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Abstract

Hand prostheses controlled by surface electromyography are promising due to the non-

invasive approach and the control capabilities offered by machine learning. Nevertheless,

dexterous prostheses are still scarcely spread due to control difficulties, low robustness and

often prohibitive costs. Several sEMG acquisition setups are now available, ranging in terms

of costs between a few hundred and several thousand dollars. The objective of this paper is

the relative comparison of six acquisition setups on an identical hand movement classifica-

tion task, in order to help the researchers to choose the proper acquisition setup for their

requirements. The acquisition setups are based on four different sEMG electrodes (includ-

ing Otto Bock, Delsys Trigno, Cometa Wave + Dormo ECG and two Thalmic Myo arm-

bands) and they were used to record more than 50 hand movements from intact subjects

with a standardized acquisition protocol. The relative performance of the six sEMG acquisi-

tion setups is compared on 41 identical hand movements with a standardized feature

extraction and data analysis pipeline aimed at performing hand movement classification.

Comparable classification results are obtained with three acquisition setups including the

Delsys Trigno, the Cometa Wave and the affordable setup composed of two Myo armbands.

The results suggest that practical sEMG tests can be performed even when costs are rele-

vant (e.g. in small laboratories, developing countries or use by children). All the presented

datasets can be used for offline tests and their quality can easily be compared as the data

sets are publicly available.

1 Introduction

The life of hand amputees can be difficult: many actions that people do in their everyday life

require dexterous hand movements and current prostheses do not always achieve this. Surface

electromyography has been used since the late 60s to control hand prostheses [1]. Academic

researchers and prosthetic companies have been investigating surface electromyography
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(sEMG) control methods for prosthetic hands [2–5]. Nevertheless, the field still has several

limits. First, robustness is often not sufficient for natural dexterous control in real life applica-

tion. The need for control robustness can be described as the need of commercial myoelectric

systems to be 100% accurate in any situation. This is reported as the main need of the field in

many recent papers (e.g. [2, 5]). Second, it is not easy to compare the relative performance of

different classification methods on the same data sets. Third, to our knowledge there is no

comparison of acquisition setups towards hand movement recognition. Thus, it can be diffi-

cult for researchers to choose the acquisition setup (i.e. electrodes) that best corresponds to

their needs.

Real time studies and virtual tests (usually based on prosthesis control simulators and allow-

ing the user to adapt to the control software) are capable to provide a good representation of

prosthesis usability [6, 7]. Since they are performed in real time, these studies and tests can be

analyzed only by the researchers that are attending the tests and they are not always easily

reproducible. Offline data analysis on public benchmark datasets on the other hand can be per-

formed by any researcher worldwide (including a wide community of scientists that are highly

specialized in machine learning) and it allows the immediate comparison of different methods

(including very recent ones [8]) and setups. In particular, Hargrove et al. [7] suggested that

involving a large number of movements (as done in this study) may lead to a wider spread of

classification accuracies in order to achieve a better comprehension of usability and of the

movements that are confounded. Despite not providing a targeted evaluation of the control

usability, offline studies can still accelerate the search for control robustness in prosthetic con-

trol by involving specialized machine learning researchers.

The usefulness of benchmark databases for this aim has been demonstrated repeatedly in

other fields, e.g., in the machine vision and image analysis communities [9, 10], where it pro-

moted the comparison between methods and it pushed progress. The Ninapro database (Non–

Invasive Adaptive Hand Prosthetics (http://ninaweb.hevs.ch/) [11–13] is a resource to provide

benchmark electromyography data sources of the upper limbs to test machine learning algo-

rithms for hand prosthesis control. Currently, Ninapro includes three datasets collected from

67 intact subjects and 11 amputated subjects. All the datasets were recorded with very similar

acquisition protocols including several repetitions of at least 50 hand movements and with a

very similar acquisition setup. One of the main differences between the datasets are the sEMG

electrodes used. The first Ninapro dataset was recorded using 10 Otto Bock 13-E200 electrodes

(http://www.ottobock.com/), whereas the second and the third dataset were recorded using 12

electrodes from a Delsys Trigno wireless system (http://www.delsys.com/).

Despite the fact that Ninapro includes data from eleven hand-amputees, it was shown that

data from intact subjects can be used as a proxy measure for amputees as well [14]. This result

justifies the use of intact subjects when ethical approval could be rejected in order to reduce

potential stress and pain for the amputees (as, for example, in the comparison of acquisition

setups that is described in this paper) that is mainly technical in nature.

Scientific research results and early commercial achievements show that it is possible to

control dexterous robotic hands and prostheses by analyzing multiple surface electromyogra-

phy (sEMG) signals offline and in real time (http://www.coaptengineering.com/). Most of

these methods rely on similar acquisition setups, protocols and analysis procedures. Usually,

several electrodes are placed on the forearm of the subjects to record the myoelectric signals.

