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Abstract. The paper compares two independent approaches

to estimate soil moisture at the regional scale over a

4625 km2 catchment (Liebenbergsvlei, South Africa). The

first estimate is derived from a physically-based hydrological

model (TOPKAPI). The second estimate is derived from the

scatterometer on board the European Remote Sensing satel-

lite (ERS). Results show a good correspondence between

the modelled and remotely sensed soil moisture, particularly

with respect to the soil moisture dynamic, illustrated over

two selected seasons of 8 months, yielding regression R2 co-

efficients lying between 0.68 and 0.92. Such a close similar-

ity between these two different, independent approaches is

very promising for (i) remote sensing in general (ii) the use

of hydrological models to back-calculate and disaggregate

the satellite soil moisture estimate and (iii) for hydrological

models to assimilate the remotely sensed soil moisture.

1 Introduction

The content of water in the first active metres of soil plays

a central role in the regulation of the hydraulic and energy

transfers between the soil, the surface and the atmosphere.

Soil moisture is thus widely recognized as a key variable in

numerous environmental disciplines especially in meteorol-

ogy, hydrology and agriculture. For hydrological and agri-

cultural purposes, the estimation of soil moisture is crucial

since it controls (i) the quantity of water available for the

growth of vegetation (Rodriguez-Iturbe, 2000), as well as the

recharge of deep aquifers (Hodnett and Bell, 1986); (ii) the

saturation of soils which controls the partitioning of rainfall

between runoff and infiltration (Merz and Plate, 1997). In
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meteorology, the soil moisture content has a great impact on

the transfer of energy from the surface into the atmosphere

since it controls the evapotranspiration fluxes (Entekhabi et

al., 1996).

An accurate estimation of soil moisture is difficult to ob-

tain since it is highly variable in both space and time (West-

ern and Blöschl, 1999). The two main sources of soil mois-

ture information come from ground-based and remote sens-

ing estimations. In the field, data can be obtained from gravi-

metric sampling, this gives the most accurate measurement

of the soil water content but is obviously not suitable for

automation. Probes (Neutron or Time Domain Reflectom-

etry) can be calibrated to also provide an accurate and possi-

bly automated estimation of soil moisture. Ground observa-

tions have helped to document soil moisture patterns at plot

to hillslope scales (less than 1 km2) in different regions of the

world (e.g. Grayson et al., 1997; McNamara et al., 2005; De

Lannoy et al., 2006; Hébrard et al., 2006). However, when

catchment scales are of interest, one is rapidly confronted

with scaling issues (Western and Blöschl, 1999) since ground

measurements provide soil moisture estimation limited (i) to

small spatial support (from few centimetres for probes, to

1 m for gravimetric sampling) and (ii) to relatively small ar-

eas (extension in the order of a few hectares) since the im-

plementation of a probe network of large extent is subject to

obvious logistical and economic constraints.

Remote sensing of soil moisture from satellites is a

promising alternative to ground measurements. Microwave

frequencies are most often used, both in active (scatterome-

ter or SAR) and passive (radiometer) instruments, to estimate

soil moisture (see Wagner et al., 2007 for a detailed review).

The advantage of microwave remote sensing is that it pro-

vides extended soil moisture estimations, gridded on aver-

aged surface (footprint) from tens of metres to 50 km resolu-

tion, scales more suitable for catchment hydrology. However

microwave estimations are only representative of the top few
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Fig. 1. Location of the Liebenbergsvlei catchment (4625 km2), South Africa.

centimeters of soil, provided that the vegetation is not too

dense, and the data availability is often dependent on a low

frequency repeat cycle at a point (from 1 day to several weeks

depending on the satellite).

Due to the uncertainties associated with the estimation

of soil moisture, Kostov and Jackson (1993) suggest that

the ideal approach for estimating soil moisture is to com-

bine soil moisture measurements with hydrological models

by using assimilation techniques. In fact, remotely sensed

soil moisture is often directly assimilated into hydrological

models (Ottlé and Vidal-Madjar, 1994; Pauwels et al., 2002;

Parajka et al., 2006) or into land surface schemes (Bruckler

and Witono, 1989; Houser et al., 1998; Reichle et al., 2001;

Walker et al., 2001) in order to initialize, drive, update and/or

re-calibrate models, with the main objective of improving the

simulations of river discharges or atmospheric fluxes respec-

tively. However, very few studies in the literature detail the

comparison between the estimations of soil moisture from re-

mote sensing with the estimations from hydrological models

(Biftu and Gan, 2001; Parajka et al., 2006). One must how-

ever be able to know a priori the compatibility between the

model and remotely sensed soil moisture estimations to bet-

ter evaluate the effective potential of (i) hydrological mod-

els to provide back-calculated estimations of soil moisture

for evaluating remotely sensed soil moisture, followed by the

use of physical disaggregation tools to improve the low res-

olution typical of remotely sensed soil moisture fields, (ii)

remotely sensed soil moisture estimates to be assimilated

into hydrological models. Wagner et al. (2003) point out the

necessity of comparing remotely sensed soil moisture with

independent data derived from ground observations, models

and/or other remote sensing techniques. Blyth (2002) men-

tions the necessity of modelling the soil moisture in detail

and intercomparing models and data. Pellenq et al. (2003)

argue that it is essential to accurately understand all the pro-

cesses involved in the soil moisture variability and their scale

interactions. For that purpose, Western et al. (2002) point

out the potential of process-based hydrological models that

explicitly represent the dynamic and the spatial scales of the

processes that control the soil moisture.

In the present study, we compare two independent ap-

proaches of soil moisture estimation on a regional size catch-

ment in South Africa (Liebenbergsvlei, 4625 km2). The first

estimates are derived from the physically-based distributed

hydrological model TOPKAPI (Liu and Todini, 2002). The

second set of estimates are derived from the scatterometer on

board the European Remote Sensing satellite ERS.

The region, data and hydrological model are presented in

Sect. 2. In Sect. 3, the capacity of the TOPKAPI model to

mimic the discharges on the studied catchment is evaluated.

In Sect. 4, the modelled and remotely sensed soil moisture

estimates are compared. The results are discussed in Sect. 5.
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Fig. 2. (a) Catchment characteristics. (b) Estimations a priori of the TOPKAPI model parameters.

