
Volume 4, No. 1, January 2013

Journal of Global Research in Computer Science

REVIEW ARTICLE

Available Online at www.jgrcs.info

© JGRCS 2010, All Rights Reserved 38

COMPARISON OF SIX PRIORITIZATION TECHNIQUES FOR SOFTWARE

REQUIREMENTS

Manju Khari*1, Nikunj Kumar2

*1 Department of Computer Science & Engineering, AIACT&R, Delhi, India
manjukhari@yahoo.co.in

2 Department of Computer Science & Engineering, AIACT&R, Delhi, India
nikunjkumar14@gmail.com

Abstract: There are many requirements prioritization techniques and selecting the most appropriate one is a decision problem in its own rights.
This paper takes a closer look at the six requirement prioritization techniques and put them in a controlled experiment with the objective of
understanding differences regarding ease of use, total time taken, scalability, accuracy, and total number of comparisons required to make
decisions. These five criteria combined will indicate which technique is more suitable. The result from the experiment shows that Value oriented
Prioritization (VOP) yields an accurate result, can scale up, and requires the least amount of time.

Keywords: Requirements, Requirements Prioritization, Prioritization Techniques, Comparison

INTRODUCTION

When requirements are elicited, it often yields more
requirements than can be implemented at once. The
requirements need to be prioritized so that the most
significant ones are met by the earliest product releases [1].
During a project, decision makers in software development
need to make many different decisions regarding the release
plan. Issues such as available resources, milestones,
conflicting stakeholder views, available market opportunity,
risks, product strategies, and costs need to be taken into
consideration when planning future releases. Unfortunately,
there is a lack of simple and effective techniques for
requirement’s prioritization, which could be used for release
planning [2].

Our goal in this paper is to compare six techniques for
prioritizing software requirements. The chosen techniques
are Analytic Hierarchy Process (AHP), Value Oriented
Prioritization (VOP), Cumulative Voting (CV), Numerical
Assignment Technique (NAT), Binary Search Tree (BST)
and Planning Game (PG). To study these techniques, we
systematically applied all techniques to prioritize a set of
thirteen quality requirements. We then categorized the
techniques from a user’s perspective according to five
criteria such as ease of use, total time taken, scalability,
accuracy, and total number of comparisons required to make
decisions.

MOTIVATION

In a review of the state of the practice in requirements’
engineering, Lubars et al found that many organizations
believe that it is important to assign priorities to
requirements and to make decisions about them according to
rational, quantitative data [3]. Still it appeared that no
company really knew how to assign priorities or how to
communicate these priorities effectively to project members.
There is a growing acknowledgment in industrial software
development that requirements are of varying importance.

However, there has been little progress to date, either
theoretical or practical, on the mechanisms for prioritizing
software requirements.

A sound basis for prioritizing software requirements is the
approach provided by the analytic hierarchy process, AHP
[4]. In AHP, decision makers pair-wise compare the
requirements to determine which of the two is more
important, and to what extent. AHP has a fundamental
drawback which impedes its industrial institutionalization.
Since all unique pairs of requirements are to be compared,
the required effort can be substantial. In small-scale
development projects this growth rate may be acceptable,
but in large-scale development projects the required effort is
most likely to be overwhelming. Karlsson et al identified
five complementary approaches to challenge AHP [5]. All
of these methods involve pair wise comparisons, since
previous studies indicate that making relative judgments
tend to be faster and still yield more reliable results than
making absolute judgments [6].

Such pair-wise comparisons are time-consuming and suffer
from explosive growth as the number of requirements
increases. Wiegers recommends a less rigorous approach
that is based on weighted assessments of perceived value,
relative penalty, anticipated cost, and technical risks [7].

The
fundamental difficulty with Wiegers’ approach is that the
value assigned to a given requirement lacks the granularity
necessary to determine whether or not the requirement
meets key business core values. To overcome these
limitations, there is a Value-Oriented Prioritization (VOP)
process. VOP takes the form of an additive weighting
method as described by Vetschera and expressed in the
spreadsheet model of Wiegers [7, 8]. Paetsch et al claims
that agile software development has become popular during
the last few years and in this field, one of the most popular
methods is the extreme programming, which has a
prioritization technique called Planning Game (PG) [9].
Next section gives a brief description of each technique.

Manju Khari et al, Journal of Global Research in Computer Science, 4 (1), January 2013, 38-43

© JGRCS 2010, All Rights Reserved 39

PRIORITIZATION TECHNIQUES

This section enlightens the prioritization techniques
examined in this paper.

