consideration (5), (9) can be expressed as follows:

X(λ ) =
A1

2 j
e jϕ1

D(λ −λ1)

P(λ −λ1)
− A1

2 j
e− jϕ1

D(λ +λ1)

P(λ +λ1)
. (10)

For three successive spectrum points: Xk−1, Xk, Xk+1 (for λ = k− 1, k, k+ 1), there can be

obtained three equations based on which the frequency equation (11) can be calculated [6], what

brings to generalization of the equations obtained by Chen [32] for the Hanning window case.

The normalized frequency can be determined as follows [6]:

λ̂1 = Re

{√
Π1

Π2

}

, (11)

where

Π1 =

∣
∣
∣
∣
∣
∣
∣

(2H −1)H (2H −1) Xk−1 −Xk

−k2 −H2 2k Xk

(2H −1)H −(2H −1) Xk+1 −Xk

∣
∣
∣
∣
∣
∣
∣

, (12)

Π2 =

∣
∣
∣
∣
∣
∣
∣

1 −(2H −1) Xk−1

1 0 Xk

1 (2H −1) Xk+1

∣
∣
∣
∣
∣
∣
∣

= (2H −1)

∣
∣
∣
∣

1 Xk−1 −Xk

−1 Xk+1 −Xk

∣
∣
∣
∣
. (13)
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In [6], the real part operator Re{.} was omitted due to an oversight in typesetting. In all

simulations and experiments presented in [6] this operator was used, what was necessary by the

fact that frequency must be real. The frequency (11) can be presented in other forms, e.g. as:

λ̂1 = Re

{√

−2H (Xk+k(Xk−1−Xk+1))+k2(2Xk−Xk−1−Xk+1)−H2(2Xk+Xk−1+Xk+1)

Xk−1−2Xk+Xk+1

}

. (14)

The k value should be appropriately selected to obtain the most accurate results for given

measurement parameters. There is no limit for the k value but for the special case when k = 0

(12), (13) and (14) are respectively:

Π1 =

∣
∣
∣
∣
∣
∣
∣

−(2H −1)H −(2H −1) Xk−1 −Xk

H2 0 Xk

−(2H −1)H (2H −1) Xk+1 −Xk

∣
∣
∣
∣
∣
∣
∣

, (15)

Π2 =

∣
∣
∣
∣
∣
∣
∣

1 −(2H −1) Xk−1

1 0 Xk

1 (2H −1) Xk+1

∣
∣
∣
∣
∣
∣
∣

= (2H −1)

∣
∣
∣
∣
∣

1 Xk−1 −Xk

−1 Xk+1 −Xk

∣
∣
∣
∣
∣
, (16)

λ̂1 = Re

{√

H
2Xk(H −1)+H(Xk−1 +Xk+1)

Xk−1 −2Xk +Xk+1

}

. (17)

Taking into consideration that for k = 0:

Xk−1 = X∗
k+1 , (18)

and

Xk−1 +Xk+1 = 2Re{Xk+1}. (19)

Equation (17) takes the form:

λ̂1 = Re

{√

H
Xk(H −1)+HRe{Xk+1}

−Xk +Re{Xk+1}

}

. (20)

The 3-point interpolation is then a 2-point interpolation which changes the idea of the method.

In [23] the authors try to compare the presented method with their own. One of the main

conclusions is that the presented method is more accurate for a very small number of sig-

nal cycles (less than 1.5) and faster by about 8%, because the method from [23] is iterative

and differs from the method presented in this paper where the frequency value is obtained

only in one step. However, in [23] there are some misunderstandings which will be cleared

up in this paper. The authors of [23] give an expression for the MSE error of the proposed

method estimator (when AWGN noise is present in the signal) and an expression for the esti-

mation error caused by harmonics present in the signal. However, the authors do not mention

two papers ([20, 21]) in which these expressions were presented in 2015 and 2016. Now, in

this part of the paper these expressions will be compared because they differ regarding accu-

racy.
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The total error of the presented method consists of two components:

max
ϕ1,...,ϕL

|δtλ1|=

Systematic component
︷ ︸︸ ︷

max
ϕ1

|δλ1|+
M

∑
L=2

max
ϕ1,...,ϕL

|δh,Lλ1|+

Random component
︷ ︸︸ ︷

max
ϕ1

|δnλ1| . (21)

