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Abstract—Load flow studies are carried out in order to find a 

steady state solution of a power system network. It is done to 

continuously monitor the system and decide upon future 

expansion of the system. The parameters of the system monitored 

are voltage magnitude, voltage angle, active and reactive power. 

This paper presents techniques used in order to obtain such 

parameters for a standard IEEE – 30 bus and IEEE-57 bus 

network and makes a comparison into the differences with 

regard to computational time and performance of each solver. 

The objective being to first understand the working of each 

solver and then come to conclusions regarding the best one 

keeping in mind the network size and complexity so that it can 

extended to bigger networks for analysis. The methods are 

evaluated in this study using Matpower which is a tool meant for 

academical purposes and not intended for on-line use.    

 
Index Terms—Load flow, IEEE 30 bus, IEEE 57 bus 

Numerical methods.  

I. INTRODUCTION 

HE load flow problem is an important tool for the 

operation and control of power systems. It gives the 

system operator information regarding active power, reactive 

power demand and consumption, voltage magnitude and 

voltage angle at every bus within the system which enables the 

operator to execute an appropriate schedule for dispatch of 

power. This information is also useful while planning 

expansion of power systems and helps maintain power system 

stability [1].  

There are many techniques in-order to address the load 

flow problem [2-4], the techniques are numerical methods that 

are used to solve non-linear equations in order to obtain the 

steady state parameters of the system. In [5] network design 

and load flow analysis were carried out using ETAP and the 

resulting conclusions were taken as considerations for future 

expansion of power systems. In [6] load flow studies are 

performed using Newton-Raphson and decoupled load flow 

methods and a comparison is made amongst systems with and 

without unified power system controllers. [7] used ‘Distflow’ 

for comparison of different numerical methods based solvers 

for the load flow problem. [8] uses a power system analysis 

toolbox called ‘Mipower’ to study the performance of Gauss-

Seidel method on an IEEE-3 Bus system. [9] presents a unique 
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power flow iterative algorithm and it is applied to a modified 

IEEE – 30 consisting of two wind farms in order to validate 

the model. [10] provides a novel method called Nonsy load 

flow in which the study has conducted load flow analysis 

using data that is unsynchronized and is obtained from diesel 

generators and the main substation in their network. Once this 

data is obtained other parameters of the network are solved 

using backward/forward sweep methods. This study makes a 

comparison of the performance of the methods using 

Matpower applied to two standard IEEE test bus cases.   

Matpower is a useful toolbox in Matlab to solve the load 

flow problem, it is developed by the power system 

engineering research center at Cornell University [4]. It is 

intended for academical use and understanding the different 

methods for solving load flow problems.  

In this paper we compare solving of the load flow problem 

for a standard IEEE-30 and 57 bus test cases using Gauss-

Seidel, Newton-Raphson and Fast decoupled load flow 

(FDLF) techniques in Matpower and come to conclusions 

regarding the characteristics of each method. The reason for 

taking two test cases is to understand how the performance of 

the solvers varies with increased network size and complexity. 

Moreover, such a comparison would enable the choosing an 

appropriate solver for analysis of city sized networks.  

The version of Matpower used is 7.0b1, installed in Matlab 

2018b in a Windows 10 64-bit system with an i5 core 

processor. The computational time in this study indicates the 

overall time take to obtain the solution whereas performance 

of each solver indicates the time taken per iteration and 
computational burden refers to the memory that is needed to 

run each solver. Convergence is defined as a property of a 

solver to reach the solution vector, It represents the ability of a 

function to approach a limit as terms in the series increases. 

The IEEE-30 bus test case system has a total of 6 

generators, 24 loads, transmission lines at 1kV, 11kV, 33kV 

and 132kV along with capacitor banks at certain buses for 

reactive power compensation. The IEEE-57 bus test case 

system has a total of 7 generators, 50 loads, transmission lines 

along with capacitor banks at certain buses for reactive power 

compensation. The test systems serve as a representative 

model to carry out power system studies and load flow 

analysis. The load flow problem involves solving for 4 

parameters at every bus: active power(Pi), reactive power (Qi), 

voltage magnitude (Vi) and voltage angle (i ) where i = 

1,2,…..,n denotes the number of buses and if there are n buses 

then the total number of variables to be ascertained are 4n, but 

power flow studies usually assume bus types which usually 
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keeps 2 out of 4 variables as constants, thereby reducing the 

number of variables to be solved to 2n. The bus types are 

summarized below [2, 3]:  

 PQ bus/Load bus: In this type of bus the total active 

power (Pi) and reactive power (Qi) at the bus are 

known, and is calculated as a difference between the 

active and reactive power injected and consumed in a 

bus. Hence, the variables to be determined include 

voltage magnitude (Vi) and voltage angle (i). 

 PV bus/Voltage controlled bus/Generator bus: This 

type of bus is usually preferred for power generating 

sources. Here, the total active power injected and 

consumed is known (Pi) and the voltage magnitude is 

maintained at a particular value by means of reactive 

power injection. Hence, the unknown variables are total 

reactive power at the bus (Qi) and voltage angle (i). 