Numerical Assignment Technique (NAT):

The numeral assignment technique is based on the principle
that each requirement is assigned a symbol representing the
requirement’s perceived importance. This approach is
common in Quality Function Deployment (QFD) where
prioritizing of candidate requirements is required [10].
Several variants based on the numeral assignment technique
exist. A straightforward approach to the technique is
presented by Brackett [11], who suggest that requirements
should be classified as mandatory, desirable, or inessential.
An approach using finer granularity is to assign each
requirement a number on a scale ranging from 1 to 5, where
the numbers indicate:
 5. Mandatory (the customer cannot do without it).
4. Very important (the customer doesn’t want to be without
it).
3. Rather important (the customer would appreciate it).
2. Not important (the customer would accept its absence).
1. Does not matter.

Analytical Hierarchical Process (AHP):

The Analytic Hierarchy Process (AHP) was first developed
and explained by Saaty [4] in 1980. Regnell et al [12] claim
that even though this is a promising technique, the technique
itself is not adapted to distributed prioritization with
multiple stakeholders; hence it has to be modified in one
way or another. However, at present time there have not
been published any research how that kind of modification
would function.

In AHP the candidate requirements are compared pair wise,
and to which extent one of the requirements are more
important than the other requirement. Saaty [4] states that
the intensity of importance should be according to Table 1.

Table 1. Basic scale according to Satty for pairwise comparison in AHP

Since this technique prescribes pair-wise comparisons of all
candidate requirements, the required number of comparisons
grows polynomial. For a software system with n candidate
requirements, n. (n - 1)/2 pair-wise comparisons are needed.

Value Oriented Prioritization (VOP):

VOP uses a framework that gives requirement engineers a
foundation for prioritizing and making decision about
requirements [13]. It provides visibility for all stakeholders
during decision making, eliminating lengthy discussions and

arguments over individual requirements by emphasizing the
core business values. The first step in setting up a value
oriented prioritization process is to establish a framework
for identifying the business’s core values and the relative
relationships among those values. VOP uses the
relationships that exist between core business values to
assess and prioritize requirements and ensure their
traceability. The VOP framework establishes a mechanism
for quantifying and ordering requirements for an application
increment, a prototype, or a software requirements
specification. Company executives identify the core
business values and use a simple ordinal scale to weight
them according to their importance to the organization.

Table 2. Value Oriented Prioritization matrix

Requireme

nts Business Values (V1…..Vn) Score

V1=

7 V2=6 Vi =9 VI+1=5 Vn=8

R1

R2 Wij

….

RN

Table 2 shows an example of a matrix incorporating five
business values and. V

0,i
is the weight of business value i.

W
i,j

is the weight assigned to requirement r
i
with respect to

business value V
j
. Formally, we can express the score (S

r
)

for each requirement r, in the set, R of all possible
requirements, as:

Sr = (1)

Cumulative Voting (CV):

The Cumulative Voting (CV) or 100-Point Method or
Hundred-Dollar ($100) test, described by Leffingwell and
Widrig, is a simple, straightforward and intuitively
appealing voting scheme where each stakeholder is given a
constant amount (e.g. 100, 1000 or 10000) of imaginary
units (for example monetary) that he or she can use for
voting in favor of the most important issues [14]. In this
way, the amount of money assigned to an issue represents
the respondent’s relative preference (and therefore
prioritization) in relation to the other issues. The points can
be distributed in any way that the stakeholder desires. Each
stakeholder is free to put the whole amount given to him or
her on only one issue of dominating importance. It is also
possible for a stakeholder to distribute equally the amount to
many of, or even to all of the issues.

CV is sometimes known as “proportional voting” since the
amount of units assigned to an issue represents the relative
priority of the specific issue in relation to the other issues.
The term “proportional” in this case also reflects the fact
that if the amount of units assigned to an issue is divided by
the constant number of units available to each stakeholder,
the result becomes a proportion between zero and one. The
stakeholder’s ratings for a set of issues can be therefore
considered as the “composition” or “mixture” of a person’s
opinion towards the issues, in the abstract sense that each
issue occupies a certain proportion (or percentage) of
preference inside the person’s belief or judgment.

Sr.No. How Important Description

1 1 Equal Importance

2 3
Moderate difference in

importance

3 5
Essential difference in

importance

4 7 Major difference in importance

5 9
Extreme difference in

importance

6 Reciprocals

If requirement i has one of the
above numbers assigned to it
when compared with
requirement j, then j has the
reciprocal value when compared
with i.