The systematic component is associated with the discrete nature of DFT, approximations of

equations for the time window spectrum, the non-coherent sampling and the presence of har-

monic components in the analysed signal. The random component occurs because of the pres-

ence of noise in the signal. Based on several papers, e.g. [6, 19–22], it can be written that the

signal phase has a big impact on the estimation results. Because of that, the estimation errors

are calculated as the maximum values from the whole range of the signal phase (and phases of

harmonics).

In practice, the signal (1) is distorted by noise which very often is the sum of noises with

various probability distributions. However, based on the central limit theorem it can be assumed

that a probability distribution is close to a normal distribution. Because of that, it is worth testing

the estimation methods in the presence of AWGN (Additive White Gaussian Noise) noise (with

variance σ2
n and zero mean) in the signal. From a practical point of view, it is good to know the

analytical form that enables to calculate the estimation error when the signal is distorted by noise.

The error value can be obtained based on the estimator variance (or the standard deviation) as

kp ·σλ1
where kp is a coverage factor most often equal to 2 or 3, and σλ1

is the estimator standard

deviation of frequency.

The MSE error of the estimator can be calculated to assess its quality. It comprises two

components: the estimator variance and the squared bias of this estimator:

MSE
(

λ̂1

)

= Var
(

λ̂1

)

+
(

Bias
(

λ̂1

))2

. (22)

The MSE without bias is variance. According to the results given in several papers, e.g. [6,

19–22], it can be assumed that the second component in (22) is negligibly small in relation to

the variance and in this case the MSE error and the variance can be used interchangeably in this

paper. The analytical form of variance (standard deviation) was presented in 2016 [21] taking

into account the conjugate component in the signal spectrum (there were no approximations

while determining the equation except those like made in (5)) and it was derived by applying the

uncertainty propagation law to (14). In this paper, the expression is improved by eliminating the

image part of it, so that no complex value can be obtained:

MSE
(

λ̂1

)

∼= σ2
λ1

∼=




22H

Aλ1sinc(π(λ1 −1))
√

N(2H −2)
σn

√

C2H−2
4H=4

24H−4

·
(1+λ1)

H

∏
h=1

(
h2 − (1−λ1)

2
) H

∏
h=1

(
h2 − (1+λ1)

2
)

(1−λ1)
H

∏
h=1

(h2 − (1−λ1)2)+(1+λ1)
H

∏
h=1

(h2 − (1+λ1)2)

·

√

3+H(16−2H+22H2+3H3)+λ 2
1 (4H−3)

(
−2(−1+H(4+H))+λ 2

1 (4H−1)
)

64H3(2H−1)3





2

,

(23)
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which can be also presented using the SNR parameter:

MSE
(

λ̂1

)

∼= σ2
λ1

∼=




22H

√
2SNRλ1sinc(π(λ1 −1))

√
N(2H −2)

√

C2H−2
4H=4

24H−4

·
(1+λ1)

H

∏
h=1

(
h2 − (1−λ1)

2
) H

∏
h=1

(
h2 − (1+λ1)

2
)

(1−λ1)
H

∏
h=1

(h2 − (1−λ1)2)+(1+λ1)
H

∏
h=1

(h2 − (1+λ1)2)

·

√

3+H(16−2H+22H2+3H3)+λ 2
1 (4H−3)

(
−2(−1+H(4+H))+λ 2

1 (4H−1)
)

64H3(2H−1)3





2

,

(24)

