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Abstract

Smart grid, smart metering, electromobility, and the regulation of the power network are keywords of the transition

in energy politics. In the future, the power grid will be smart. Based on different works, this article presents a data

collection, analyzing, and monitoring software for a reference smart grid. We discuss two possible architectures for

collecting data from energy analyzers and analyze their performance with respect to real-time monitoring, load peak

analysis, and automated regulation of the power grid. In the first architecture, we analyze the latency, needed

bandwidth, and scalability for collecting data over the Modbus TCP/IP protocol and in the second one over a RESTful

web service. The analysis results show that the solution with Modbus is more scalable as the one with RESTful web

service. However, the performance and scalability of both architectures are sufficient for our reference smart grid and

use cases.
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1 Introduction
Researches at the smart grid topic are widespread and in

progress worldwide. In [1], the authors published a survey

on smart grid concepts and architectures in India, China,

USA, and Europe and explained the different starting

points and reasons of their studies.

In Germany, the transition from conventional power

producers to renewable energy sources like wind and solar

is one of the key points for researching. The increas-

ing amount of distributed volatile energy production of

renewable energy sources has a negative impact on the

stability of the grid and in addition the demand and cost

of energy will increase in the future. With the integra-

tion of communication technologies, sensor nodes, and

smart regulation algorithms into the existing power grid,

it is possible to counteract these effects. The sensor nodes

(energy analyzers) are able to measure energy data like

power and voltage from the grid and provide this data

for monitoring and analyzing. Based on these data and
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analysis, further concepts can be developed for reducing

energy demand and costs [1–7].

Electrical power supply is demand-oriented to date and

not flexible enough for the challenges described above.

In the future, it will be necessary to change the energy

demand according to power generation of renewable

energy sources, which means that the regulation will be

moved from electricity suppliers to the consumer’s side.

Through suitable concepts of demand regulation and dis-

tribution, the power grid will be stabilized and optimized

[8]. Possible concepts are demand side management and

demand response, which are described in [9–11]. Demand

side management techniques like load shifting and peak

clipping are the most known approaches. At load shift-

ing, the load is shifted from a peak period to an off-peak

period without changing the total energy consumption of

both periods, whereas at peak clipping, the load is reduced

by reducing the power consumption [12]. To use these

techniques, it is necessary to identify load peaks through

analyzing power data from the grid. Based on analysis, an

algorithm for shifting load peaks could be developed [13].

In this paper, we present two different architectures

for gathering data from energy analyzers distributed at

power grid of the Technical University of Applied Sciences
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Regensburg (OTH) as well as a software application for

data monitoring, visualizing, and analyzing. We compare

the performance of data collection of both architectures

with respect to real-timemonitoring, load peak identifica-

tion, and automated regulation. This article is an extended

version of a conference paper published at 12th Interna-

tional Workshop on Intelligent Solutions in Embedded

Systems (WISES), 2015 [14]. For a better understanding of

the analysis, we explain the hardware, developed software,

and test environment in more detail.

The paper is organized as follows: Section 2 describes

the backgrounds of our work and name some similar

works in this area. Section 3 presents our software appli-

cation with two different system architectures. Section 4

discusses performance tests of collecting data over the

network and compares the different architectures. Finally,

Section 5 concludes this paper.

2 Motivation and related work
In the past few years, our research focus at OTH has

been on communication networks and security in smart

grids. In [15], mobile communication tests to acquire

data from a medium voltage grid were carried out. The

authors present a mobile communication architecture

and tests of latency, transfer rate, reliability, and secu-

rity for a smart grid application. Furthermore, practical

tests of different mobile communication standards and

providers on mobile routers were carried out, which are

used in the same project cited above [16]. Other scientific

groups at OTH are focused on electromobility, energy,

and power management. So many energy measurement

devices were integrated in the local power network for

analyzing the grid data and to get a better comprehen-

sion over the power grid. Our software application “smart

energy campus” collects, monitors, and displays measure-

ments to get an overview on the grid. The application is

written in Java, collects data from measurement devices

every second, and saves them at a NO-SQL database

Apache Cassandra. By using a web page, the user can

view and analyze data like power, effective power, voltage,

active energy, and further measurements as described in

detail in Section 3.3. The project “smart energy campus”

aims to analyze the grid in order to get a better compre-

hension about the technologies, monitoring and visual-

izing the grid. In the next step, we are going to analyze

the data in order to identify potentials for an automated

energy and power management with focus on load shift-

ing and peak clipping. To realize this target, the software

application needs functionalities like fast performance

and low latency. Therefore, we test the performance of two

different system architectures for data collecting and see

whether these are usable for such a scenario.