Manju Khari et al, Journal of Global Research in Computer Science, 4 (1), January 2013, 38-43

© JGRCS 2010, All Rights Reserved 40

The procedure may result to issues that are assigned zero
units showing that the specific stakeholder considers these
issues completely unimportant. The zeros are generally a
problem in this kind of data, because they make the notion
of relative preference or importance completely meaningless
and the computation of ratios impossible. Of course, a
questionnaire where zeros are not allowed could be
designed, but in general, the principle of CV is to allow
stakeholders to spread freely their total amount without
further restrictions.

Binary Search Tree (BST):

BST is a computer algorithm with the purpose to store
information, which then could be retrieved or sought after.
The BST Т usually is either empty, or has one or two child
nodes. The child nodes to the right (Тr) have greater
value/importance than the root node R, and the child nodes
to the left (Тl) have less value/importance then the root node
R. Each child node is in itself a root node to its child node. If
a node does not have any child nodes, it is called a leaf. This
makes it possible to search in the BST recursively. The
benefit for using BST, when prioritizing requirements, is
that with n requirements, it takes only n log n [15]
comparisons until all the requirements have been inserted in
order. That makes BST a fast candidate, which could be
good if there is a lot of requirement to prioritize among, i.e.
BST could easily scale up to thousands of requirements, and
still be a very fast candidate. There is one important thing to
know about the BST algorithm, which is that a tree needs to
be balanced to have the shortest insertion time.

A balanced BST is a BST where no leaf is more than a
certain amount farther from the root than any other leaf.
After a node has been inserted or deleted the tree might have
to be rebalanced if but only if the BST would reach an
unbalanced stated. The reason for this is that the insertion of
a node should be optimal, i.e. log n.

The scale between each requirement is on the ordinal scale.
That means that I only could find out if one requirement is
more important than another, but not to what extent.
Another negative problem with BST is that there is no
consistency ratio that we could calculate, hence we do not
know if we have done a precise prioritizing or not.

Planning Game (PG):

In extreme programming the requirements are written down
by the customer on a story card. Then the customer divides
the requirements into three different piles. According to
Beck, the piles should have the names; “those without which
the system will not function”, “those that are less essential
but provide significant business value” and “those that
would be nice to have” [16]. At the same time as that the
customer sorts the story cards, the programmer estimates
how long time each requirement would take to implement
and then begin to sort the requirements into three different
piles, i.e. sort by risk, with the names; “those that can be
estimated precisely”, “those that can be estimated
reasonably well” and “those that cannot be estimated at all”.

The customer or one or several representatives for the
customer could either decide on a fixed release date, or
decide which requirements that should be included in the
next release. The end result of this sorting is a sorted list of

requirements on an ordinal scale. Since PG takes one
requirement and then decides which pile the requirement
belongs to and each requirement is not being compared to
any other requirement, the time to prioritize n requirements
is n comparisons. This means that PG is very flexible and
can scale up to rather high numbers of requirements, without
taking too long time to prioritize them all.

EXPERIMENT FRAMEWORK

This section describes the experiment design and how the
experiment will be conducted.

Introduction:

The aim of the experiment is to compare the six prioritizing
techniques to evaluate which one of them seems to be the
better, i.e. which technique is the easiest to use, takes
shortest amount of time, scalable when adding more
requirements, accurate and takes fewer number of
comparisons. This is tested by letting the participants’
answer how they experience and believe that each technique
would be able to fulfill each criterion. This experiment is
highly influenced by the experimental approach outlined in
[17].

Design:

With the motivation of gaining a better understanding of
requirements prioritization techniques, we performed a
single project study with the aim of characterizing and
evaluating the six prioritizing techniques from the
perspective of users [17]. The experiment was populated
with seven graduate and post graduate students. They were
asked to prioritize thirteen quality requirements using the
prioritization techniques under consideration [18]. The
requirements were prioritized by the participants
independently, and to the best of their knowledge. The
quality requirements were prioritized without taking the cost
of achieving the requirements into account. That is, only the
importance for the customers was considered. Moreover, the
requirements were considered orthogonally, i.e. the
importance of one requirement is not interdependent on
another.

In order to minimize the risk that the participants remember
how they did the last prioritization, we spread the test over a
period of time with fixed intervals. Only one technique was
studied in a day. Every day, 20 minutes were allocated for
presenting the technique which was under observation on
that day and after getting the confirmation from each
participant whom the technique was understood clearly, 60
minutes were allocated for completion of the experiment of
that day. Each participant was supplied with necessary
papers and time taken by each participant to complete the
experiment was recorded separately.