Classification or proportional and simultaneous control algorithms are used to understand the

movement that the subject aims to perform [15–17].

The results described in literature for classification accuracy vary by a large margin, reach-

ing a maximum of approximately 95% accuracy. However, such results should be examined

wisely and comparisons with other studies should be made only when they are reasonable and
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justified by statistics. In fact, classification accuracy can change strongly depending on several

parameters (including e.g. number of classes, class balance and, for amputees, clinical parame-

ters [18]). The chance level varies with the number of classes. Therefore, considering a specific

dataset, feature and classifier, classification accuracy is expected to decrease when the number

of classes increases [19]. It is fundamental to compare accuracy only when the number of clas-

ses is comparable. It is common to see in the literature movement classification accuracy of up

to 90-95% [20–23]. However, most of these studies consider between 4 and 12 movements,

with chance level between 25% and 8.33%. The Ninapro datasets analyzed into this paper

include over 40 movements. The chance level is inferior to 2.5% and it should be compared

only with sEMG classification problems targeting a similar number of classes. Class unbalance

can also strongly augment classification accuracy, thus reducing the comparability of studies.

In particular, performance of unbalanced studies can be strongly augmented by the high num-

ber of rest repetitions (which are easier to classified) [11]. Finally, it was recently demonstrated

that clinical characteristics of the amputation (e.g. remaining percentage of forearm, phantom

limb sensation and years passed since the amputation) can significantly affect classification

accuracy [18]. Thus, results obtained on intact subjects seem to be better adapted to perform

inter-study comparisons.

Scientific research often requires highly specific and expensive instruments to obtain results

that can be useful to (and accepted by) the scientific community. This situation can prevent

research centers (that are too small or that are located in developing countries) from working

on specific topics. Until a few years ago, this was the case of many scientific fields, including

robotic hand prosthetics. However, this field is currently changing thanks to technical

advances (such as 3D printing) and to new and affordable data acquisition devices. The avail-

ability of new and affordable solutions to develop robotic prosthetic hands and intelligent con-

trol systems represents a chance for the field. It can increase the number of competing groups

(from any part of the world), solutions and ideas, thus fostering scientific advances. Moreover,

it can allow scientist to test and develop prosthetics solutions for kids, which are not usually

considered due to their limited durability because of growth of the subjects.

In 2013, the Thalmic startup (Ontario, Canada) released Myo, a low cost wireless armband

containing 8 single differential sEMG sensors and a 9 axis Inertial Measurement Unit (IMU)

(http://www.myo.com/). The Myo armband now costs 199 dollars, i.e. approximately 3-4

times less than a single Otto Bock 13-E200 double differential electrode used in prosthetics

and almost 100 times less than a complete wireless sEMG system aimed at research (e.g. the

Delsys Trigno and the Cometa Wave systems). However, the Thalmic Myo is to our knowledge

still not well characterized for research purposes and only rarely compared to other setups.

The Cometa Wave Plus Wireless sEMG system is well known in the clinical field and in sci-

entific research [24]. The system is composed of 16 wireless single differential electrodes and it

costs approximately 120 times more than the Myo armband. However, the Cometa electrodes

have never been characterized for hand movement recognition and they have not been

included in any benchmark sEMG dataset.

In order to allow the comparison of six acquisition setups, two new Ninapro sEMG datasets

of hand movements have been recorded with the Ninapro acquisition protocol using respec-

tively the Cometa electrodes and a double Myo armband setup. (section 2). The datasets are

publicly available as the 4th and 5th Ninapro datasets. The datasets are technically validated in

section 3, in the same way as previously performed for the other Ninapro datasets [11, 12] in

order to verify that the data are similar to data acquired in real-life conditions and that they

allow recognition of hand movements by applying state-of-the-art machine-learning algo-

rithms and signal features.
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This paper improves the current scientific knowledge with the comparison of six sEMG

acquisition setups ranging between a few hundred and several thousand dollars (section 4) on

a very similar hand movement classification tasks. The use of similar subjects, data acquisition

and data analysis methods allows comparing the performance of the setups, thus making Nina-

pro a benchmark also for acquisition setups. The setup with the 12 Cometa electrodes, the dou-

ble Myo armband setup and the single Myo setups are compared with the 10 Ottobock

electrode setup and the 12 Delsys Trigno electrode setup that were previously presented and

described [11]. The results highlight unexpected and interesting possibilities in the field of

sEMG controlled dexterous robotic hands with limited costs, thus suggesting that practical

tests and applications can be performed even when cost is important (e.g. small laboratories,

developing countries, use by children).