2 Region, data and hydrological model

2.1 Characteristics of the Liebenbergsvlei catchment

The Liebenbergsvlei catchment (4625 km2) is located in the

Free State province of South Africa (Fig. 1). The climate is

semi-arid, characterized by a mean annual rainfall between

600 and 700 mm and a mean annual potential evaporation

between 1400 and 1500 mm. The landscape is characterized

by (i) hillslopes and steep relief in the southern part of the

catchment which corresponds to the border of the Lesotho

and the Maluti mountains, (ii) grassland and cropland over

the bulk of the catchment since farming is the main activity

in the region. These features are shown in the two first digital

maps of Fig. 2a (Digital Elevation Model-DLSI, 1996; and

Landcover/use-GLCC, 1997). Information about soil prop-

erties is also available (Fig. 2a, Soil type-SIRI, 1987; Soil

texture-Midgley et al., 1994).

2.2 Hydrologic data set

2.2.1 Rainfall and flow data

Hydrological data are available on the catchment (Fig. 3). A

network consisting of 45 tipping bucket rain gauges provided

5 min. time step ground rainfall measurement for the period

1993–2002.

Two flow gauges (CH8020 and CH8026, labelled 1 and 2

in Fig. 3) are available at the outlet of the catchment and fur-

ther upstream, with uneven data availability and quality be-

tween 1993 and 2001. External flows arrive from Lesotho via

an inter-basin transfer, beginning in September 1997. These

inter-basin transfer flows are recorded at a station located

at the outlet of the transfer tunnel (CH8036, labelled 3 in

Fig. 3). The quality of the flow data at stations 1 and 2 (in

terms of data availability) has improved since 2002, but the

recent flow data were not used because the dense rain gauge

network was no longer operational after the year 2002.

2.2.2 Satellite derived soil moisture data

The remotely sensed soil moisture estimates used in this

study are derived from scatterometers on-board of the satel-

lites ERS-1 and ERS-2 (Wagner et al., 2003). The ERS

scatterometer is a C-band radar (5.3 GHz) operated at ver-

tical polarization and a spatial resolution of 50 km at a 25 km

grid spacing. Global coverage is achieved by the satellite ev-

ery 3 or 4 days on average, but since the ERS scatterometer

is in operational conflict with the ERS Synthetic Aperture

Radar, only a part of the coverage is effectively available for
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Fig. 3. Hydrological data availability on the Liebenbergsvlei catchment, South Africa.

scatterometer measurements. The repeat cycle at one point is

thus 7 days on average, varying irregularly from 3 to 10 days.

ERS-1 and ERS-2 have acquired backscatter data since the

launch of ERS-1 in 1991 up to the present. However, ERS-2

data availability has been affected by the failures of the gyro-

scopes in January 2001 and of the tape record in June 2003,

for which reason only data for the years 1992 to 2000 have

been available for this study.

The scatterometer soil moisture retrieval algorithm takes

into account the effects of land cover, surface roughness and

seasonal vegetation development on the radar signal. After

some regional studies (Wagner et al., 1999a, b, c) the algo-

rithm was successfully applied on a global scale and has re-

sulted in the first global remotely sensed soil moisture data

set for the period 1992–2000 (Wagner et al., 2003). The

data have been released in 2002 and can be obtained from

http://www.ipf.tuwien.ac.at/radar/. The data have been eval-

uated at local (Pellarin et al., 2006), regional (Crow and

Zhan, 2007) and global (Dirmeyer et al., 2004) scale. No

study has yet evaluated the quality of the scatterometer soil

moisture data at local to regional scales in Africa. The ERS

scatterometer grid points over the Liebenbergvlei are repre-

sented by the red crosses on Fig. 3.

Scatterometer measurements are sensitive to the moisture

content of the surface soil layer due to the strong varia-

tion of the dielectric constant of the soil with water content.

However other factors influence the scatterometer backscat-

ter signal. Soil moisture retrieval methods must mainly take

into account the effects of vegetation, surface roughness and

heterogeneous land cover. The retrieval method technique

adopted for the data used here is based on the change detec-

tion method proposed by Wagner et al. (1999a). To account

for effects of roughness and heterogeneous land cover, sea-

sonally varying minimum and maximum backscatter curves

(σ 0
dry and σ 0

wet) are determined based on the nine-year mea-

surement period 1992–2000. The two limiting reference val-

ues are assumed to be representative of the vegetated land

surface under respectively dry and saturated soil conditions.

The measured backscatter coefficients are then compared to

σ 0
dry and σ 0

wet, resulting in the definition of topsoil moisture

contents ms (<5 cm) interpreted as a surface soil moisture

(i.e. a relative quantity) ranging between 0 and 1 (respec-

tively, 0–100%), scaled between zero soil moisture and satu-

ration. At any time t , ms is then defined as:

ms (t) =
σ 0 (t) − σ 0

dry

σ 0
wet − σ 0

dry

(1)

The effects of plant growth and decay are taken into account

through the application of varying seasonally σ 0
dry and σ 0

wet

values as proposed by Wagner et al. (1999b). This method

exploits the multi-incidence capabilities of the ERS scat-

terometer to describe the effect of enhanced volume scatter-

ing in the vegetation layer and the corresponding decrease of

the ground scattering contribution.

2.3 The hydrological model TOPKAPI

TOPKAPI is an acronym which stands for TOPo-

graphic Kinematic APproximation and Integration and is a

physically-based distributed rainfall-runoff model. In the

Hydrol. Earth Syst. Sci., 12, 751–767, 2008 www.hydrol-earth-syst-sci.net/12/751/2008/
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Table 1. Expressions and/or typical values of the coefficient bi and α of Eq. (3) for each component store in a cell.