Different architectures for smart grid applications

are possible. Depending on the requirements of the

applications, services, and environments, the suitable

architecture must be chosen. Performance tests are one

possible decision support for choosing an architecture.

For example, in [17], the authors analyze the performance

of different data processing architectures in smart grids.

We analyze the performance and latency of the Modbus

TCP/IP protocol and requests over a RESTful web ser-

vice in our system. There are several systems in literature,

in which web services in smart grid systems are used, for

example, in [4–6, 18].

The Modbus and HTTP protocols are popular and used

in industry and Internet for a long time. So some perfor-

mance tests have been carried out. In [19], the authors

present performance tests of the Modbus TCP/IP pro-

tocol with regard to the increasing number of real-time

scenarios. Another real-time scenario is shown in [20]. In

[21], the authors evaluate the performance of the Mod-

bus TCP/IP protocol with focus on the response time.

There are also some research papers where the authors

analyze the performance of web services. For example,

in [22], the authors compare the performance of RESTful

web services and the Advanced Message Queuing Proto-

col. In [23], the authors evaluate the performance of REST

and SOAP web services for mobile devices. Analysis of

embedded web services for machine-to-machine commu-

nication is presented in [24]. In the last named paper, the

author refers to the limits of web services in scenarios

with a large number of data. For energy monitoring and

an automated energy and power management, we have to

handle a large number of data. In one architecture, we use

the software GridVis from Janitza. This software is used

by the Maintenance Service (MS) of our university. We

test the performance of the RESTful web service of the

GridVis Software below, especially to find out how much

data the web service in one request provides and if it is

possible to request a large number of data every second

for our real-time scenarios. In contrast to the papers cited

above, we carry out practical performance tests on a real

power grid.

Additionally, we implement a software application,

which visualizes the collected data and make them avail-

able for analyzing. There are some projects in the topic

of monitoring and visualization cited below. In [25], the

authors present an analysis of a Geographical Informa-

tion System to display real-time data on maps. A further

project is described in [26]. There, the authors present

an energy monitoring system with 3D views and energy

consumption data of a city. Another project presents

the energy management system framework WattDepot,

which is an open source framework and also visualizes

energy consumption data on a map, for example, in [27].

In our work, we not only want to display data but also

want to simplify the process of analysis with respect to

identifying periodically load peaks to regulate the power
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consumption. We want to automate the process of analy-

sis of load peaks and so we implement an own software for

these purposes.

3 Energy campus
About 35 energy analyzers are installed in the local smart

grid. Inter alia, we can analyze data from six main low-

voltage transformers, big electrical consumers like the

canteen, laboratories, and the computer center. Data from

small photovoltaic plants are also available. Applications

written in java collect data and view them on a web page.

The next section describes two different system architec-

tures, which were designed and adjusted during project

progression.

3.1 Architecture A

This architecture was designed at the beginning of the

project and is shown in Fig. 1. It shows three main

areas representing three stakeholder groups, which need

the data from energy analyzers for research, daily oper-

ations, or cost control. The stakeholder groups are the

Department of Electrical Engineering and Information

Technology (EI), Department of Computer Science and

Mathematics (IM), and the Maintenance Service (MS).

Hardware: Each group works on a virtual server

machine with Windows Server 2008 R2 Enterprise oper-

ating system with Service Pack 1. The virtual Server of IM

has 2 Intel(R) Xeon(R) E5645 processors with 2.40 GHz

and 4-GB main memory. It is connected to the network

over a 1 GBit/s Ethernet interface. The virtual server of EI

has 2 Intel(R) Xeon(R) X5650 processors with 2.67 GHz

and also 4-GB main memory. The connection to the

network is accomplished with a 10 GBit/s Ethernet inter-

face. All servers are connected to the network of the OTH

with a large amount of users at university campus.