2 Data acquisition

The comparison of the acquisition setups is based on four datasets recorded with the Ninapro

data acquisition protocol [11]. Two of the datasets used in this comparison (i.e. the acquisition

setup based on ten Otto Bock 13E200 electrodes and the one based on twelve Delsys Trigno)

are extracted from previously described datasets [11, 12]. The datasets recorded with those

acquisition setups are publicly available as the 1st and 2nd Ninapro dataset (Ninapro DB1 and

DB2). The four remaining acquisition setups are based on two new publicly available Ninapro

datasets (Ninapro DB4 and DB5). The datasets are described in detail in this section, including

the subjects (subsection 2.1), the acquisition setup (subsection 2.2), the software (subsection

2.3), the acquisition protocol (subsection 2.4), the pre-processing (subsection 2.5) and the data

sharing modality (subsection 2.6).

2.1 Subjects

The groups of subjects considered in this paper are balanced and matched according to several

parameters that may affect sEMG amplitude and classification accuracy. The 4th and 5th Nina-

pro datasets (Ninapro DB4, Cometa+Dormo setup and Ninapro DB5, Double and single Myo

setups) include data recorded from 10 subjects each. One subject participated in both acquisi-

tions and hence is included in both datasets. Dataset 1 (Ninapro DB1, Otto-Bock 13E200) and

dataset 2 (Ninapro DB2, Delsys Trigno) include respectively 27 and 40 nondisabled subjects.

In order to obtain balanced groups, two groups of 10 subjects were selected from DB1 and

DB2 according to several parameters that may affect the performance of the subjects, the

sEMG amplitude and the classification accuracy (such as age, gender, weight, height and Body

Mass Index, BMI [12, 18, 25]). The Kruskal-Wallis one way analysis of variance was used to

verify that the subjects originate from the same distribution. Table 1 summarizes the character-

istics of the subjects, including the subjects of the ninapro Dataset 1 (Otto Bock) and 2 (Delsys

Trigno) and the results of the test for the considered parameters. Before the data acquisition

began, each subject was given a thorough written and oral explanation of the experiment and

of the associated risks; the subject was then asked to sign an informed consent form. The

acquisition session was conducted according to the principles expressed in the Declaration of

Helsinki (http://www.wma.net/en/20activities/10ethics/10helsinki/) and it was approved by

the Ethics Commission of the Canton of Valais (Switzerland).

2.2 Acquisition setups

This section describes the characteristics of the acquisition setups used to record the datasets.

Table 2 summarizes the characteristics of all the acquisition setups. The acquisition setups

used to record the 1st and 2nd Ninapro daset (Fig 1a and 1b) were described in detail in
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previous papers [11, 12]. The acquisition setups used to record the 4th and 5th Ninapro data-

sets (Fig 1c and 1d) are presented in detail in subsubsection 2.2.1 and subsubsection 2.2.1. The

setup used to record the 5th Ninapro dataset allows three configurations (both Myo armbands,

upper armband and lower armband), thus allowing to reproduce a setting more similar to the

other datasets.

2.2.1 Cometa+Dormo dataset (Ninapro DB4). In this dataset the electromyographic

activity of the forearm was recorded with a Cometa Wave Plus wireless sEMG system with

miniWave sensors (http://www.cometasystems.com/). Cometa miniWave sensors are light-

weight single differential sensors with inductive re-chargeable Li-Ion batteries. The sensor

characteristics are: input range of ± 2.5 mV, a gain of 1000, 10 Hz high-pass filtering, 1000 Hz

low-pass filtering for anti-aliasing, 2 kHz sampling rate at 16 bit. Every sensor was attached to

two Dormo SX-30 ECG electrodes (diameter 30 mm), covering the forearm circumference

without overlap. The Cometa receiver unit is connected to a computer through a USB 2.0 port.

Electrodes are placed following the protocol already used for the Ninapro DB2 and DB3

datasets [11]. Eight sensors are placed around the forearm at the height of the radio-humeral

Table 1. Subject information.

Ninapro DB1
Otto Bock
13E200

Ninapro DB2
Delsys
Trigno
Wireless

Ninapro DB4
Cometa

miniWave
+ Dormo

Ninapro DB5
Thalmic
Myo

(double & single)

Kruskal
Wallis
p-value

Available subjects 27 40 10 10

Considered subjects 10 10 10 10

Males 7 7 6 8

Females 3 3 4 2

Right-handed 9 9 8 10

Left-handed 1 1 2 0

Avg. Age (years) 28±4.6 28±3.1 29.6±9.24 28±3.97 0.9978

Avg. Height (cm) 173.1±7.6 173±11 178.2±7.39 172.2±9.88 0.4386

Avg. Weight (kg) 68.6±12.0 69.9±13.8 69.1±8.03 68.6±9.1 0.9976

Avg. BMI (Kg/m2) 22.8±3.18 23.29±3.72 21.66±1.48 23.17±2.66 0.6834

https://doi.org/10.1371/journal.pone.0186132.t001

Table 2. Characteristics of the sEMG sensors in different setups (N/Ameans “not available information”).