Reservoir bi α

Soil bi =
Csi

X

X2α with Csi =
LiKsi

tan(βi )
(

θsi
−θri

)α
Lα

i

where:

– X is the cell horizontal dimension

– Li is the soil depth

– Ksi is the saturated hydraulic conductivity

– tan (βi) is the tangent of the ground slope βi

– θsi is the saturated soil moisture content

– θri is the residual soil moisture content

α = αs

with

2 ≤ αs ≤ 4

Where αs is a pore-size distribution parameter

(Brooks and Corey, 1964)

Overland bi =
Coi

X

X2α with Coi = 1
noi

√
tan (βi)

– noi is Manning’s roughness coefficient

– tan (βi) is the tangent of the ground slope βi

α = αo = 5
3

Channel bi =
Cci

Wi

(XcWi )
α with Cci = 1

nci

√

tan
(

βci

)

– Xc is the channel length (Xc = X or Xc =
√

2X)

– Wi is the width of the channel

– nci is Manning’s roughness coefficient

– tan
(

βci

)

is the tangent of the channel slope βci

α = αc = 5
3

original version proposed by Liu and Todini (2002), TOP-

KAPI consists of five main modules comprising soil, over-

land, channel, evapotranspiration and snow modules. The

first three are modules in the form of non-linear reservoirs

controlling the horizontal flows. The reservoir equations

are approximated by the kinematic wave model differential

equations at a point. The well-known point-scale differential

equations are then analytically integrated in space to the fi-

nite dimension of a grid cell, which is taken to be a pixel of

the digital elevation model (DEM) that describes the topogra-

phy of the catchment. The evapotranspiration module imple-

mented for this study has been slightly modified compared

to the original module presented in Liu and Todini (2002).

The snow module component is ignored in the present study

as the influence of snow can be neglected for the Lieben-

bergsvlei catchment.

2.3.1 Model assumptions

The TOPKAPI model is based on six fundamental assump-

tions (Liu and Todini, 2002):

1. Precipitation is constant in space and time over the inte-

gration domain (namely the single grid cell or pixel and

the basic time interval, usually few hours).

2. All precipitation falling on the soil infiltrates, unless the

soil is already saturated (Dunne, 1978).

3. The slope of the groundwater table coincides with the

slope of the ground.

4. Local transmissivity, like horizontal subsurface flow in

a cell, depends on the integral of the total water content

of the soil in the vertical.

5. In the soil surface layer, the saturated hydraulic conduc-

tivity is constant with depth and, due to macro-porosity,

is much larger than in deeper layers.

6. During the transition phase, the variation of water con-

tent in time is constant in space.

The absence in the TOPKAPI model of an explicit repre-

sentation of infiltration-excess runoff processes (Hortonian

processes) might be of concern for a semi-arid catchment

like the Liebenbergsvlei. However, as discussed later (see

Sect. 5) recent field experiments have shown that such an as-

sumption is in fact realistic on the Liebenbergsvlei.

2.3.2 Ordinary Differential Equations controlling the reser-

voir flows

The equations of each of the three reservoirs (soil, overland

and channel) that comprise a cell i can be written as a classi-

cal differential equation of continuity:

dVi

dt
= Qin

i − Qout
i (2)

where all the variables are observed at time t : Vi is the total

volume stored in the reservoir, dVi

dt
is the rate of change of

water storage, Qin
i is the total inflow rate to the reservoir,

Qout
i is the total outflow rate from the reservoir.

www.hydrol-earth-syst-sci.net/12/751/2008/ Hydrol. Earth Syst. Sci., 12, 751–767, 2008
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Table 2. Variables computed at each cell i between time t and 1t : see Fig. 4 for flow paths.

Initial value:

Volume at t

Inflow rates during

[t , t+1t]

ODE solution:

Volume at t+1t

Outflow rates during

[t , t+1t]

Flow partitioning:

Flow rate to next cell during

[t , t+1t]

Soil Vsi (t) Qin
si

= PiX
2 + Q

up
si + Q

up
oi

Vsi (t + 1t) Qout
si

= Qin
si

−
Vsi

(t+1t)−Vsi
(t)

1t

To next soil reservoir

Qout
si

−Qexcess
si

− WiXc

X2 Qout
si

Overland Voi (t) Qin
oi

= Qexcess
si

= max
(

0, Qout
si

− Qs maxi

)

with Qs maxi = XKsi Li tan (β)

Voi (t + 1t) Qout
oi

= Qin
oi

−
Voi

(t+1t)−Voi
(t)

1t

To next soil reservoir

Qout
oi

− WiXc

X2 Qout
oi

Channel Vci (t) Qin
ci

= Q
up
ci

+ WiXc

X2 Qout
si

+ WiXc

X2 Qout
oi

Vci (t + 1t) Qout
ci

= Qin
ci

−
Vci

(t+1t)−Vci
(t)

1t

To next channel

Qout
ci

The kinematic wave approach used to resolve the conti-

nuity and mass balance in TOPKAPI (by neglecting the dy-

namic acceleration terms in the energy equation) leads to a

nonlinear relationship between Qout
i and Vi , turning Eq. (2)

into to an ordinary nonlinear differential equation (ODE) of

the form:

dVi

dt
= Qin

i − biV
α
i (3)

where bi is constant in time (it frequently varies spatially)

and is a function of the geometrical and physical character-

istics of the reservoir. The parameter bi also depends on the

exponent coefficient α which originates from either the infil-

tration equations describing soil reservoir behaviour, or from

Manning’s equations used in the overland and channel reser-

voir specifications (see Liu and Todini, 2002 for more details

about the theoretical basis). For the three reservoirs (soil,

overland and channel), the expressions of bi and α are re-

ported in Table 1. Depending on the type of reservoir, Qin
i is

a combination of the forcing variables (interconnecting flows

between the elemental storage reservoirs within the cell and

from upper connected cells, also including rainfall and evap-

otranspiration in the case of the soil reservoir; Table 2).

At each simulation time step, the inflow rate Qin
i is com-

puted, assumed to be a constant over the interval, then the

ODE equation is solved by numerical integration. In this ap-

plication of TOPKAPI a combination of a quasi-analytical

solution (proposed by Liu and Todini, 2002) with a numeri-

cal integration procedure based on the Runge-Kutta-Fehlberg

method (see e.g. Gerald and Wheatley, 1992) was used. This

fast, numerically stable and accurate hybrid scheme was used

to integrate the appropriate variations of Eq. (3) over the time

interval 1t , dependent on the initial volume stored in the

reservoir at time t , to obtain the volume Vi(t+1t) stored

at t+1t . This solution of Eq. (3) differs from the method

recommended by Liu and Todini (2002) and was chosen af-

ter carefully examining the ability of the various solutions

to numerically satisfy the continuity equations at each time

step and in each cell. In Table 2 all the variables that are com-

puted for each reservoir from the ODE finite difference solu-

tion showing the reservoir and cell connectivity are reported.