On a previous project, energy analyzers from Siemens

(Siemens PAC4200) [28] and Janitza (UMG96RM) [29]

companies were integrated in the local power grid and

connected with the IT network via 10/100 MBit/s Ether-

net. The energy analyzers are able to measure about 300

different values from the power grid. Both device types are

equipped with a display unit to receive a quick overview

of the current situation of the relevant power grid section

and in addition, the devices provide Modbus RTU and

Modbus over TCP/IP as communication protocols, which

can be used to request data from the devices and for con-

figuration. The devices refresh the measurements every

200 ms. This is the smallest interval for requesting data.

In our scenario we collects data over the Modbus TCP/IP

protocol every second.

Software: The companies Siemens and Janitza sell soft-

ware applications for their energy analyzers to collect data

and visualize them. These commercial products are used

from EI and MS. The application Siemens Powermanager

is used for training lessons and for visualizing informa-

tion about the local Smart Grid on monitors, which are

installed around the campus. For this purpose, the Power-

manager is useful but it needs a long training period due to

its complexity. A little bit easier to handle is the software

application GridVis from Janitza, which is used by the

MS. Both applications collect data over the Modbus over

TCP/IP interface from energy analyzers and save them in

a relational database. The Powermanager software pro-

vides many kinds of visualization, but it is not possible

Fig. 1 Architecture A
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to connect devices from other companies to this software

and to extract out collected data. The MS uses Grid-

Vis to get an overview of the grid and to control energy

costs. It can integrate devices from other companies, but

they not fully supported through the application, so some

functions are not available. Additionally, the possibilities

to visualize the data in charts are limited. Both applica-

tions provide data collection every second, but they do

not save them in a database. However, second-by-second

collected measurements are very interesting for research

in the power grid. For example, the EI analyzes relation-

ships of different measurements and the changes of the

values from one second to the next. Therefore, we imple-

ment our own java application to be independent and to

eliminate the imperfections of the commercial software

applications. To simplify the visualization and analysis

of the grid data and to create charts especially for load

peak analysis are other aspects to implement our own

application.

The software SmartGridFetch was implemented at a

previous student work and continually developed and

adjusted on the circumstances of the current work. It

runs on the virtual machine of IM, collects data from

energy analyzers over Modbus protocol, and saves them

in the Apache Cassandra database. The software is writ-

ten in Java and consists essentially of two main classes for

requesting and receiving data over the Modbus TCP/IP

protocol and for saving the values in a database. The soft-

ware starts a thread pool with several threads for request-

ing data from energy analyzers. Each thread requests

18 measurements from one device every second. After

receiving the response, each thread saves the measure-

ments with a timestamp at database. The settings and

device parameter like IP address, device description,

measurements to be requested, and further settings can

be set over an option class. The measurements were

requested over the Modbus Read Holding Register func-

tion, so several continuous registers can be read out in one

request. The initial SmartGridFetch application only pro-

vides requests of continuous register blocks over Modbus

TCP/IP and only Siemens PAC4200 devices. For the cur-

rent work, we adjust the application, so that it is possible

to request measurements saved at discontinuous register

blocks and to support different device types, especially the

Janitza devices we use. With these features, the software is

more flexible.

Cassandra is a NoSQL (not only SQL) column-oriented

database and has a flexible database scheme [30], which

could be suited for changes of the energy analyzer infras-

tructure. Furthermore, the database scales horizontally in

contrast to the most relational databases, which scale ver-

tically. In a smart grid, the data volume is high and so

the performance and flexibility of the database are impor-

tant properties for real-time monitoring and demand-side

management in a smart grid [31, 32]. The web application

energy campus communicates over web socket technol-

ogy with clients and allows the user to view and analyze

the data of the local smart grid via browser.