Ninapro DB1
Ottobock
13E200-50

Ninapro DB2
Delsys
Trigno
Wireless

Ninapro DB4
Cometa
miniWave
+ Dormo

Ninapro DB5
Thalmic Myo
(double & single)

Input Range N/A 11 mV (r.t.i.) ± 2.5 mV N/A

Output Range N/A ± 5 V ± 2.5 V N/A

Resolution N/A 168 nV/bit 76 nV/bit N/A

Bandwidth or
Built-in Filters

90–450 Hz 20 ± 5 Hz–
450 ± 50 Hz

HPF at 10 Hz,
LPF at 1kHz

Notch at 50 Hz

Sampling Frequency 100 Hz at 12 bit
with NI-DAQ 6024E

2 kHz at 16 bit 2 kHz at 16 bit 200 Hz at 8 bit

Gain 5 (*14,000) 909 ± 5% 1,000 N/A

Size (27 x 18 x 9.5) mm (37 x 27 x 15) mm electrode (50 x 36) mm;
transmitter (33 x 23 x 19) mm

circumference: 19-34 cm;
thickness: 11.43 mm

Mass 4.5 g 14.7 g electrode 7.5 g;
transmitter 35 g

93 g

https://doi.org/10.1371/journal.pone.0186132.t002
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joint; two sensors are placed on the main activity spots of the flexor digitorum superficialis

and extensor digitorum superficialis; two other sensors are placed on the main activity spots of

the biceps brachii and triceps brachii (Fig 1c). The main activity spots were identified by palpa-

tion. As represented in Fig 1c, the EMG sensors follow as much as possible the positioning of

the electrodes. All the DB4 (Cometa+Dormo) subjects were shaved, scraped and disinfected

on the electrode spots. Left handed subjects were mapped with a mirrored configuration. The

average environmental temperature during the acquisition of this dataset was approximately

29 Celsius degrees.

2.2.2 Double Myo dataset (Ninapro DB5). In this setup the electromyographic activity

was recorded with two Thalmic Myo armbands (http://www.thalmic.com/). The Myo arm-

band has 8 medical grade stainless steel sEMG single differential electrodes and a 9 axis inertial

measurement unit (IMU). The Myo armband samples 8 sEMG sensors at a 200 Hz frequency

with a resolution of 8 bit signed and streams the data through a bluetooth low energy connec-

tion to the computer running the Myo Connection application. The implementation of the

Double Myo Setup required to solve two main difficulties. The first one was related to the

timestamp of each frame. The Myo armband defines the timestamp as the time when the Myo

Connect software receives the frame. The energy consumption of the armband is optimized by

sending packets of 1, 2 or 4 frames at irregular rates. Therefore, consecutive frames may be reg-

istered with the same timestamp, making them unusable for data analysis. In order to solve

this problem, a custom sensor data timestamping procedure was developed (subsection 2.3). A

second difficulty was related to the software provided with the Myo (MyoConnect and the

Software Development Kit). Currently, the software does not allow to receive EMG data

streaming from more than one Myo armband. In order to solve this difficulty, a software to

record concurrently data from two devices was developed (subsection 2.3).

The subject wears two Myo armbands one next to the other. The upper Myo armband is

placed closer to the elbow with the first electrode on the radio humeral joint, following the

Ninapro electrode configuration [11]. The lower Myo armband is placed just below the first,

closer to the hand, tilted of 22.5˚ to fill the gaps left by the electrodes of the other Myo (Fig 1d).

The Double Myo configuration provides an extended uniform muscle mapping at an

extremely affordable price and it allows to analyze the data recorded from the two armbands

Fig 1. Acquisition setups for DB1 Otto Bock 13E200 (a), DB2 Delsys Trigno (b), DB4 (Cometa+Dormo) (c) and DB5
(Double Myo) (d).

https://doi.org/10.1371/journal.pone.0186132.g001
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together or separately. The Myo electrodes do not require the arm to be shaved and the arm-

band tightens very firmly to the arm of the subject.

The Double Myo dataset (DB5) also includes hand kinematics data, recorded using a

22-sensor CyberGlove II dataglove (CyberGlove Systems LLC (http://www.cyberglovesystems.

com), as in the previous Ninapro datasets. The CyberGlove is a motion-capture device that

measures the joint angles of the hand with 22 strain gauges applied on the hand joints. Each

strain gauge returns an 8 bit value, proportional to the angle and with a resolution of less than

one degree, depending on the size of the subject’s hand. Finally, raw accelerometer data were

also recorded from the first Myo at a 50 Hz frequency. In this dataset the average environmen-

tal temperature was approximately 22 Celsius degrees.