The authors of [23] present their MSE equation for (11). They assume there that λ = l + δ ,

where δ ∈ [−0.5, 0.5), l is an integer part and δ is a fractional part of λ . It is worth noticing

that there is no such restriction for δ in the presented method (|δ | can be greater than 0.5) which

affects the estimation results (there are no additional estimation errors for CiR = 0.5, 1.5, 2.5,

etc. due to a proper choice of k). Moreover, in [6] there was proved that the smallest systematic

errors for CiR < 2.1 are obtained for k = 1 and in [19] – that, due to noise in the signal, k = 1

is the best choice for CiR less than ca. 1.75–1.99 (the exact value depends on the number of

samples N and the noise level). In this case δ is out of the range [−0.5, 0.5). The MSE equation

presented in [23] is:

MSE
(

λ̂1

)

∼= σ2
λ1

∼= (H2 −δ 2)2

8H2(2H −1)2(l +δ )2

ENBW

SL2(δ )

1

N ·SNR
{[

H2 +δ (δ +2l)
]2
+2 [H −δ (δ +2l)]2 +2H3(H −2)+4l2H2

− 4
[
H2 −δ (δ +2l)

][
H2 −H +δ (δ +2l)

]
ρ1 +

[
H2 − (δ +2l)2

]
(H2 −δ 2)ρ2

}

(25)

and for l ≫ H:

MSE
(

λ̂1

)

∼==
(H2 −σ2)2

2H3(2H −1)3

ENBW

SL2(σ)

1

N ·SNR
(4H −3)

[
(4H −1)σ2 +H2

]
(26)

where ENBW (Equivalent Noise Band Width) and SL(δ ) (Scalloping Loss) are time window

parameters and ρ1 and ρ2 are correlation coefficients between spectrum points which can be

found in [33].

To compare two MSE equations (presented in [21] and in [23]) simulations in Matlab en-

vironment were performed. As a variance estimator the eMSE (empirical Mean Square Error)

error was calculated [34]:

eMSE
(

λ̂1

)

=
1

R

R

∑
j=1

(

λ̂ j −λ1

)2

, (27)

where the number of repetitions R was 103. The remaining parameters’ values were as in [23]:

the value of A1 was 1, the number of samples N = 512, the time window order H = 2 (Hanning

window), SNR = 30 dB and the CiR range was 0.1 ≤ CiR < 5. Only the signal phase was not

random like in [23] but it was changed in a range from 0 to 2π in steps of 0.01 rad.

289



J. Borkowski, D. Kania, J. Mroczka: COMPARISON OF SINE-WAVE FREQUENCY ESTIMATION . . .

To determine the statistical properties of estimators and to compare various estimators, the

Cramér-Rao (CRB) bound is often used. It sets the lower limit of the estimator’s variance – the

estimator variance is equal or greater than the CRB. It is worth noticing that using the expression

for CRB in a range CiR < 1 (as in [23]) is a rather bad approach because of the presence of the

conjugate component in the spectrum and its influence on the estimation (when changing the

spectrum shape of the main lobe spectrum) and the CRB bound. The CRB for many signal cycles

observed in the measurement window (for one component in the spectrum) is as follows [34]:

CRB
(

λ̂1

)

=
6N

A2
1π2(N2 −1)

σ2
n . (28)

For estimation with a small number of cycles (especially for about one cycle) the MSE of

estimator should be compared with the CRB bound, like for a signal spectrum composed of two

components (not one). A non-matrix form of this CRB was presented in [35] as:

CRB
(

λ̂m

)

=
1

4π2N ·SNRm

1

X0 +XC cos(2(ϕ2 −ϕ1))+XS sin(2(ϕ2 −ϕ1))
, (29)

where m = 1, 2 and

X0 = 2K0 −
K2

C +K2
S

K0
, (30)

XC =
K2

C +K2
S

K0
, (31)

XS =−2KCKS

K0
. (32)

The value of CRB depends on the distance between λ1 and λ2 (in this case λ2 = −λ1 and

ϕ2 =−ϕ1). The values of K0, KC and KS in the (30), (31) and (32) are:

K0 =
Γ2(Γ

2
0 −C2

0 −S2
0)−Γ0(Γ

2
1 +C2

1 +S2
1)+2Γ1(C0C1 +S0S1)

Γ2
0 −C2

0 −S2
0

, (33)

KC =
−C2(Γ

2
0 −C2

0 −S2
0)−C0(Γ

2
1 +C2

1 −S2
1)+2C1(Γ0Γ1 −S0S1)

Γ2
0 −C2

0 −S2
0

, (34)

KS =
S2(Γ

2
0 −C2

0 −S2
0)+S0(Γ

2
1 −C2

1 +S2
1)−2S1(Γ0Γ1 −C0C1)

Γ2
0 −C2

0 −S2
0

, (35)

where

Γr =
1

Nr+1

n0+N−1

∑
n=n0

nr, r = 0,1,2, (36)

Cr =
1

Nr+1

n0+N−1

∑
n=n0

nr cos(2πn(λ1 −λ2)), r = 0,1,2, (37)

Sr =
1

Nr+1

n0+N−1

∑
n=n0

nr sin(2πn(λ1 −λ2)), r = 0,1,2. (38)

The results of (25) and (26) presented in [23] deviate from the eMSE results, especially

for CiR < 1 (Fig. 1). (25) is more accurate than (26) in this range. For CiR > 2 the results of

290



Metrol. Meas. Syst.,Vol. 25 (2018), No. 2, pp. 283–302.

(25) and (26) are close to each other. The MSE equation (24) proposed in this paper is more

accurate, especially for CiR < 1, where the conjugate component affects most of the results.

Using a correction factor (presented in [21]) increases accuracy. The error of calculations of (24)

is oscillating in a range of 20% to 40% and for (24) – with the correction factor in a range of

up to 20% (oscillating around the eMSE value). For (25) and (26) the errors are much bigger for

CiR < 2. More information about the MSE of the proposed method for various values of H, SNR

can be found in [21].

Fig. 1. Statistical properties of the frequency estimator: comparison of four MSE

expressions in respect of the CRB bound for sample measurement parameters.

In practice, harmonic components are often present in the signal. In this case, (10) changes

in dependence on the harmonic components which cause bigger estimation errors. For example,

for an additional harmonic component L (10) is:

X(λ ) =
A1

2 j
e jϕ1W (λ −λ1)−

A1

2 j
e− jϕ1W (λ +λ1)+

+
AL

2 j
e jϕLW (λ −Lλ1)−

AL

2 j
e− jϕLW (λ +Lλ1).

(39)

The general expression for estimation errors caused by the presence of harmonics was pre-

sented in 2015 [20] using the MacLaurin approximation. In this paper the whole expression is

presented as well as the analytical formulae (see Appendix). The estimation error in this case can

be presented as the real part of:

M

∑
L=2

|δh,L f1|=
M

∑
L=2

[
AL

A1

(−2Xk +Xk−1 +Xk+1)z

(2(−(2+2H −2H2)Xk +(H −1)2Xk−1 +(H +1)2Xk+1))

]

, (40)

where z is presented in Appendix. In [23] the authors presented the error expression as follows:

M

∑
L=2

|δh,L f1|= 0.5λ 2
M

∑
L=2

(
L2 −1

2

AL

A1

H2 −δ 2

α2
L −H2

|W (−αL)|
|W (−δ )|

)2

, (41)
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where αL =(L−1)l+Lδ . To compare these two equations simulations in Matlab were performed

for a few cases of H and L (Fig. 2). The results for both equations are similar for a greater value

of CiR and the fitting accuracy is up to ten times greater than the error value (Fig. 2a). The

error values for CiR < 2 are greater because of the impact of the conjugate component and some

approximations made while determining the expressions (Fig. 2b). However, in this range (40)

gives slightly better results.

a) b)

Fig. 2. Frequency-relative estimation errors and two theoretical expressions for k = 1 and sample values of H and L:

for a range CiR = 0.1−5 (a); for a range CiR = 0.1−2 (b).