3.2 Architecture B

The amount of projects accessing the energy analyzer

over Modbus protocol increased. At the beginning of

the project, two access operations were planned for each

device. However, now there are more accesses and the

Siemens devices cannot handle more than two connec-

tions at the same time. This resulted in access contentions

and data loss in all systems and therefore we modified the

architecture as shown in Fig. 2. In this architecture, the

data from energy analyzers are collected from the Grid-

Vis Software and consequently, there is only one access

operation. The energy analyzers are in a separate IP net-

work and only GridVis is able to establish a connection

to the devices. Outside the network, a test network exists,

which is accessible from all systems for testing differ-

ent energy analyzers and software applications. All other

stakeholders receive the grid data via the RESTful inter-

face of GridVis. For this purpose, we implemented the

additional software application GridVisFetch.

GridVisFetch sends data requests to the RESTful inter-

face of GridVis every second and every 15 min. The

data are saved in the Apache Cassandra database as

described above. From this database the Powermanager

receives the data through implemented virtual devices,

which simulate the energy analyzers. TheMS has the total

control of the most devices and data, but through this

architecture, all stakeholders receive measurements for

research and the device access operations are minimized.

In addition, all heat and water analyzers, which are inte-

grated in the software GridVis, are also available for other

stakeholders.

3.3 Web application

The web application featured many views, charts, and a

device and user management. It is the interface between

user and power grid data for visualization and analy-

sis. In the following, the web application is described in

detail.

3.3.1 Technologies

The web page is written in HTML5 and JQuery. The

application visualizes the data with the JQuery libraries

Highcharts and Highstock [33]. As middleware, we imple-

mented a server application deployed on an Apache

Tomcat 8 Server. This software communicates with the

database and calculates some measurements. Clients

communicate over bidirectional web sockets with the

server. We use the web socket technology for real-

time monitoring and sending push notifications from the
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Fig. 2 Figure shows an architecture without concurrent device access operations

server to the clients. Through the bidirectional commu-

nication, the server can react to warning events etc. and

forward them to the clients [34, 35].

3.3.2 Data visualization and analysis

The web application consists of the following views:

dashboard, analyze, map, and management. The dash-

board shows real time data of active energy consumption

and power generation through the photovoltaic plant as

shown in Fig. 3. From left to right, the charts at the top

show the total amount of the current active energy con-

sumption of the OTH, the daily total amount of active

energy consumption, and the current produced energy

through the photovoltaic plants. The installed energy ana-

lyzers are grouped in three main areas and the charts at

the bottom line show the total amount of current active

energy consumption from these three areas. All values

are refreshed every second, so it provides an up-to-date

Fig. 3 Dashboard of energy campus application. The dashboard shows current values of the power grid. The data were refreshed every second
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overview. While the dashboard shows current data from

grouped energy analyzers, the map view supports data

visualization from single devices and for any time period.

It displays the topology of the local smart grid on an

interactive map. There, the user sees all energy analyz-

ers marked at the map, so he is able to choose a device

and request data from each device. The measured data are

aggregated to 1-, 5-, and 15-min values, so it is possible

to choose the level of aggregation. The response data are

viewed in an interactive line chart with zoom in and out

functionality.

At the analyze tab, users are able to create charts

to study data and to identify load peaks. Comparisons

of different measurements and devices are possible. For

example, one chart shows the amount of available data

at database, in which the available data were put in rela-

tion to the amount of expected data. Different types of

load peak charts are supported, which make it possible to

identify load peaks from single devices or compare load

peaks of several devices in one chart. In addition, there

are charts simplifying the identification of regularities in

the timing of load peak events. Devices are installed at

the power grid, are viewed in a tree structure, which is

constructed as the network plan. Charts were generated

by selecting devices on the tree structure and choosing a

chart type. The charts a user generated during his session

were saved at database and loaded automatically at the

next login. So users can continue their work at a later time

without requesting all data again.

The last tab of the web application is a simple user and

device management. To protect the sensitive data against

unauthorized access and manipulation of device parame-

ters, the users of the web page are limited and the access

is password protected. In addition, the web page is only

accessible within the network of OTH.