Table 2 is associated with Fig. 4 which illustrates the fluxes

and connections for a typical modelled cell. Liu and Todini

(2002) declare that the flow direction drainage in TOPKAPI

is only possible in four directions (north, east, south or west).

However the limitation of the drainage to 4 directions can

lead to an unrealistic representation of the relief variability.

Indeed, the filling of the sinks in the Digital Elevation Model

treatment results in a strong smoothing of the relief variabil-

ity because of the limitation of the drainage in only 4 direc-

tions (D4). For this reason, the TOPKAPI model was adapted

to be compatible with 8 direction drainage (D8), which in-

cludes the 4 extra pixels beyond the diagonals. This was

achieved by using a calculation procedure (separate from the

GIS based one) to obtain the slopes of the soil and overland

reservoirs as distinguished from the slopes of the channel,

each using D8. The slopes of the soil and overland reser-

voirs were computed according to a neighbourhood function

more representative of the mean slope within the cell and

thus more representative of the transfers inside the cell (in

and over the soil). The slopes used to transfer the flows in

the channel drainage network were computed from cell to

cell in a down-stream direction using differences in altitude.

2.3.3 Evapotranspiration

The evapotranspiration module was slightly modified from

the original version of Liu and Todini (2002). In the chan-

nel, the evaporation is extracted at the rate of the potential

evaporation of a free surface of water. On the hillslopes, the

actual evapotranspiration is computed as a proportional ratio

of the reference crop evapotranspiration depending on a con-

stant crop factor kc and the current saturation of the reservoir

computed at each time step.

Hydrol. Earth Syst. Sci., 12, 751–767, 2008 www.hydrol-earth-syst-sci.net/12/751/2008/
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Fig. 4. Water balance in the TOPKAPI model (note that for clarity, the evapotranspiration losses are not represented on the figure).

3 Comparison between modelled and observed

discharges

3.1 Modelling features

3.1.1 Selected period

From the data set presented in Sect. 2.2, two seasons of eight

months were selected during which the rainfall and flow data

were both continuous and of good quality. The first sea-

son (Season 1) between November 1993 and June 1994 was

used to adjust the parameters of the TOPKAPI model, with

more emphasis on the flows at station 2, because the flows

were more trustworthy. It is worth noting here that the mea-

surement error of station 2 is estimated at less than 5% by

the South African Department of Water Affairs and Forestry

(Brink Du Plessis, 2007, personal communication). The sec-

ond season (Season 2) between November 1999 and June

2000 is used in Sect. 3.2 as a model verification period. In

both seasons the modelled soil moisture is compared with the

corresponding remotely sensed soil moisture in Sect. 4.

3.1.2 Model resolution

The model spatial resolution was imposed by the desire

to use a freely available DEM at 1 km (DLSI, 1996; see

Sect. 2.1). A 6 h time step was chosen which is small enough

to model the main discharge variations, since the catchment

response time is estimated to be between 1 and 2 days.

3.1.3 Forcing variables

For the two seasons considered in this study, the 6 h time step

rainfields were Kriged at 1 km resolution by using a climato-

logical spherical variogram with range of 30 km and a zero

nugget (guided by Wesson and Pegram, 2006).

As no evapotranspiration data are available for the simu-

lated periods on the catchment, the mean annual evapotran-

spiration over the region was used and disaggregated at a

daily time step, according to a mean seasonal signal deter-

mined by McKenzie and Craig (1999).

3.2 TOPKAPI parameter adjustment

3.2.1 A priori estimation of the parameters

Because of its physical basis, the model parameters can be

estimated a priori from the catchment characteristics (Liu

and Todini, 2002). The a priori values or range of values

of the parameters of the model is reported in Table 3, as well

as the data and/or literature references that were used to in-

fer the values. Among the 14 parameters of the TOPKAPI

model, 7 are spatially variable. As a complement to Table 3,

Fig. 2b shows the maps of the spatially variable parameters

and their link to the data available over the Liebenbergsvlei

catchment (Fig. 2a). A Geographical Information System

was used in junction with the DEM in order to (i) compute

the slope (ground slope tan(β) and channel slope tan(βc)) of

each cell (ii) delineate the stream network and (iii) compute

the Strahler orders of each channel reach (Strahler, 1957).

The ordering method of Strahler is used to infer the values of

the channel roughness Manning’s coefficients nc. In Liu and

Todini (2002), channel orders of 1, 2, 3 and 4 were assigned

values of 0.045, 0.04, 0.035 and 0.035 for the Upper Reno

catchment in Italy. In the absence of any information about

the channel reach properties, these values were assumed to be

suitable as starting values for the Liebenbergsvlei catchment.
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Table 3. Values of the TOPKAPI model parameters estimated a priori from data and literature, and values of multiplying factors used for the

calibration procedure.

Parameter Value a priori Origin and references Calibrated multiplying factor value

Spatially variable (cf. Fig. 2b)

Ground Slope tan β 1.7E-4–1.81E-1 DEM (DLSI,1996)

Channel Slope tan βc 4.0E-5–3.1E-1 DEM (DLSI,1996)

Depth of surface soil layer (m) L 0.33–0.81 Soil type map (SIRI,1987) facL 1.0

Saturated hydraulic conductivity (m s−1) Ks 1.67E-6–5.18E-4 Soil texture map (Midgley et al., 1994)

+ Maidment (1993)

facKs
60.

Residual soil moisture content θr 0.02–0.09 Soil texture map (Midgley et al., 1994)

+ Maidment (1993)

Saturated soil moisture content θs 0.41–0.44 Soil type map (SIRI,1987)

Manning’s surface roughness coeff. no 0.025–0.1 Landuse map (GLCC, 1997)

+ Chow et al. (1988)

facno 1.

Manning’s channel roughness coeff. nc 0.035–0.045 Strahler order method (Liu and Todini 2002) facnc 1.7

Constant

Horizontal dimension of cell (m) X 1000 DEM (DLSI,1996)

Non-linear soil exponent αs 2.5 Liu and Todini (2002)

Max. channel width at outlet (m) Wmax 40 Field pictures

Min. channel width for Athreshold (m) Wmin 5 –

Area required to initiate channel (m2) Athreshold 2 500 000 –

Crop factor kc 1. Landuse map (GLCC, 1997)

The values of the overland roughness Manning’s coefficient

no were derived from the landuse/cover map (GLCC, 1997),

using the tables in Chow et al. (1988). Maps of soil depths

L and saturated soil moisture θs were already available over

the catchment in the data set of soil properties (SIRI, 1987).