2.3 Acquisition software

The original Ninapro software [11] allows recording data from several devices used in previous

studies (i.e. Cyberglove, Delsys Trigno, Ottobock), it applies precise timestamps to the

recorded data and provides a graphical user interface (GUI) for data acquisition. Since the

original Ninapro software is written in C# and no SDK was available in this language neither

for Thalmic Myo nor for Cometa Wave, a bridging software was written in C++. The software

was named MultiEmgDevice and it allows recording data from multiple devices (even concur-

rently) and to send the data via a TCP socket to Ninapro. This procedure allowed to make

small modifications to the original Ninapro software, since it already used sockets to send and

receive data. MultiEmgDevice can record data from a Myo, from a Cometa Wave Plus EMG

System or from another socket. As previously said, Myo SDK and Myo Connect do not allow

recording from multiple Myo devices. Thus, a second software was created, named Myo-

Socket. It runs on a second laptop (to which the second Myo armband is connected) and it

sends the data to the first computer through a socket connection. The three applications

(Ninapro original software, MultiEmgDevice and MyoSocket) communicate with each other

and are triggered when the user starts the recording in the Ninapro GUI. The ping between

the two computers was measured in several tests, taking on average less than 1 ms. The

described system (Fig 2) is extremely flexible, since it uses external XML configuration files

and different logging options to simplify the debugging process.

2.4 Acquisition protocol

The acquisition protocol strictly replicated the one from Ninapro [11].

The exercises corresponded to exercise A, B and C of the paper [11] and include 52 move-

ments from the hand taxonomy and robotics literature (see, e.g., [26–29]). Each movement

was repeated 6 times, in order to be consistent with the other Ninapro datasets 2 and 3.

2.5 Signal processing

Signal processing was performed before data analysis and classification. Power line interfer-

ence can affect signal recording. Cometa sensors are not shielded against interference. Its sig-

nal was thus filtered to avoid European power line interference (50 Hz and harmonics) using a

Hampel filter [13]. The Thalmic Myo on the other hand already presents a notch filter at 50

Hz so no filtering was required for this sensor. The data from the two Myo armbands were

recorded separately and merged afterwards on a timestamp basis. All the data streams were

finally over-sampled to the frequency of the fastest device (2000 Hz for DB4 and 200 Hz for

DB5) using linear interpolation. The movements performed by the subjects may not perfectly

mirror the ones shown on screen, due to human reaction times. Movement detection
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algorithms (i.e. the generalized likelihood ratio algorithm [30] and the Lidierth threshold

based algorithm [31, 32]) were used to correct imperfect labeling.

2.6 Data sharing

The data are publicly available in the Ninapro repository (http://ninapro.hevs.ch/). Moreover,

the first three Ninapro datasets (including DB1 and DB2) are available on Dryad (http://

datadryad.org/) while the 4th and 5th Ninapro dataset (DB4 and DB5) are available on Zenodo

(https://zenodo.org/).

Each dataset contains files for each subject and exercise inMatlab format with filtered and

synchronized data. The raw unsynchronized data are also available upon request. The clinical

data of subjects are stored as well in order to simplify future analyses of sEMG signals and sub-

ject data.

3 Dataset validation

Similarly to what was previously done for the other Ninapro datasets [11, 12], this section vali-

dates the datasets by comparing their correspondence to real life data (subsection 3.1 and

Fig 2. Software system including NinaPro software, MultiEmgDevice, and MyoSocket. The scheme shows how the applications
interact with each other and with the external devices.

https://doi.org/10.1371/journal.pone.0186132.g002
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subsection 3.2) and by verifying that they allow the recognition of hand movements with stan-

dard machine learning procedures (subsection 3.3).

3.1 Signal spectrum

Fig 3 shows the raw signal and the frequency spectrum of the same exercise acquired with the

four different setups. Previous databases are also included (Fig 3e, 3f, 3g and 3h) to show the

Fig 3. Signal and spectrumof exercise 1, with different setups from DB1 (Otto-Bock), DB2 (Delsys Trigno), DB4
(Cometa+Dormo), DB5 (Double Myo). The 50Hz band is highlighted.

https://doi.org/10.1371/journal.pone.0186132.g003

Electromyography acquisition setups comparison

PLOSONE | https://doi.org/10.1371/journal.pone.0186132 October 12, 2017 9 / 17

https://doi.org/10.1371/journal.pone.0186132.g003
https://doi.org/10.1371/journal.pone.0186132


difference in the typical signal acquired with all the electrodes used in the Ninapro database. The

signal spectrum and amplitude analysis highlights a good correspondence of the Cometa data

(Fig 3a and 3b) with expected values, whereas the Myo (Fig 3c and 3d) seems to have some limi-

tations due to the characteristics of the hardware but still carries most of the information

required for hand movement classification (which is also available at lower frequencies [33, 34]).