4 Architecture analysis and results
According to the use cases of our application and future

works in energy and power management, we analyzed

network traffic of two scenarios based on the architec-

tures described above. To realize real-time monitoring,

load shifting, and future research projects, it is necessary

to fetch data from energy analyzers every second. In this

section, we present the results of network analysis of both

architectures with focus on latency, amount of transferred

data, and needed bandwidth of second-by-second fetched

data.

4.1 Scenario A

Scenario A is based on the initial system architecture

shown in Fig. 1 and described above. We use the Mod-

bus TCP/IP protocol, described in Section 4.1.2, to

request data directly from energy analyzers. Afterwards,

we describe the test environment we used, the tests and

their results. Test results are compared with theoretical

analysis.

4.1.1 Test environment

Server: As a server, the virtual machine of EI with Win-

dows Server 2008 R2 Enterprise 64 Bit operating system is

used. The virtual machine has two Intel(R) Xeon(R) X5650

2.67 GHz processors and is integrated in the IP network

via a 10 GBit/s Ethernet interface.

Energy analyzer: In the tests, we used 27 physi-

cal devices, which are integrated in the network over

10/100 MBit/s Ethernet. Because of hardware problems,

some energy analyzers were unavailable at time of testing.

Software: The Java software application SmartGridFetch

collects data over Modbus TCP/IP from the energy ana-

lyzers. For each device, the application starts a thread

which requests 18 measurements at the same time every

second. For each measurement, we request 2 registers

with 2 bytes over the Read Holding Register function and

so each measurement has a size of 4 bytes.

4.1.2 Modbus over TCP/IP protocol analysis

The Modbus TCP/IP protocol is a request/reply proto-

col and consists of an application data unit (ADU) and

a protocol data unit (PDU). The data are stored in 2-

byte registers. To request data from a device over Modbus

TCP/IP, we use the Read Holding Register function and

read contiguous blocks of registers. The maximum size of

a Modbus protocol data unit is 253 bytes. In the request,

3 bytes are used by a function code (1 byte) and the start-

ing register address (2 bytes). Two bytes are used for the

amount of registers to read, so the maximum is 125 reg-

isters. The response consists of 1 byte for the function

code, 1 byte for count, and the remaining for the val-

ues we read out [36]. The Modbus communication over

TCP/IP is shown in Fig. 4. Between opening and closing

the communication, several request-response blocks are

possible. Each block consists of one Read Holding Regis-

ter request, followed by an acknowledgement (ACK) and

response data, and finished through a further ACK. For

analyzing latency, amount of transferred data, and needed

bandwidth of second-by-second fetched data, we focus on

the request-response blocks, which cause the most data.

Figure 5 shows the request and response packets trans-

ported over the network. We assume that no additional

options are set at the IP and TCP header, so we calcu-

late with the minimal header size. One packet consists of

an Ethernet (14 bytes), IP (20 bytes), and TCP (20 bytes)

header, which encapsulate the Modbus ADU (8 + x bytes),

followed by the Ethernet checksum (4 bytes). Therefore,

each packet has a size of 14 + 20 + 20 + 8 + x + 4 =

66 + x bytes. For the Read-Holding-Register request, the

packet size with x = 4 bytes is 70 bytes. The response

is depending on the amount of requested values N. With



Kenner et al. EURASIP Journal on Embedded Systems  (2017) 2017:12 Page 7 of 13

Fig. 4Modbus TCP/IP communication

x = 1 + 2 · N bytes, the response packet has a size of

67 + 2 · N bytes. The ACK is an empty TCP packet with

some activated option flags and has a size of 58 bytes for

header overhead + 6 padding bytes, due to the fact, that

every Ethernet frame musts be at least 64 bytes. On the

basis of these values, we have a request-response block

size of 70+ 2 · 64+ 67+ 2 ·N = 265+ 2 ·N bytes, which

is transferred each second for one Modbus device.