The residual soil moisture θr and the hydraulic conductiv-

ity at saturation Ks were derived from the soil texture map

(Midgley et al., 1994) according to parameter tables for the

Green-Ampt infiltration model (Maidment, 1993). As in Liu

and Todini (2002), the pore-size distribution parameter αs

was uniformly set to the value 2.5. A sensitivity analysis (not

presented here) showed that varying the value of αs in the re-

alistic range of its values (between 2 and 4 according to Liu

and Todini, 2002) had only a small influence on the simula-

tions. As a first approximation, and because of the relatively

homogeneous cropland/grassland landcover, the crop factor

kc was assumed to be spatially uniform over the catchment

and equal to 1.

The other parameters concern the channel geometry. The

threshold value of the area over which the water is considered

to be drained in a channel (Athreshold) was fixed at 25 km2 af-

ter checking the limit of the streams with those shown on

1:250 000 maps. The minimum and maximum width of the

channel (respectively Wmin and Wmax) were fixed at respec-

tively 5 m and 35 m (estimated from photographs taken at the

flow stations). A linear relationship between the drained area

and the channel width at a point proposed by Liu and Todini

(2002) was used to determine the channel width along the

catchment.

Because of the uncertainty in the estimation of the catch-

ment’s characteristics from a priori datasets, a calibration

was required.

3.2.2 Calibration procedure

The method used to calibrate the model was inspired by

the Ordered Physics-based Parameter Adjustment method

(OPPA) proposed by Vieux et al. (2004). This method aims

to calibrate the physically distributed hydrological model pa-

rameters in a specific order. First the parameters control-

ling the production of the runoff are adjusted such that a dis-

charge volume objective function is minimized. Then the

parameters controlling the runoff routing are adjusted such

that a discharge timing objective function is minimized. Ac-

cording to a sensitivity analysis of the model parameters (not

shown here, but also in accordance with the work of Liu et

al., 2005), the most important parameters controlling the pro-

duction in TOPKAPI are the soil depth L and the soil con-

ductivity Ks , while the timing of runoff is mainly controlled

by the Manning roughness of the channel nc and of the over-

land surface no. In the absence of any quantitative infor-

mation, the initial soil moisture Vs initial, which was shown

to have a strong influence on the simulations, was also cal-

ibrated. Ten values of mean catchment saturation between

1% and 90% were tested.

In order to have realistic patterns of initial soil moisture

fields that preserve the most likely spatial distribution of soil

moisture on the catchment, the model was run with the a pri-

ori parameters and zero rainfall input, but with the initial soil
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Fig. 5. Modelled and observed hydrographs. Calibration (a) and verification (b, c, d) of the model at two stations and for two distinct 8

month seasons.

saturation of the catchment set at 100% (meaning that each

cell was 100% saturated). During the process of drainage

with zero input, at each 6 hourly simulation time step, the

mean catchment saturation was calculated. From these sim-

ulations, 10 soil moisture maps were extracted as the cells

drained, corresponding as closely as possible to mean satura-

tion levels between 90% and 1%. These 10 residual moisture

maps were used as reference soil moisture maps for the vari-

ous levels of initialisation.

As suggested by Vieux et al. (2004) and by most of the

studies dealing with the calibration of distributed hydrolog-

ical models, the parameters are not tuned independently for

each cell, but the parameter map is calibrated by using a mul-

tiplicative factor applied uniformly in space. For our appli-

cation the four multiplicative factors to be applied were facL

(for the soil depth), facKs (for the hydraulic conductivity),

facno (for the overland roughness) and facnc (for the channel

roughness).

The trio of parameters (facL, facKs , Vs initial) and the pair

of parameters (facno , facnc ) were calibrated independently,

after verifying that they were effectively independent, mean-

ing that their variation influenced exclusively (respectively)

the production and the timing of runoff. The triplet (facL,

facKs , Vs initial) was adjusted in order to minimize the Root

Mean Square Error (RMSE) objective function comparing

modelled and observed discharge volumes aggregated at a

monthly time step. Then the pair (facno , facnc ) was adjusted

using the regression coefficient (R2) in order to match the

timing of observed and modelled discharges at a 6 h time

step.

In order to reduce the computation time required by the

calibration procedure, the calibration was carried out using

the flows estimated at station 2 (see Fig. 3). At this station,

the drainage area is 3563 km2, which effectively preserves

the main soil heterogeneity of the entire catchment.

3.3 Results

Figure 5a shows the results of the calibration. There is a

good correspondence between observed and modelled hydro-

graphs (Nash efficiency of 0.788). In Table 3 the values of the

four calibrated multiplying factors are reported. It is worth

noting that all the values of the parameters estimated a priori

were quite appropriate except for the channel roughness and

the soil conductivity which have been increased respectively

by a factor of 1.7 and 60; this aspect will be discussed in

Sect. 5. The initial soil moisture was also adjusted by cal-

ibration, using the 10 sets of initial conditions, to a mean

value of 40% over the catchment.

As a verification of the relevance of the calibration proce-

dure and its effect on other discharge time series, the cal-

ibrated model was applied to the entire catchment. For

the same season (Season 1) the observed and modelled

discharges at the outlet of the catchment (Station 1) are

plotted in Fig. 5b. Globally, there is once again a good
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correspondence between observed and modelled flows, how-

ever at some points, the observed data seem to be unreliable

since some peaks recorded at Station 2 do not appear as they

should at the outlet and the recession shape of the main peak

discharge seems somewhat unrealistic. In order to check the

verification procedure on more reliable data, the model was

then applied to an independent season (Season 2). During

this season, the discharges are influenced by the inter-basin

transfer flows arriving from Lesotho. In order to reliably

compare the modelled and observed discharges, the external

flows observed at Station 3 were injected at the pixel in the

channel located the closest to Station 3. Again in the absence

of any information about the initial soil moisture, the value of

40% calibrated for Season 1 using station 2 was assumed to

be applicable for Season 2. Results are plotted in Fig. 5c and

d. Again, acceptable simulations of the hydrographs were

obtained even if the main peak discharges are unexpectedly

underestimated. One can however note that the timing of the

flows is remarkably good, especially at the beginning of the

season, when in the absence of rainfall, the flows are mainly

explained by the external flows that are routed from the up-

per part of the catchment; these appear pulsed because of hy-

dropower generation. The modelling of the discharges was

judged to be done well enough to reliably compare the mod-

elled soil moisture to the remotely sensed data.