The comparison of the raw signal obtained with the Cometa and with the Myo highlights

that the amplitude of the Myo signal is limited between -128 and 127 of the arbitrary Myo

unit. The frequency spectrum obtained with the Cometa sensors and Dormo electrodes (Fig

3b) has an absolute maximum between 50 Hz and 100 Hz and most of the information is con-

centrated before 200Hz. Thus, it corresponds well to what is expected for a non fatigued sub-

ject [35]. There are no evident drops in correspondence of the 50 Hz filtering frequency,

highlighting the correctness of the filtering procedure applied during post-processing in order

to avoid power grid interference.

The frequency spectrum obtained with the Myo electrodes (Fig 3d) highlights two main

characteristics of the hardware. First, the spectrum is limited between 0 Hz and 100 Hz due to

the sampling frequency of the device (200 Hz sampling frequency). This fact suggests that the

Myo is not suited to record high quality sEMG signal data including the full power spectrum

of sEMG (that can include frequencies of up to 300-500 Hz) but it still carries most of the

information required for hand movement classification [33, 34]. Second, the frequency drops

at 50 Hz, highlighting the presence of the notch filter to avoid power grid interference. The

Myo signal seems stable and not disturbed by external factors like touching the enclosure or

standing close to an electromagnetic field and it cleanly carries the sEMG signal. As discussed

in previous Ninapro publications [14] DB1 was acquired with 10 Otto-Bock sEMG electrodes,

providing an amplified, bandpass-filtered and Root-Mean-Square (RMS) rectified version of

the raw sEMG signal. This setup was recorded at 100 Hz using a National Instruments data

acquisition card (NI-DAQ PCMCIA 6024E, 12-bit resolution). DB2 on the other hand was

acquired using 12 double differential Delsys Trigno electrodes at 2000 Hz, providing a good

comparison with DB4, having specifications similar to the Cometa electrodes.

3.2 Effect of the experimental conditions on the signal amplitude

This section shows the effect of experimental conditions on the sEMG signal. Many physiolog-

ical and experimental factors can affect the amplitude of the EMG signal [13, 25, 36]: muscular

characteristics, skin impedance, sweat, muscular tone, fatigue, Body Mass Index (BMI), move-

ment type, sensor hardware characteristics and sensor positioning, just to cite a few. As previ-

ously done for the other Ninapro datasets [11, 12], in this work we consider the relationship

between the amplitude of the sEMG signal and the main characteristics of the experiment, i.e.

movement repetition, movement number and subject number (Fig 4). A one-way Multivariate

Analysis of Variance (MANOVA) was used to perform this analysis in Matlab.

The analysis shows that there are no significant differences between different movement

repetitions (P> 0.1), highlighting that fatigue and subject adaptation do not significantly affect

the muscular response. There are on the other hand significant differences considering move-

ments and subjects. The result corresponds to what is expected and described in previous

papers, since subjects present different muscular characteristics and the movements involve

various muscles as well.

3.3 Movement classification

In this section we characterize DB4 (Cometa+Dormo) and DB5 (Double Myo and Single

Myo) by verifying that they allow the recognition of hand movements with standard machine
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learning procedures. The total number of analyzed movements movements is 41, correspond-

ing to the Ninapro exercises B and C plus rest [11]. As previously described section 1, the

results described in this section must be compared only with studies targeting a similar

amount of classes.

3.3.1 Feature extraction and classification procedure. The classification procedure is the

same as the one used for previous Ninapro work [11], following Englehart et al. [15]. It consists

of dividing each detected repetition in windows of 200, overlapping for 100; each window is

labeled with its movement number, obtained after relabeling. Five signal features are

Fig 4. sEMG signal amplitude analysis.Characterization of four Ninapro datasets. The first two rows represent the datasets discussed in
this paper (Cometa+Dormo and Myo datasets), while the last two rows represent an analysis made on a subset of subject from the Otto-
Bock and the Delsys Trigno datasets, as explained in subsection 2.1. The first column represents the variability of the EMG signal on the 6
repetitions, considering all movements and subjects. The second column shows the variability of different movements, considering all the
subjects and all repetitions. The third column represents the variability of the signal in each subject, considering all movements and
repetitions. The horizontal central mark in the boxes is the median; the edges of the boxes are the 25th and 75th percentiles; the whiskers
extend to approximately 2.7 times the standard deviation.

https://doi.org/10.1371/journal.pone.0186132.g004
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computed for each window: Root-Mean-Square (RMS), time domain statistics described by

Hudgins et al. [37] (TD), Histogram (HIST) and marginal Discrete Wavelet Transform

(mDWT) and the concatenation of all of them. These features have already been applied suc-

cessfully to myoelectric signals in other work [13, 30, 38]. For the Histogram feature (HIST)

[39], the histogram was divided into 20 bins along a 3σ threshold. For the marginal Discrete

Wavelet Transform (mDWT), a dB7 a wavelet with three levels was used [40].