In an ideal network, without concurrent network traf-

fic, application, and other overhead, latency and size of

transferred packets depending on amount of requested

registers N is shown in Fig. 6. With each register, the

latency grows in steps of 0.00016 ms. The latency for the

maximum possible amount of registers in one request is

0.0412 ms for 62 measurements (515 bytes packet size).

As described above, we request 18 measurements for

each energy analyzer. For 18 measurements (36 regis-

ters), the request-response block has a size of 337 bytes

and a latency of 0.02696 ms. Table 1 shows the values

for up to 5 devices as example. Each device requests 18

measurements per second. For 5 devices, 2575 bytes/s

are transferred over the network in 0.206 ms. Calcu-

lated to 100 devices with a total amount of 33700

bytes, the latency is 2.696 ms and the needed bandwidth

is 0.2696 MBit/s.

4.1.3 Tests and results

In our test, we send a request to one device and read

out 18 measurements. Then, we increment the amount

of devices and respectively the amount of threads. We

measure the time between sending the request and get-

ting the response data. With Wireshark the transferred

traffic is captured and shown in Table 2. The occupied

bandwidth and all other values increase linearly and they

are proportionally to the amount of requested data. If

we calculate these values to 100 devices, we get a band-

width of 0.3 MBit/s and a bandwidth of 3 MBit/s for 1000

devices. This means that the bandwidth of 100 MBit/s is

enough for a big infrastructure of energy analyzers. The

last row shows the average latency of request/response

period. This value is not proportional to the amount of

devices and transferred data. The latency increases slowly

and a further test with all 27 devices results in an average

latency of 68.58 ms. In this case, we request 27 · 18 = 486

measurements in less than 100 ms. For our scenario, this

is sufficient. If we assume that the time increases linearly

with a value of 3 ms for each additional device as an upper

limit, we get also fast transferred periods for this scenario.

In this theoretical case, we get an average latency time of

328.08 ms for 100 devices (1800 measurements). In com-

parison with the values in an ideal network, as described

above, the latency is very high and fluctuating. Due to

Fig. 5Modbus request/response packet size
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Fig. 6Modbus TCP/IP—latency in ideally network environment

the fact that the test environment is in a big network

infrastructure at OTH Regensburg with many users and

machines in the network and addition time delay through

the Java test application and operations on the used server

machine, the latency differs in a big range from the the-

oretical calculated values. However, the test gives a good

impression for scaling in comparable environments.

4.2 Scenario B

Scenario B is based on the system architecture B shown

in Fig. 2 and described above. Here, we use a RESTful

web service of commercial software for collecting data

from energy analyzers. Due to the limits of web services

by requesting a large amount of data [24], among other

things, we test howmany data are possible to request over

the web service before the request run into a FULL HEAD

error at HTTP header.

4.2.1 Test environment

Server and hardware: We use the same amount of physical

energy analyzers as in scenario A. The GridVis software

is running on the server of EI and saves the grid data in

a MYSQL database on the same server. The test applica-

tion, which requests data over the RESTful web service, is

running on the Server of IM.

Software: In this architecture, the software application

GridVis from Janitza collects data from power network.

GridVis also requests data over the Modbus TCP/IP

Table 1 Calculated traffic from Modbus TCP/IP connections

Devices 1 2 3 4 5

Bytes 337 674 1011 1348 1685

MBit/s 0.002696 0.005392 0.008088 0.010784 0.01348

Latency in ms 0.02696 0.05392 0.08088 0.10784 0.1348

protocol from energy analyzers. Every second, it requests

data in the background and makes them available at a

RESTful web service. The software aggregates the mea-

sured data to configurable values and save them in a

MySQL 5.7.4.0 database. In order to do this, it is necessary

to use an additional application called GridVis Service

[37]. In the test environment, we installed GridVis 6.0.2-

64 Bit and GridVis Service 6.0.2-64 Bit on the server. We

implement small Java applications which send requests to

the web service and measure the latency (time from send-

ing the request to receiving the response data completely)

and the size of the request data in the HTTP package.

In addition, we use the application Wireshark to capture

network traffic during tests.