4 Comparison of remotely sensed and modelled soil

moisture

4.1 Definition of a remotely sensed and modelled Soil Wa-

ter Index (SWI)

As already noted in Sect. 2.2, the remotely sensed soil mois-

ture estimation is representative of the relative water content

of the first 5 cm of topsoil effectively “seen” by the scat-

terometer. However, for the purpose of the present study,

which is to compare the soil moisture as modelled by TOP-

KAPI and the remotely sensed soil moisture, the variable of

concern is the soil moisture in the entire soil layer.

In order to provide a reliable comparison, the soil mois-

ture in the whole soil layer must thus be obtained from the

surface soil moisture estimated by the satellite. In addition

to the surface soil moisture available in the global ERS soil

moisture product, a Soil Water Index (SWI) is provided that

aims to estimate the soil moisture profile in the soil horizon

from the ERS product. The method used here to estimate

SWI was proposed by Wagner et al. (1999c). It is a simple

conceptual infiltration model based on an exponential filter,

temporally smoothing the signal of the (instantaneously es-

timated) relative surface soil moisture to give the Soil Water

Index, SWI:

SWI (t) =

∑

i

ms (t) e−(t−ti )/T

∑

i

e−(t−ti )/T
for ti ≤ t (4)

where ms is the surface soil moisture estimate from the ERS

scatterometer defined in Eq. (1). T represents a characteris-

tic time length depending to the soil properties (mainly soil

depth, diffusivity and moisture state). To maintain the crucial

independence of the physically based approach of TOPKAPI

and the remotely sensed soil moisture estimates, it was de-

cided not to refine the estimation of the parameter T for the

particular study area by using the soil data. Thus the value

of T =20 days, suggested by Wagner et al. (1999c) as an av-

erage value, was retained. More detailed discussions of the

SWI method can be found in Ceballos et al. (2005) and Pel-

larin et al. (2006).

A surrogate for SWI can easily be defined for TOPKAPI

by computing the relative soil saturation at each catchment

cell, for each time step of the simulation.

Two different scales are considered to make the compari-

son between the modelled and remotely sensed soil moisture.

The first is the catchment scale, at this scale: (i) the mean

catchment SWI is computed from the hydrological model

by averaging over the catchment the SWI computed at each

cell, (ii) the mean catchment SWI is computed from the scat-

terometer data, by averaging over the catchment the SWI

computed for the scatterometer grid points in and surround-

ing the catchment (the average being weighted according to

Thiessen polygons). The second scale is the scatterometer

footprint scale, which is smaller than the catchment scale.

This corresponds to the original scatterometer resolution de-

fined by a circle of diameter 50 km. The footprint SWI is

computed from the hydrological model by averaging the SWI

computed at each cell within the footprint. In order to make

a robust comparison, only the three footprints showing the

largest areal coverage of the catchment were considered.

4.2 Results

4.2.1 At catchment scale

The modelled and remotely sensed mean catchment SWI

are compared in Fig. 6 for the two modelled seasons, at the

time step of ten days imposed by the ERS sampling interval.

There is a very good correspondence between the two SWI

estimates, as illustrated by the regression coefficients (R2) of

0.759 for the first season and 0.923 for the second season.

According to the regression equation, a relative bias is ob-

served (which seems to be independent of the season) that is

likely to be due to the uncertainties associated with each of

the two approaches whose comparison will be discussed in

Sect. 5. Despite this, the order of magnitude of the remotely

sensed and the modelled SWI is still very similar. As an inter-

esting example, the value of the initial soil moisture, which

was calibrated at 40% for the catchment model, could have

been estimated by using the remotely sensed value. This re-

sult is very encouraging since the initialization of hydrolog-

ical models after a dormant period remains a constant prob-

lem in hydrology.
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At catchment scale

R2 = 0.759
y = 0.75x + 18.1

R2 = 0.923
y = 0.84x + 19.0

Season 1 Season 2

Fig. 6. Comparison between the modelled and the remotely sensed SWI computed at catchment scale. The open circles are the TOPKAPI

estimates at time corresponding to the scatterometer estimates (filled circles).

4.2.2 At footprint scale

Figures 7 and 8 show respectively the remotely sensed and

the modelled SWI at footprint scale and the associated scatter

plots. The results show that the good correspondence already

found at catchment scale is retained at the smaller scale of the

footprint. The correlations are still fair (greater than 0.68),

while according to the regression equations, the bias between

the two independent SWI estimates is relatively stable and

appears to be independent of season and location.

5 Discussion and conclusion

5.1 Summary

The paper aimed to compare, for the purpose of corrobo-

ration, not validation, two independent approaches used to

estimate soil moisture at the scale of a region-sized catch-

ment (Liebenbergsvlei, 4625 km2, South Africa). The first

estimation was derived from physically based hydrological

modelling of the catchment using the TOPKAPI model (Liu

and Todini, 2002) and the second was derived from the re-

motely sensed observations of the scatterometer on board

the ERS satellite. A calibration procedure of the TOPKAPI

model has been carried out consisting of the adjustment of

the four most sensitive parameters of the model according

to runoff production and routing. A good agreement was

found between observed and modelled hydrographs of the

Liebenbergsvlei catchment for both the calibration and the

verification period. The comparison between the modelled

and the remotely sensed soil moisture estimates was done

using the computation of the Soil Water Index ( SWI) which

is the relative soil moisture throughout the soil depth. As the

satellite only provides soil moisture for the topsoil layer (first

5 cm), a conceptual infiltration model developed by Wagner

et al. (1999c) was applied to the remotely sensed surface soil

moisture estimates in order to estimate an SWI. The compar-

ison between the modelled and remotely sensed SWI was

shown to be good with regression coefficient varying be-

tween 0.678 and 0.923. Even if a constant bias of around

19% is identified, the dynamic of the soil moisture behaviour

is very coherent between the two approaches.

5.2 Discussion

5.2.1 Comments on the bias between the modelled and re-

motely sensed soil moisture

As there is no possibility of obtaining the “true” value of soil

moisture at catchment scale, it is difficult to precisely assess

the reasons for the bias identified between the modelled and

remotely sensed soil moisture. It is clear however that the
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At footprint scale
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Fig. 7. Comparison of the modelled and remotely sensed Soil Water Index (SWI) at the scatterometer footprint scale.

two compared approaches have their own uncertainties that

potentially lead to explain this bias.