3. Comparison of eight estimation methods

In the conference paper [22] a comparison of several estimation methods was presented. This

section extends [22] by comparing more methods, by comparing for a greater value of CiR and

also by comparing systematic errors of the methods and calculation times of the methods ([22]

contained only a comparison for a signal distorted by noise and harmonics).

In this section eight estimation methods (five 3-point IpDFT methods, Prony LS, TLS, ES-

PRIT) in respect of accuracy and speed are compared. The tests were performed in Matlab envi-

ronment for CiR < 3 to show how the methods can work when there is only up to three cycles in

the measurement window which means e.g. 60 ms for the grid signal. The tests were carried out

for a signal without disturbances, for a signal distorted by AWGN noise and for a signal distorted

by harmonic components. The estimation error values were obtained for each CiR value as the

maximum in the whole range of components’ phases – from 0 to 2π in steps of 0.01 rad. The

first method is the one presented in this paper, where the frequency value can be estimated using

(11) and (14). The second one is the method from [15], where the frequency estimator for the

Hanning window only is:

λ̂1 = l +2
|Xk+1|− |Xk−1|

|Xk−1|+2|Xk|+ |Xk+1|
. (42)
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The next is the method from [16], where the frequency equation is:

λ̂1 = l +
tan(π/N)

π/N
Re

{
Xk−1 −Xk+1

−Xk−1 +2Xk −Xk+1

}

. (43)

The fourth, IpDFT method is from [17], where:

λ̂1 = l +H
|Xk+1|− |Xk−1|

|Xk−1|+2|Xk|+ |Xk+1|
(44)

and the last one is the method from [18], where:

λ̂1 = l +
2

π
arctan

(
Xk

2

(
1

Xk−1

− 1

Xk+1

)/

cos
( π

2N

))

. (45)

The Prony LS, TLS and ESPRIT methods were chosen for comparison with the IpDFT meth-

ods. Prony’s methods have been very popular in the recent years in many applications because

of their universality and possibility to calculate damped ratios for signal components. The ES-

PRIT method is one of the subspace methods and it is based on the properties of autocorrelation

matrices. The TLS method is a development of the LS methods and gives more accurate results

because in the linear matrix equation it takes into consideration distortions of two matrices.

3.1. Accuracy for pure signal

In the first part of tests the estimation results were obtained for a sine-wave signal (1) for

L = M = 1 without any disturbances. The systematic errors were calculated as relative errors

for: H = 2, 3, . . . , 7; N = 32 and 64. In the tested range of CiR < 3 the parametric methods

are more accurate than IpDFT methods (Fig. 3). The systematic error of the proposed method
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Fig. 3. Systematic errors of estimation methods for H = 2, . . . , 7 and N = 32 as

functions of CiR.
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decreases when the H value increases, e.g. the error values are approximately 10−5 for H = 2

and 10−12 for H = 7 for CiR = 1.5 and N = 32 (Fig. 3, Fig. 4). However, for other IpDFT

methods this causes bigger errors. An increase in N value also decreases error values for the

proposed method (Fig. 4) – the systematic errors are inversely proportional to N2H [6]. E.g.,

for N = 64 and H = 6 or 7 the estimation error values are at the same level as for the para-

metric methods. A greater value of N causes faster reaching this level. Moreover, the error

values for the proposed method are much smaller (several orders) than for other IpDFT meth-

ods (Fig. 4).
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Fig. 4. Systematic errors of estimation methods for H = 2, . . . , 7 and N = 64 as

functions of CiR.

Very accurate results can be obtained for the parametric methods even for a small value of N,

e.g. 12, and it does not have to be a value that is a power of 2, like for FFT-based methods. It is

worth noticing that the model order for parametric methods has to be chosen before estimation.

An increase in the CiR value increases accuracy of all methods.