Two machine learning algorithms were used to classify the movements with each of the

four features: Support Vector Machines (SVM) [41] and Random Forests [42]. These classifiers

are common, well known and were previously applied to many machine-learning problems,

including sEMG analysis where both showed good performance. Repetitions 1, 3, 4 and 6 were

used to train the classifiers, repetitions 2 and 5 were used for validating them. The classification

was performed on all movements (rest included).

3.3.2 Classification accuracy. As thoroughly described in the introduction, the results

described in this section need to be compared only with sEMG classification problems target-

ing a similar number of 40 different classes with a balanced approach.

The best average accuracy obtained with the Double Myo setup is 69.04% with the mDWT

feature and SVM classifier.

We also computed the accuracy with a single Myo, excluding the other armband. For the

upper Myo (DB5-1) the best average accuracy is 55.31%, while the best achieved accuracy for

the lower Myo (DB5-2) is 54.76%.

The best average accuracy obtained with the Cometa+Dormo setup is 69.13% with mDWT

feature and random forests classifier. We noticed that precise movement detection can

improve the classification results: a larger window confuses the movement with the rest posi-

tion, while a shorter window does not take into account the beginning or the end of the move-

ment (as previously described by Gijsberts et al. [13]).

4 Comparison of six sEMG acquisition setups

This section describes and compares six acquisition setups towards hand movement classifica-

tion. The relative comparison of the performance is possible because the used acquisition pro-

tocols and analysis procedures are identical.

Minor acquisition differences can appear between the datasets, including electrode posi-

tion, total number of subjects and experimental conditions (e.g. body and environmental tem-

perature). Thus, it is fundamental to note that we compare the entire acquisition setup (and

not only electrode models or brands).

The acquisition protocol is the standard Ninapro acquisition protocol described in section

2 as well as in previous publications [11, 12]. In order to obtain correct results, the comparison

is made on the same hand movements (Ninapro exercise B and C plus rest, 41 hand move-

ments). Table 3 summarizes the characteristics of the six acquisition setups and the main data

differences. The analysis procedure consists of a movement classification task with standard-

ized methods. The procedure is described in subsection 3.3 and it was previously used to char-

acterize the other Ninapro datasets [11].

The results of the standardized classification procedure are reported in Fig 5. As previously

described, the results need to be compared only with sEMG classification problems targeting a

similar number of classes with a balanced approach. The best results are obtained on the 2nd

dataset with the Delsys Trigno setup (74.01% ± 7.59% considering the matched group of 10

subjects, 72.25% ± 7.13% considering all 40 subjects). Comparable average accuracies are

obtained in DB4 with the Cometa and Dormo acquisition setup (69.13% ± 7.77%) and in

DB5-All with the double Myo acquisition setup (69.04% ± 5.24%), which costs 400$, i.e. less
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than 1/30 of the Delsys Trigno and the Cometa system. The results with only one Myo decrease

to 55.31%, which is 25.26% less than the result obtained with the Delsys Trigno. The accuracy

obtained with the Otto-Bock 13E200 electrodes is 65.26% ± 5.78% considering the matched

group of 10 subjects, 64.45% ± 6.21% considering all 27 subjects, which seems an excellent

Table 3. Acquisition setup features.

Ninapro
Dataset

DB1 DB2 DB4 DB5-All DB5-1 DB5-2

Reference [11, 12] [11, 13] Section 2.2.1 Section 2.2.2 Section 2.2.2 Section 2.2.2

sEMG setup Otto Bock
13E200

Delsys
Trigno

Cometa
Wave

Wireless
+ Dormo

SX30 ECG

Thalmic
Myo

Double

Upper
Thalmic
Myo

Lower
Thalmic
Myo

Differential double double single single single single

N˚ electrodes 10 12 12 16 8 8

N˚ considered movements 41 41 41 41 41 41

N˚ available movements 53 50 53 53 53 53

Ninapro Exercises [11] B,C B,C B,C B,C B,C B,C

N˚ considered repetitions 6 6 6 6 6 6

N˚ available repetitions 10 6 6 6 6 6

Ground truth Cyber
Glove

Cyber
Glove

Video
Stimulus

Cyber
Glove & FFLS

Cyber
Glove

Cyber
Glove

https://doi.org/10.1371/journal.pone.0186132.t003

Fig 5. Acquisition setup comparison on the classification of 41 handmovements with (A) a RandomForests classifier and (B)
SVM.

https://doi.org/10.1371/journal.pone.0186132.g005
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result considering that the electrodes provide an amplified, bandpass-filtered, and RMS recti-

fied version of the raw sEMG signal.