5.2.2 Uncertainties associated with hydrological modelling

The results of the calibration showed that the values of the

parameters of the TOPKAPI can be estimated a priori with a

good reliability from information about the topography and

the soil properties associated to parameter tables from the

literature. The two exceptions were the channel roughness,

multiplied by a factor 1.7 to get the right flow timing, and the

hydraulic conductivity at saturation, which had to be mul-

tiplied by a factor of 60, instead by a factor of 10 as sug-

gested by Liu and Todini (2002), to account for macropores

and preferential paths in the horizontal direction.

The increase of the channel roughness value nc is clearly

due to the uncertainty of the DEM that does not reflect pre-

cisely the slopes of the drainage network that are particu-

larly flat in the lower part of the catchment. Obviously one

can argue that the multiplying factor of Ks is not physically

realistic. However, one has to be aware that the values of

Ks estimated a priori were derived from Green-Ampt infil-

tration model tables that are associated with the local scale

of a column of soil and for vertical infiltration fluxes. The

alternative behaviour of the horizontal hydraulic conductiv-

ity has already been reported in the literature, particularly

by the developers and users of TOPMODEL (Beven and

Kirkby, 1979; Beven, 1997) and is mainly attributed to the

fact that the lateral fluxes controlled by the topography are,

in the subsurface, likely to occur in preferential paths (macro-

pores, root pipes, soil cracks etc.). The calibration procedure

tends to show that rapid flows in preferential paths are ef-

fectively dominant in the Liebenbergsvlei catchment. An-

other reason might be that the production of runoff can also

be due to infiltration excess mechanisms (or Hortonian pro-

cesses). Such processes are indeed likely to occur especially

in semi-arid areas, as in the Liebenbergsvlei catchment. The

difficulty of the model to respond to observed precipitation

in the beginning of the wet season is probably linked to the

production of Hortonian runoff, when the soils are dry and

potentially crusted and the vegetation is not fully developed.

However, the assumption of the predominance of subsurface

flows and the associated saturation excess runoff production
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At footprint scale

Fig. 8. Comparison of the modelled and remotely sensed Soil Water Index (SWI) at the scatterometer footprint scale (Scatter plots and

regression equations).

seems to be realistic in the area for the major part the sea-

son. Some field experiments have been conducted at the hill-

slope scale in the region which tend to confirm that saturation

excess production of runoff is predominant (Colin Everson,

2007; personal communication). These experiments suggest

that the TOPKAPI hypothesis and the calibrated hydraulic

conductivity are quite realistic on the Liebenbergsvlei catch-

ment. It is also worth noting that a part of this increase of the

hydraulic conductivity could be explained by the precision

of the DEM: (i) in terms of resolution, since the 1 km res-

olution used here has been identified by Martina (2004) as

the upper limit of physical scale above which the TOPKAPI

model parameters no longer match the physics and also (ii)

in terms of precision of the cell heights and corresponding

slopes, that can have a strong influence on the parameter val-

ues (the reader is referred to Wechsler et al., 2007 for an in-

teresting review of the hydrological model uncertainties as-

sociated with a DEM).

Generally speaking, it is accepted that there is uncertainty

in the definition of a unique set of optimal parameters. The

optimal parameter set calibrated on Season 1 gives relatively

poor results when used in the verification process to simu-

late discharges of season 2. The low performances of the

model applied on season 2 can be attributed to the arbitrary

choice of the initial soil moisture, the Hortonian processes

that may have a longer influence for season 2 than season 1.

But a more probable reason is that the calibration conducted

on station 1 in season 1 only has few chances to give a robust

representation of the mean behaviour of the catchment over

a long period, especially on the Liebenbergsvlei catchment

where rainfall and runoff are subject to a strong inter-annual

variability.

In order to figure out how the choice of the parameters’

values can influence the results of the comparison of the SWI,

Fig. 9 shows for season 1 the impact on the simulated dis-

charge and SWI of a change in the values of the two main

parameters influencing the runoff and the soil moisture pro-

duction in the model. In association with Fig. 9, in Table 4

are reported the values of the criteria characterizing (i) the

model performance according to the discharge and (ii) the

comparison of the simulated SWI with the remotely sensed

SWI. This sensitivity analysis shows by examining the re-

sponses, that of the values of the parameters influencing the

discharge simulation: Ks mainly influences the volume of
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Table 4. Sensitivity analysis on the effect of the parameters Ks andL on the simulated discharge and SWI. The Nash efficiency is computed

on the calibration period over the subcatchment. The coefficient of determination R2 and the regression equation are computed by comparing

the simulated and the remotely sensed SWI. This table is associated with Fig. 9 that shows the corresponding curves of simulated discharge

and soil moisture.

Nash Q period1 subcatchment R2 SWI period1 catchment Regression line SWI

y=ax+b

a b

20 0.600 0.780 0.81 16.4

40 0.759 0.771 0.78 17.3

facKs
60 (optimal) 0.788 0.759 0.75 18.1

80 0.719 0.748 0.72 18.7

100 0.605 0.737 0.69 19.2

0.6 0.227 0.629 0.88 10.3

0.8 0.669 0.72 0.82 14.2

facL 1 (optimal) 0.788 0.759 0.75 18.1

1.2 0.755 0.765 0.68 21.4

1.4 0.744 0.749 0.62 24.1

 

Sensitivity analysis
Effect of Ks Effect of L

facKs=20
facKs=40
facKs=60
facKs=80
facKs=100

facKs=20
facKs=40
facKs=60
facKs=80
facKs=100

facL=0.6
facL=0.8
facL=1.0
facL=1.2
facL=1.4

facL=0.6
facL=0.8
facL=1.0
facL=1.2
facL=1.4

Fig. 9. Sensitivity analysis on the effect of the parameters Ks and L on the simulated discharge and SWI. This Figure is associated with

Table 4 in which are reported the criteria characterizing (i) the model performance according to the discharge and (ii) the comparison of the

simulated SWI with the remotely sensed SWI.