3.2. Accuracy for signal distorted by harmonics

The second part of tests was dedicated to estimation for a signal distorted by harmonic com-

ponents. Such a situation occurs very often in real-time measurements. To the signal there were

added the 2nd, 3rd and 4th harmonics with the same amplitude AL = A1/100 which fits the ranges

present in the EN 50160 norm for the grid signal [36]. Phases of components were changed in a

range from 0 to 2π in steps of 0.01 rad. Usually, harmonics with a small number L affect most of

the estimation results and that is why these components were taken into consideration despite the

fact that they have a small impact on THD of the grid signal. The error values were calculated

for H = 2 and H = 7. The results show that the parametric methods are much more accurate than

IpDFT methods for H = 2 and H = 7 (from approximately 1010 to 1014 times for H = 2 and

from approximately 1012 to 1015 times for H = 7 and CiR = 1.5) (Fig. 5, Fig. 6). However, the
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error value increases for CiR below 1 and for CiR = 0.1 it reaches error values of the proposed

method.

Fig. 5. The effect of harmonic components on estimation results for eight

estimation methods and H = 2.

Fig. 6. The effect of harmonic components on estimation results for eight

estimation methods and H = 7.

The IpDFT methods are very sensitive to the presence of harmonics because they are based

on the signal spectrum. Two basic approaches to changing this situation are: removing/reducing
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harmonics in the spectrum or taking them into consideration while obtaining analytical forms of

estimators. The proposed method is still more accurate than other IpDFT methods – the error

level is approximately from 10−4 to 10−2 for H = 2 and approximately 10−1 for H = 7 and

CiR = 1. The expression that enables to obtain the theoretical estimation error value for a signal

with harmonics is presented in Section 2.

3.3. Accuracy for signal distorted by AWGN noise

In this part the results obtained for the signal distorted by AWGN noise (under the assumption

that the square of systematic errors is negligible relative to the estimator variance) are presented.

The SNR value was changed in a range 30 dB–90 dB to show performance of methods for a

poor signal (i.e. disturbed by noise with a high level of variance) and a “noise-free” signal (in

practical cases assumed for SNR ≥ 90 dB). Moreover, this range includes a typical range for

the grid signal (approximately 40 dB–60 dB) for which the proposed method was originally

developed. Other measurement parameters were: H = 2, the number of repetitions R = 1000,

CiR = 1.3, N = 8, 32 and 512. (27) was used as the variance estimator. As previously, the para-

metric methods can be used for a small value of N and they give very accurate results. Error

values of these methods and the proposed method decrease when the SNR value increases (the

signal is less distorted by noise) (Fig. 7). For example, the square root of the eMSE error is

approximately 2× 10−3 bin for SNR = 30 dB and approximately 10−6 bin for SNR = 90 dB.

Estimation results of other IpDFT methods are very poor. The eMSE error values with refer-

ence to the CRB bound are approximately 1.6–1.85 for the parametric methods (for N = 8) and

about 2.35 for the proposed method (Fig. 8). An increase of the N value increases accuracy of

the proposed method but does not decrease the relation to the CRB bound (unless the level of

systematic error is higher than the error caused by noise). The expression that enables to obtain

the estimation error value before the estimation process for a signal with noise is presented in

Section 2.

Fig. 7. Statistical properties of the estimation methods: the root-square eMSE

error and the reference to the Cramér-Rao bound as functions of SNR.
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Fig. 8. Statistical properties of the estimation methods with reference to the

Cramér-Rao bound as functions of SNR.

3.4. Calculation speed of methods

There can be distinguished two speed parameters for the estimation methods: the estimation

time which denotes duration of the whole estimation procedure (the time of observed cycles and

the calculation time of methods) and the calculation time of methods after the acquisition of

signal samples. Greater values of N in the measurement window affect positively the estimation

Fig. 9. Normalized calculation times of the estimation methods in respect of the

calculation time of the proposed method as functions of N.
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results. However, a greater N means also a longer calculation time of a method. In this part

the tests were dedicated to evaluating calculation times of the estimation methods using tic/toc

commands and an average of 1000 repetitions. The parametric methods are slower than IpDFT

methods from approximately 10–30 for N = 10 to approximately 20–3000 times for N = 5000

(Fig. 9). Calculation times for all IpDFT methods are similar because they are based on the

Fast Fourier Transform procedure (with the computational complexity N log2 N) and additional

calculations times are significantly shorter than the FFT execution time. The longer time here

means that calculations of the spectrum are based on a greater value of N (Fig. 10).