Threats to Validity:

When reading a result from an experiment, one of the most
important questions is: How valid is the result? That makes
validity of the result an important question to consider when
an experiment is designed. The aim of the experiment was
the evaluation of six requirements prioritization techniques
by making comparisons among them. We do not argue that
the results obtained in this experiment can be generalized
and used by any user in any environment for any

Manju Khari et al, Journal of Global Research in Computer Science, 4 (1), January 2013, 38-43

© JGRCS 2010, All Rights Reserved 41

application. Rather, we tried to illustrate the requirements
prioritization techniques to gain a better understanding of
them. The following threats have been identified:

Too few requirements: In the analysis of the data, it became
obvious that the experiment had too few requirements.
However, before the experiment, it was discussed whether it
would be possible to consider more than thirteen
requirements, but since there was a time limit, i.e. how
much time the participants could participate; the number of
requirements had to be limited. To really reflect a real
project, the number of requirements should be a couple of
hundred; this would be more or less impractical to handle
within the limited timeframe of this experiment. Therefore,
the decision was taken that the number of requirements
should only be thirteen.

Few persons involved in the experiment: The significance
of the results is limited due to involvement of few persons
(seven persons) with the experiment. That’s why the
outcomes were more inconclusive, and hence can be
regarded as a partial threat to the evaluation. However, if
requests to attend to the experiment are going to a large
population, there is a greater chance that the risk would be
minimized.

Offline Evaluation: The evaluation was carried out
independently from a real software project which may be
considered as a potential problem for this experiment.
However, it is not regarded as being a major threat as the
main objective of this evaluation was to gain understanding
and illustrate a number of possible methods for prioritizing
software requirements.

Only non functional requirements considered: This
experiment was only concerned with non functional
requirements. This limitation is, however, not believed to be
a major threat to the results from the experiment.

Requirements are interdependent: In practice, the
interdependence between the requirements must be
considered. None of the prioritizing techniques described in
this paper provides means for handling interdependence;
hence this limitation of the experiment is not believed to
influence the actual evaluation of the different methods.

It is always important to identify threats in an experiment in
order to allow for determining both the internal and external
validity of the results attained. Thus, the above potential
threats should be kept in mind when analyzing the results.

Analysis of collected data:

The testing begins with the first question of every technique;
followed by the second and third and so on. For each
question, participants ranked each method and finally mean
value was taken. Those questions that the participants were
asked after each technique were the following:

a. The first question that the participants were asked
was how easy the prioritization technique was to
apply. The answer of the question is shown in fig.
1.

Fig. 1 clearly indicates that participants thought that
Planning Game (PG) followed by VOP was the easiest

method to apply. NAT followed by AHP was most difficult
to handle. CV and BST were in the middle of these two
groups.

Figure 1. Comparison among the techniques for the criteria “Ease of use”

b. The second question that the participants were
asked was how long time it took for the participants
to perform the prioritization with the techniques
under consideration. The result of the question is
shown in fig. 2.

Figure 2. Comparison among the techniques for the criteria “Total time
taken to prioritize”

From the result in fig. 2, clearly NAT took the longest time
to execute, followed by AHP. The fastest technique was
VOP and PG. Between fastest group of techniques and
slowest group of techniques was CV.

c. The third question was to arrange the methods
according to how the participants believed that the
methods would work with many more requirements
than the 13 that were in the experiment. The result
is presented in fig. 3.

Figure 3. Comparison among the techniques for the criteria “Scalability”

The result in fig. 3 indicates most of the participants thought
VOP, and BST were the prioritization techniques that were
more suited as candidates to handle much more

0

2

4

6

8

10

NAT AHP VOP CV BST PG

A
v

e
ra

g
e

 R
a

n
k

Prioritization Techniques

Ease of use

0

20

40

60

NAT AHP VOP CV BST PGA
v

e
ra

g
e

 T
im

e
 (

m
in

u
te

s)

Prioritization Techniques

Total Time Taken

0

2

4

6

8

10

NAT AHP VOP CV BST PG

A
v

e
ra

g
e

 R
a

n
k

Prioritization Techniques

Scalability

Manju Khari et al, Journal of Global Research in Computer Science, 4 (1), January 2013, 38-43