4.2.2 GridVis RESTful web service analysis

The RESTful web service of GridVis provides several

HTTP GET Requests to request data, gathered from the

Modbus devices by GridVis. It is possible to request aggre-

gated values for various time periods or to request so

called “online” values, which are the last current values,

fetched every second. The GETURL for a request consists

of some project parameters and the request parameters

Table 2 Captured traffic from Modbus TCP/IP connections

Devices 1 2 3 4 5

Packets 241 480 720 960 1200

Avg Packets/sec 4.02 8.07 12.01 16.03 20

Avg Packetsize 78.68 78.75 78.75 78.75 79

Bytes 18966 37800 56700 75600 94500

Avg Bytes/s 316.07 635.19 945.69 1262.33 1578.07

Avg MBit/s 0.003 0.005 0.008 0.01 0.013

Avg Latency in ms 28.08 30.5 31.9 35.3 38.5
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such as device number and measurement identifier. For

each measurement type, the device number and measure-

ment identifier are appended to the URL. Due to the fact

that the measurement identifiers are mapped to differ-

ent string values instead of simple small numbers, the

URL size fluctuates and increases rapidly depending on

the requested measurements. To give a statement about

expected packet size and latency as in Section 4.1.2, we

analyzed the URL and parameter structure and approx-

imate the packet size, depending on the requested mea-

surements, in a mathematical function. Figure 7 shows the

whole transport frame for HTTP request and response

and the approximate function. Each transport packet con-

sists of an Ethernet, IP, and TCP Header and an Ethernet

checksum, as described above at the Modbus TCP/IP

transport packet. The HTTP part of the packet is split

in a request and response and both consists of a header

and a body. At the HTTP Request, the HTTP body is

zero. As described in the HTTP 1.1 specification [38], the

header can consist of several header fields (depending on

server) and the header size is not limited through specifi-

cation. Therefore, we analyzed the Wireshark recordings

of the communication between a Java application and the

GridVis web service to identify the used header fields.

The recordings show that the header consists of 157 bytes

for several header fields and the Request URL. With the

assumption that for eachmeasurement all three phase val-

ues will be requested, we approximate the URL size for

our work with the following equation: x = 45 + 28 · N/3

bytes. The URL has a fixed part, which includes server and

project parameters (45 bytes) and the variable part of the

URL consists of the requested measurements as described

above. On basis of this, the HTTP request has a size of

157+ 45+ 28 ·N/3 = 202+ 28 ·N/3 bytes and the whole

transport packet has a size of 260+ 28 ·N/3 bytes, with N

is the amount of requested measurements.

At the response, the HTTP header has a fixed size

of 127 bytes and the HTTP body is also depending on

the amount of requested N measurements. The response

contains the data in JavaScript Object Notation (JSON)

format. For each requested measurement, it includes the

measured value and a timestamp. For both values it

includes the device number and measurement identifier.

Therefore, the size of the HTTP body increases as shown

in the following approximated equation: x = 40+N ·31+

N · 38 bytes with 40-byte JSON overhead, N · 31 bytes for

themeasurements, andN ·38 bytes for the timestamps. So,

the HTTP response has a size of 167+N ·31+N ·38 bytes.

With Ethernet, IP Header, etc., the whole packet size is

225 + N · 31 + N · 38 bytes. For a full request-response

block, the size is 485 + 28 · N/3 + 69 · N bytes. In the

next section, we compare these values with the real test

results.

4.2.3 Tests and results

First, we start testing to request data every second. There,

we create the request URL to get 18 measurements from

one device in one request. In every test, we increase

the amount of measurements by adding one device with

18 measurements to the Request URL. We get six val-

ues for voltage, three values (one for each phase) for

effective power, reactive power, apparent power, and cur-

rent. Further measurements and devices were requested

by expanding the URL. Due to the fact that just 27

energy analyzers are available, we simulated the additional

devices by adding more measurements to the available

devices. In this case, 18 measurements represent one

device. We test from 1 up to 35 devices. At 35 devices,

Fig. 7 HTTP request/response packet size
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Fig. 8 Packet size—without overhead from underlying protocols

we get 35 · 18 = 630 measurements in one request.