Multi factor analysis of variance was performed on the classification accuracies in order to

check that different factors did not affect the comparison of the acquisition setups. The Krus-

kal-Wallis analysis of variance was performed considering the classification accuracy com-

puted with each of the 10 feature-classifier combinations (RMS, TD, HIST, mDWT, All

features, all computed both with Random Forests and Support Vector Machines) as dependent

variable. The following independent variables were considered: acquisition setup, gender,

laterality, age, height, weight and BMI. In this comparison, the DB5 acquisition setup was con-

sidered only in the configuration with both electrodes (which is the more similar to the other

datasets). The results highlight significant differences between the acquisition setups in 90% of

the cases (p< 0.01 in seven cases, p< 0.05 in two cases). Significant differences were obtained

for the BMI in 3 cases out of 10 (p< 0.05). This result is in accordance with literature [12] and

it should not affect the comparison of the acquisition setups considering that the considered

groups of subjects were matched according to several parameters including the BMI (Table 1).

It should be noticed that while DB1 and DB2 were recorded using double differential elec-

trodes (respectively Otto Bock 13E200 and Delsys Trigno electrodes), DB4 and DB5 where

recorded with single differential electrodes, that have different signal detection properties [43].

DB5-All on the other hand was recorded with two Myo armbands, thus probably offering a

better mapping of the flexor and extensor digitorum superficialis due to the higher superficial

density of the electrodes. Moreover, several other hardware and experimental conditions

could have contributed to the performance. For instance, DB4 was recorded during the hottest

days of summer 2015 in Northern Italy. Thus, despite air conditioning, the environmental

temperature was higher than in the other cases (29˚C). As well described in literature, sweat

caused by fatigue or a hot environment can alter and dampen the sEMG signal significantly

[44], thus reducing the expected classification accuracy.

5 Conclusions

This paper describes the relative comparison of six sEMG acquisition setups (ranging in price

between a few hundred to several thousand dollars) on the same data acquisition and analysis

procedure aimed at hand movement classification. This comparison highlights the positive

and negative features of the considered setups and it allows scientific researchers to choose the

proper acquisition setup for their requirements.

The comparison of the acquisition setups is based on several datasets recorded with the

Ninapro data acquisition protocol [11]. Two of the acquisition setups (i.e. the acquisition set-

ups based on the Otto Bock and Delsys Trigno electrodes) were described in detail in previous

papers [11, 12]. The datasets recorded with those acquisition setups are publicly available as

the 1st and 2nd Ninapro dataset. The other acquisition setups (Cometa + Dormo, upper single

Myo, lower single Myo and double Myo) are based on the acquisition setups that were used to

record the 4th and 5th Ninapro datasets (section 2). The 4th and 5th publicly available Ninapro

datasets (Ninapro DB4 (http://ninapro.hevs.ch/DB4Cometa/) and DB5 (http://ninapro.hevs.

ch/DB5_DoubleMyo/) are presented for the first time in this paper and validated in section 2

and section 3. DB4 is recorded with Cometa Wave Wireless sEMG system using Dormo SX-30

ECG electrodes. DB5 is recorded with two Thalmic Myo armbands (a recent small and low

cost sEMG acquisition device). The validation of the two new datasets shows that they corre-

spond to real life data and that they allow the recognition of hand movements with accuracy in

line with current scientific literature for a comparable number of movements. Fatigue and
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subject adaptation do not modify the muscular response significantly. The datasets can con-

tribute to the field by allowing worldwide machine learning researchers to analyze the data.

The relative performances of the six sEMG acquisition setups are compared on the classifi-

cation of 41 hand movements using a standardized data acquisition and analysis pipeline. The

considered sEMG acquisition setups span a very wide price range, between few hundred and

approximately 20 thousand dollars. The best movement classification accuracy is obtained

with the Delsys Trigno. However, comparable results are obtained with the Cometa with

Dormo electrodes setup and with the Double Myo acquisition setup, costing less than 1/30 of

the Delsys and of the Cometa system. This result suggests that practical sEMG tests for dexter-

ous control can be performed even when cost is important, e.g. in small laboratories, in devel-

oping countries or to develop prostheses usable by children.
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