© JGRCS 2010, All Rights Reserved 42

requirements. The participants found that AHP followed by
NAT would be the worst candidate to scale up for more
requirements. In the middle was PG.

d. The fourth question was that the participants were
asked to arrange the techniques according to their
opinion about accuracy of the result produced by
each method. The result is shown in fig. 4

Figure 4. Comparison among the techniques for the criteria “Accuracy”

The result in fig. 4 clearly indicates that most of the
participants thought that BST and VOP were the best
techniques. NAT followed by AHP yields less accurate
result. CV and PG were located between these two groups.
It was expected that AHP would produce the most accurate
result as in this method requirements were prioritized
according to mathematical rules. An explanation to why
AHP more or less did so poorly here can be that the
participants did not understand how to read out, the matrix
that presented the prioritization results.

e. Finally the participants were asked to keep records
of how many comparisons were required for each
technique. The result is shown in fig. 5.

Figure 5. Comparison among the techniques for the criteria “Total Number
of Comparisons”

The result in fig. 5 clearly indicates that AHP was required
the highest number of comparisons because the number of
comparisons in AHP is n(n-1)/2. NAT, VOP, CV, and PG
were required the lowest number of comparisons because
they only require n comparisons. BST was in the middle of
these two groups, because it require n(logn) comparions.

FINDING THE OVERALL BEST PRIORITIZATION

TECHNIQUE

After collecting data based on above motioned criteria, we
assigned weight for each criterion and then applied formula
(2) and (3) to find out the overall best requirements

prioritization technique. Each of the above criteria was
assigned weight according to Table III.

Table 3. Weight table for each criterion

Then following formulae were used to calculate overall
score by each of the prioritization techniques under
consideration.

Where,
N = Number of techniques used
Si,j = Score of technique j in criteria i
W (Ci) = Weight of criteria i
NC = Number of criteria’s
Ri (Tj) = Ranking of technique j in criteria i
OS(Tj) = Overall score of technique j
The result after calculation is shown in fig. 6

Fig. 6 clearly indicates that among all the requirement
prioritization techniques under consideration, VOP is
supposed to be the best one based on the mentioned
evaluation criteria.

This order of the requirement prioritization techniques
obtained from this experiment, however, is not a global one
as rankings can be reordered if criterion weights are
assigned differently. Nevertheless, the technique and
formulae used here to compare among different
prioritization techniques can be used in any scenario with
appropriate criterion weights suitable for that scenario.

Figure 6. Comparison among the techniques on the basis of weighted value
of criteria’s

CONCLUSION

Outcome of the experiment says that VOP is supposed to be
the best method for prioritizing software requirements. It is
an easy method, it gives one of the most accurate results,
and it is rather comfortable to handle even if there are many

0

2

4

6

8

10

NAT AHP VOP CV BST PG

A
v

e
ra

g
e

 R
a

n
k

Prioritization Techniques

Accuracy

0

20

40

60

80

100

NAT AHP VOP CV BST PGN
u

m
b

e
r

o
f

C
o

p
m

a
ri

o
n

s

Prioritization Techniques

Total Number of Comparisons

0

10

20

30

40

50

60

70

NAT AHP VOP CV BST PG

O
v

e
ra

ll
 S

C
o

re

Prioritization Techniques

Criteria Weight

Ease of Use 9

Total time taken 7

Scalability 8

Accuracy 8.5

Total number of comparisons 8

Sij = W (Ci)*((N+1) - Ri (Tj)).... (2)

OS (Tj) = ….. (3)

Manju Khari et al, Journal of Global Research in Computer Science, 4 (1), January 2013, 38-43

© JGRCS 2010, All Rights Reserved 43

more requirements. In most questions’ PG and BST were
located in the middle, neither the best nor the worst
techniques. However, the test subjects thought that PG was
the next-best method of these six techniques to be used
when prioritizing. The worst candidate according to result is
NAT. The reasons for worst performance of NAT are
determining the absolute information is difficult than
relative information, participants’ subjective opinions
regarding a number differ widely, it is not effective when
numbers of requirements are low, less accurate and
informative, it takes maximum time to prioritize. However,
this order of the requirement prioritization techniques
obtained from this experiment, however, is not a global one
as rankings can be reordered if criterion weights are
assigned differently. Nevertheless, the technique and
formulae used here to compare among different
prioritization techniques can be used in any scenario with
appropriate criterion weights suitable for that scenario.