Every additional measurement causes the expected full

head status code at the HTTP header so we receive no

data, because the Jetty Server application of the web

service limits the Request URL. Figure 8 shows the

request and response packet size in comparison with the

approximated packet size. The approximated packet size

is calculated with the mathematical function described

above. The figure shows that the approximated packet

size just changes in a small range from the real tested

values. Figure 9 shows the real transferred data, cap-

tured with Wireshark, and compares the real packet size

with the approximated packet size. It shows that the real

packet size is larger than the approximated size. In the

approximated model, we did not consider ACK messages

in the communication, so the size of real tested data is

different. Additionally, we did not consider that big pack-

ets could be fragmented, so the overhead from underlying

protocol stacks increases. Figure 10 shows the average of

the needed bandwidth in MBit/s and Fig. 11 presents the

average latency in milliseconds between sending a request

and receiving the data of the corresponding response

completely. The test is over a period of 60 s as shown at

the x-axis. The lines show the average latency in millisec-

onds at the primary (left) y-axis for the different amount of

devices. The dots present the maximummeasured latency

in the test period of 60 s at the secondary (right) y-axis in

milliseconds for the different amount of devices. The blue

Fig. 9 Packet size—with overhead from underlying protocols
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Fig. 10 Average MBit/s

dot shows the maximummeasured latency for one device,

the red one for 10 devices, and so on. The average latency

is low for 1, 10, and 20 devices. For 30 and 35 devices,

the average latency is also less than a second but there,

the maximum measured latency is above 1 s. In the case

of 35 devices, we get latency above 1 s twice. This means

that in a period of 60 s, we receive 58 response pack-

ets with measurements instead of 60. The results show

that the average latency is not increasing proportionally

with the transferred data size, which is almost linearly

to the number of requested measurements. In our case,

we need measurements in an interval of 1 s for real-time

monitoring, future energy, and power management and

for the analysis in EI. The measured latency, with outliers

shown above, is suitable for these use cases. Additionally,

the measurements were aggregated to 1-min values, so a

data density of 96.67 % is acceptable, because themeasure-

ments of the power network do not differ in a big range

from 1 s to the next. Figure 12 shows the average latency

in comparison with the approximated latency. As such, as

we described for the Modbus protocol, the latency differs

in a big range from the approximated latency through high

network load, application time delay, and utilization rate

of the used server machine.

Fig. 11 Average latency
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Fig. 12 Comparison of average latency

The tests show that time and needed bandwidth are not

the limiting factors but the amount of requested mea-

surements. It is possible to request 630 measurements,

which is equivalent to 35 devices with 18 measurements,

at one request in less than a second. For our power

network infrastructure, this is a suitable value. Through

splitting the amount of requested devices and running

several threads, we can increase the amount of devices.

Each thread requests 10 devices, respectively 180 mea-

surements. We run this test with 10, 20, 30, and 40

threads. Figure 13 shows the average of needed bandwidth

inMBit/s. Here, the latency for 10 and 20 threads is also in

our range of 1 s. The bandwidth for 1, 10, and 20 threads,

respectively, 10, 100, and 200 devices, which increases lin-

early, is acceptable. At the test with 30 and 40 threads,

the REST interface is operating to full capacity and the

CPU capacity of the server is 100 %. Therefore, we do not

receive all data we requested.

5 Conclusions
This paper presents a software application for analyzing

and monitoring real-time data of a smart grid. This appli-

cation forms the basis of future projects with focus on load

shifting and peak clipping. We describe the web appli-

cation and two possible architectures for collecting data

in order to avoid concurrent access operations on energy

analyzers. On the basis of the described architectures, we

carry out performance tests for each architecture. The

tests show that both architectures are currently useable

in a small energy landscape and give a good impres-

sion for scaling in comparable environments. TheModbus

TCP/IP protocol is a fast communication protocol for this

use case. The solution with the GridVis software where

we get data over the REST interface is useable for a small

amount of energy analyzers. In contrast, if the energy

landscape is expanded, the REST interface of this software

runs into its limits.

Fig. 13 Average MBit/s—threads
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