Fig. 10. Normalized calculation times of the estimation methods in respect of the

maximum calculation time obtained in tests as functions of N.

4. Conclusions

The paper consists of two main parts. The first part is dedicated to the response to the paper

[23], where the authors compare their method with the method presented in [6] and give formulae

to calculate the MSE error and the error for a sine-wave signal distorted by harmonics. In the

papers [20, 21] such formulae were also presented. After the comparison included in Section 2

it can be concluded that they are at least as accurate as the expressions from [23] or even more

for CiR < 1.

The second part of the paper is dedicated to comparison of eight estimation methods in re-

spect of their accuracy and speed. They are divided into two main groups: parametric methods

(TLS, Prony LS, ESPRIT) and nonparametric methods (five 3-point IpDFT methods including

the method presented in this paper). The tested sine-wave signal was analysed as: a pure sinu-

soidal signal, a signal distorted by noise and a signal distorted by harmonics. Moreover, the meth-

ods were tested for various numbers of samples N in the measurement window to compare their

calculation times. Generally speaking, the parametric methods are more accurate than IpDFT

methods for various measurement conditions. The biggest difference between errors is for the

signal distorted by harmonics. The parametric methods can give accurate results even for a small

value of N and for a very small value of CiR (below 0.5). However, due to their complexity they
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are much slower than IpDFT methods (even 3000 times for N = 5000), what can cause problems

in real-time systems. The proposed IpDFT method is more accurate than other IpDFT methods

and its accuracy can be adjusted using various values of H and N. It takes into account the con-

jugate component in the signal spectrum and can give accurate results even for CiR <1. The level

of systematic errors is approximately 10−5 for N = 64, H = 2 and CiR = 1.3; the level of er-

rors caused by the presence of harmonics is approximately 10−4 for the fourth harmonic, H = 2,

CiR = 1.3 and N = 16; the level of errors caused by the presence of noise is approximately 10−4

bin for SNR = 60 dB, H = 2, N = 512 and CiR = 1.3. Additionally, the method is based on the

FFT transform and it is very fast which predisposes it to real-time applications. In this sense it is a

universal method which is very easy to implement and adjust to current measurement conditions.

Other IpDFT methods can be also used in real-time systems but only for the CiR value greater

than two or even more in dependence on the measurement parameters. The parametric methods

are used in applications where accuracy is more important than complexity or calculation time, or

where the hardware parameters are good enough to make necessary calculations in a short time.
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Appendix

Derivation of expression (40)

The spectrum expression for a signal with a harmonic component L can be presented in respect of the

A1 value as the sum of two components: one independent and one dependent on x = AL/A1:

X(λ )

A1
= a0 +

AL

A1
a1 . (A.1)

In this case the expression for (14) takes the form:

λ̂1 = Re

{√

a+bx

c+dx

}

, (A.2)

where

a =−Xk−1(H −1)2 +Xk(−2H2 +2H +2)−Xk+1(H +1)2, (A.3)

b =
M

∑
L=2

x









2−2He j(ϕL−ϕ1+Lλπ)

π(1−Lλ )
H

∏
h=1

(

h2−(1−Lλ )2
)

·N
(

(−2−2H+2H2)Xk+
(H−1)2(H−Lλ )

−1+H+Lλ
Xk−1+

+
(H +1)2(−2+H +Lλ )

1+H −Lλ
Xk+1

)

(2H −2)!Sin(Lλπ)

− 2−2He j(−ϕL−ϕ1−Lλπ)