The generalisability of the paper is limited due to the small
sample and the specific context. A real project has
requirement’s interdependencies, and time and budget
pressure to consider, which cause the decision-making to be
far more difficult. However, we believe that VOP is valid as
prioritization technique. The main disadvantage of the
experiment being the difficulty to generalize to industrial
projects, it would be valuable to try the experiment out in a
case study. The participating organization would then get
knowledge about prioritization and perhaps find a technique
that suits their needs.

REFERENCES

[1]. J. Siddiqi and M.C. Shekaran, “Requirements engineering:

the emerging wisdom,” IEEE Software 13 (2), pp. 15–19,

1996.

[2]. J. Karlsson and K. Ryan, “Prioritizing requirements using a

cost-value approach,” IEEE Software 14 (5), pp. 67–74,

1997.

[3]. M. Lubars, C. Potts, and C. Richter, “A review of the state

of the practice in requirements modeling,” in: Proceeding

of the IEEE International Symposium on Requirements

Engineering, pp. 2–14, 1993.

[4]. T.L. Saaty, The Analytic Hierarchy Process: Planning,

Priority Setting, Resources, Allocation, McGraw-Hill, Inc.

1980.

[5]. J. Karlsson, C. Wohlin and B. Regnell, “An evaluation of

methods for prioritizing software requirements,”

Information and Software Technology, pp. 939-947, 1998.

[6]. J. Karlsson, “Software requirements prioritizing,” in:

Proceeding of 2nd IEEE International Conference on

Requirements Engineering, pp. 110–116, 1996.

[7]. K. Wiegers, Software Requirements, 2nd ed., Microsoft

Press, 2003.

[8]. R. Vetschera, Preference-Based Decision Support in

Software Engineering, in Value-Based Software

Engineering, S. Biffl, A. Aurum, B. Boehm, H. Erdogmus,

and P. Grünbacher eds, Springer, pp. 67- 89, 2006.

[9]. F. Paetsch, A. Eberlein and F. Maurer, “Requirements

engineering and agile software development,” Proceedings

of the 12 IEEE International workshop, IEEE Computer

society, pp. 1-6, 2003.

[10]. L. Sullivan, Quality function deployment: A system to

assure that customer needs derive the product design and

production process, Quality Progress, pp. 39-50, 1986.

[11]. J.W. Brackett, Software Requirements Technical Report

SEI-CM-19-1.2, Software Engineering Institute, Camegie

Mellon University, USA, 1990.

[12]. B. Regnell, M.J. Höst, P. Beremark and T. Hjelm,”An

Industrial Case Study on Distributed Prioritization in

Market-Driven Requirements Engineering for Packaged

Software,” Requirements Engineering, vol. 6, pp. 51-62,

2001.

[13]. J. Azar, R. K. Smith and D. Cordes, “Value Oriented

Requirements Prioritization in a Small Development

Organization,” IEEE Software, pp. 32-73, 2007.

[14]. D. Leffingwell and D. Widrig, Managing Software

Requirements: A Use Case Approach, 2nd ed., Addison-

Wesley, Boston, USA, 2003.

[15]. T. Standish, Data Structures in Java, Addison-Wesley,

Boston, USA, 1997.

[16]. K. Beck, Extreme programming: explained, 7th ed.,

Addison-Wesley, Boston, USA, 2001.

[17]. V.R. Basili, R.W. Selby, and D.H. Hutchens,

“Experimentation in software engineering,” IEEE Trans.

Software Engineering 12 (7), pp. 733- 743, 1986.

[18]. S.E. Keller, L.G. Kahn, and R.B. Panara, “Specifying

software quality requirements with metrics,” in: R.H.

Thayer and M. Dorfman (Eds.), System and Software

Requirements Engineering, pp. 145–163, 1990.

Short Bio Data for the Author

Ms. Manju Khari has received her M.Tech in
Computer Science from Guru Gobind Singh Indraprastha
University, Delhi. Currently she is pursuing P.HD from
Delhi Technological University, Delhi. Her research interest
encompasses network security, and different sector of
software engineering mainly software testing. She has
coauthored in various research papers published in various
International journals and conferences proceedings. She is
working as Assistant Professor in Department of Computer
Science and Engineering of AIACT&R, geeta colony, Delhi.

Nikunj Kumar has received his B.Tech in Information
Technology form USIT, Guru Gobind Singh Indraprastha
University, Delhi in 2011. He is pursuing M.Tech in
Information Security from AIACT&R, Guru Gobind Singh
University, Delhi. His area of interest encompasses internet
security, and various areas of software engineering include
requirement engineering, software testing.