runoff, while L mainly influences the values of the main

peaks of discharge. The modelled soil moisture is also nat-

urally influenced by the parameter values. The soil depth L

mainly controls the variability of the soil moisture and both

L and Ks influence the bias value. But, whatever the val-

ues of the parameters, the correlation between the modelled

and remotely sensed soil moisture remains fair (R2 always

higher than 0.6). It means that, even if there is an uncertainty

in the parameter values, the general conclusions of the study

remain unchanged.
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5.2.3 Uncertainties associated with remote sensing

The soil moisture retrieval method from the ERS scatterom-

eter data is from its conception a change detection method

which compares individual backscatter measurements to sea-

sonally varying minimum and maximum backscatter refer-

ence values observed in long time series (Wagner et al.,

1999a, b, c). The retrieved absolute soil moisture values

thus depend on the assumptions about which soil moisture

states are represented by the two backscatter reference val-

ues. The standard assumption for the thin remotely sensed

surface layer (ms) is that minimum backscatter represents

a completely dry soil and maximum backscatter water sat-

urated soil (Wagner et al., 1999b). For the soil profile (SWI)

minimum backscatter is in general related to a soil with wa-

ter content at wilting point and maximum backscatter to a

soil with a soil moisture content halfway between field ca-

pacity and total water capacity (Wagner et al., 1999c). The

validity of these assumptions depends on the weather condi-

tions during the reference period and the regionally varying

climate. Therefore, the absolute values of the scatterometer

soil moisture products (ms and SWI) are deemed less reliable

than the observed temporal trends. This notion was further

corroborated by the results of this study. In fact, in most stud-

ies the scatterometer data are scaled to fit the reference soil

moisture data best (Drusch et al., 2004; Pellarin et al., 2006).

Despite the uncertainties of each one of the approaches,

that explain the bias identified in the comparison between

the modelled and remotely sensed soil moisture, the study

shows that there is a good correspondence in the dynamic

of the soil moisture between the two independent soil mois-

ture estimates. One might therefore question the reason for

such a good correspondence. This is likely due to three main

reasons:

1. The Soil Water Index is considered in the present study,

meaning the relative water content along the soil depth.

Many studies focus on vertical transfers (Soil Vegeta-

tion Atmosphere Transfer model) but ignore the lateral

transfers (horizontal subsurface flows) that occur in the

soil layer and partly control the soil moisture. In the

present study, the lateral transfers are explicitly mod-

elled by the TOPKAPI model to represent the subsur-

face flow processes. The study shows the benefit of us-

ing a distributed hydrological model that is able to ex-

plicitly represent the horizontal transfers in the soil in

order to spatially redistribute modelled soil moisture.

2. The scatterometer estimations are sensitive to the veg-

etation and are better in less vegetated regions (Wag-

ner et al., 1999b). In the Liebenbergsvlei, the grassland

and cropland surfaces are likely to result in reliable es-

timates of soil moisture from this source.

3. The raingauge network is characterized by a very high

spatial density of well calibrated pluviometers that give

a reliable estimation of the precipitation amount at the

catchment scale.

5.3 Perspective

The results obtained at this stage are very encouraging for (i)

hydrological modelling and the possibility of using remotely

sensed soil moisture to validate the models and also to ini-

tialize them; assimilation of the remotely sensed soil mois-

ture data into hydrological models during simulations is also

an exciting possibility, (ii) remote sensing and the possibil-

ity of using physically based hydrological models to validate

and disaggregate the soil moisture estimations down to fine

spatial scales.

Further research will aim to improve the modelling of

the vertical fluxes that explicitly represent the vertical water

transfers in the soil and will allow direct comparison between

the remotely sensed soil moisture at the surface (first 5 cm of

soil) without being dependent on the conceptual infiltration

model used in the present study to infer the soil moisture pro-

file from the surface remotely sensed soil moisture. Such a

complete physically based model should help to better under-

stand the processes that control the soil moisture patterns at

regional scale and will be applied as a physically based soil

moisture back-calculation and disaggregation tool.
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Hébrard, O., Voltz, M., Andrieux, P., and Moussa, R.: Spatio-

temporal distribution of soil surface moisture in a heteroge-

neously farmed Mediterranean catchment, J. Hydrol., 329, 110–

121, 2006.

Hodnett, M. G. and Bell, J. P.: Soil moisture investigations of

groundwater recharge through black cotton soils in Madhya

Pradesh, India, Hydrol. Sci. J., 31(3), 361–381, 1986.

Houser, P. R., Shuttleworth, W. J., Famiglietti, J. S., Gupta, H. V.,

Syed, K. H., and Goodrich, D. C.: Integration of soil moisture

remote sensing and hydrologic modeling using data assimilation,

Water Resour. Res., 34(12), 3405–3420, 1998.

Kostov, K. G. and Jackson, T. J.: Estimating profile soil moisture

from surface layer measurements – a review, Proceedings of the

international Society for Optical Engineering (SPIE), Orlando,

11–14 April, 125–136, 1993.

Liu, Z. and Todini, E.: Towards a comprehensive physically-based

rainfall-runoff model, Hydrol. Earth Syst. Sci., 6(5), 859–881,

2002.

Liu, Z., Martina, M. L. V., and Todini, E.: Flood forecasting using

a fully distributed model: application of the TOPKAPI model to

the Upper Xixian catchment, Hydrol. Earth Syst. Sci., 9, 347–

364, 2005

Maidment, D. R.: Handbook of hydrology, McGraw-Hill, New

York, 1993.

Martina, M. L. V.: The distributed physically based modelling of

the rainfall-runoff process, PhD Thesis, University of Bologna,

2004.

McKenzie, R. S. and Craig, A. R.: Evaporation losses from South

African rivers, WRC Report no. 638/1/99, Pretoria, Water Re-

search Commission (South Africa), 1999.

McNamara, J. P., Chandler, D., Seyfried, M., and Achet, S.: Soil

moisture states, lateral flow, and streamflow generation in a semi-

arid, snowmelt-driven catchment, Hydrol. Process., 19, 4023–

4038, 2005.

Merz, B. and Plate, E. J.: An analysis of the effect of spatial vari-

ability of soil and soil moisture on runoff, Water Resour. Res.,

33, 2909–2922, 1997.

Midgley, D. C., Pitman, W. V., and Middleton, B. J.: Surface water

resources of South Africa 1990, Water Research Commission,

Report No. 298/2.2/94, 1994.
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