π(1+Lλ )
H

∏
h=1

(

h2−(1+Lλ )2
)
·N

(

(2+2H−2H2)Xk−
(H−1)2(H−Lλ )

−1+H+Lλ
Xk−1

− (H +1)2(−2+H +Lλ )

1+H −Lλ
Xk+1

)

(−2H +2)!Sin(Lλπ)







,

(A.4)

c = Xk−1 −2Xk +Xk+1, (A.5)
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d =
M

∑
L=2

x









2−2He j(ϕL−ϕ1+Lλπ)N

(

2Xk+
H−Lλ

−1+H+Lλ
Xk−1+

−2+H+Lλ

1+H−Lλ
Xk+1

)

(2H−2)!Sin(Lλπ)

π(1−Lλ )
H

∏
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(

h2−(1−Lλ )2
)

−
2−2He j(−ϕL−ϕ1−Lλπ)N

(

−2Xk−
H+Lλ

−1+H+Lλ
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−2+H−Lλ
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(2H−2)!Sin(Lλπ)

π(1+Lλ )
H

∏
h=1

(

h2−(1+Lλ )2
)









.

(A.6)

Using the MacLaurin expansion of (A.2) in respect of x variable it can be obtained:

λ̂1 = Re

{√

−Xk−1(H −1)2 +Xk(−2H2 +2H +2)−Xk+1(H +1)2

Xk−1 −2Xk +Xk+1
(1+ ε)

}

, (A.7)

where ε is zero when there is no harmonic components in the signal. Taking into consideration after many

simulations and practical tests that the relative systematic error is much below 1 (i.e. 100%) and also the

value of ε is below 1 there can be assumed:
∣
∣
∣
∣
∣

λ̂1(1+ ε)−λ1

λ1

∣
∣
∣
∣
∣
≈
∣
∣
∣
∣
∣

λ̂1 −λ1

λ1
+ ε

∣
∣
∣
∣
∣
= |δλ1|+ |ε|. (A.8)

After some algebraic transformations the ε value for a signal with harmonics is presented as follows:

ε =
M

∑
L=2

AL

A1

−2Xk +Xk−1 +Xk+1
(
2
(
−(2+2H −2H2)Xk +(H −1)2Xk−1 +(H +1)2Xk+1

)) z, (A.9)

where

z ≈−
(
−(2+2H −2H2)Xk +(H −1)2Xk−1 +(H +1)2Xk+1

)
2−2H

√
N

(−2Xk +Xk−1 +Xk+1)2

·









(

2Xk +
H −Lλ

−1+H +Lλ
Xk−1 +

−2+H +Lλ

1+H −Lλ
Xk+1

)

(2H −2)!Sin(Lλπ)

π(1−Lλ )
H−1

∏
h=1

(

h2 − (1−Lλ )2
)

−

(

−2Xk−
H +Lλ

−1+H+Lλ
Xk−1−

−2+H−Lλ

1+H+Lλ
Xk+1

)

(2H−2)!Sin(Lλπ)

π(1+Lλ )
H−1

∏
h=1

(

h2−(1+Lλ )2
)









+
2−2H

√
N

(−2Xk+Xk−1+Xk+1)

·









−

(

(−2−2H+2H2)Xk+
(H−1)2(H−Lλ )

−1+H+Lλ
Xk−1+

(H+1)2(−2+H+Lλ )

1+H−Lλ
Xk+1

)

(2H−2)!Sin(Lλπ)

π(1−Lλ )
H−1

∏
h=1

(

h2 − (1−Lλ )2
)

+

(

(2+2H−2H2)Xk−
(H−1)2(H−Lλ )

−1+H+Lλ
Xk−1−

(H+1)2(−2+H+Lλ )

1+H−Lλ
Xk+1

)

(−2H+2)!Sin(Lλπ)

π(1+Lλ )
H−1

∏
h=1

(

h2 − (1+Lλ )2
)









.

(A.10)

302