 Swing bus/Slack bus/ Reference bus: In this type of bus 

the voltage magnitude (Vi) and the voltage angle (i) 

are known and the active power (Pi) and reactive power 

(Qi) are unknown. The slack bus is in-fact a fictitious 

concept that is created by a power system analyst in 

order to study the system [2]. In any load flow study, 

the total active and reactive power (complex power) at 

every bus is not known since the net complex power 

flow within the system is unknown including the total 

loses along transmission lines.  Therefore, it is a 

convention to choose the largest generator in a system 

to be the slack bus as it is understood that it is capable 

of producing active and reactive power according to the 

needs of the system. There is usually only one such bus 

chosen in a system as a reference. 

In the IEEE test bus cases, the largest generator is chosen 

as the slack bus and the other sources are chosen as PV 

buses whereas the loads are modeled as load buses. Once 

the buses are decided the equations to solve are (1).  

                 𝑃𝑖 = |𝑉𝑖| ∑ |𝑉𝑘||𝑌𝑖𝑘|cos(𝜃𝑖𝑘 + 𝑘 −
𝑛
𝑘=1 𝑖)          (1) 

              𝑄𝑖 = −|𝑉𝑖| ∑ |𝑉𝑘||𝑌𝑖𝑘|sin(𝜃𝑖𝑘 + 𝑘 −
𝑛
𝑘=1 𝑖)          (2) 

 

Where,  i = 1,2,…..,n. Yik –  represents self and mutual 
admittances, between buses i and k and forms the bus 

admittance matrix Ybus that is crucial to obtain the load flow 

solution.   

In order for static load flow equations to match reality as 

close as possible it is important to incorporate limits pertaining 

to all components in the network. The constraints are 

described as follows:  

 Voltage magnitude constraints 

 |𝑉𝑖|𝑚𝑖𝑛 ≤ |𝑉𝑖| ≤  |𝑉𝑖|𝑚𝑎𝑥                      (3) 

 Voltage angle constraints 

     |𝑖— 𝑘| ≤  |𝑖— 𝑘|
𝑚𝑎𝑥

                 (4) 

This difference with regard to difference of angle 

during transfer of power between buses i and k is 

important for system stability.  

 Constraints of sources to generate active and 

reactive power  

      (𝑃𝑔𝑖)𝑚𝑖𝑛
≤ 𝑃𝑖  ≤  (𝑃𝑔𝑖)𝑚𝑎𝑥

                    (5)  

                           (𝑄𝑔𝑖)𝑚𝑖𝑛
≤ 𝑄𝑖  ≤ (𝑄𝑔𝑖)𝑚𝑎𝑥

                    (6) 

Pgi and Qgi are the active and reactive power generated at 

bus i  

II. NUMERICAL SOLVERS 

A. Gauss-Seidel method 

This method is used to solve a set of non-linear algebraic 

equations. It is an iterative method and begins with an 

assumption of a solution vector. The assumption is made with 

regard to practical considerations. Revised value of a variable 
is obtained by substituting in one of the equations in (1) the 

remaining present variables of the solution vector. Then the 

solution vector is immediately updated with this new revised 

variable. This process is done for all variables in the solution 

vector in one iteration. The iterations continue until a certain 

degree of accuracy of the solution vector is obtained. The 

Gauss-Seidel method is very simple in terms of its usage to 

solve non-linear equations, also it is not necessary to store data 

from previous iterations to go to the next iteration. On the 

other hand, this method is very sensitive to the initial 

assumption of the solution vector, hence the speed of 

convergence depends on the closeness of the solution vector to 
the actual solution. In certain cases when the assumption is 

highly inaccurate the method might fail to converge [2, 3].  

The application of this method to the power system is as 

follows:  

1. First, the load demand (Pdi and Qdi) are obtained at all 

buses, then keeping relevant constraints in mind the 

active and reactive power generations (Pgi and Qgi) 
are allocated at all generating stations and since the 

largest generating station is kept as a reference bus the 

active and reactive power generation at this bus is 

allowed to change during the iterations.  

2. The bus admittance matrix Ybus  is assembled with the 

available line and shunt admittance data 

3. To begin the iterative process a flat voltage start is 

assumed and all buses are set to a voltage magnitude 

and angle of 10o
.  Then the voltages at every bus is 

recalculate by a rearranged version of equation (1) and 

the iterations continue until an acceptable accuracy is 

obtained.  

𝑣𝑖
𝑝+1

− 𝑣𝑖
𝑝
< ℇ 

 
4. Once the voltage values of all buses are known then 

active and reactive power at the slack bus is obtained. 

5. The last step of the process involves calculating the 

losses of the system using the line and shunt 

admittance data along with the known voltage values.  

These steps describe the method to obtain all parameters 

for PQ buses since it begins with an assumption of active 

and reactive power demand and consumption at every bus. 

For PV buses the iterative method is different with regard 

to the assumptions made at the beginning of the iterative 

process, the detailed procedure is described in [3]. 

B. Newton-Raphson method 

This is a powerful tool for solving a set of non-linear 

equations, the advantages of this method are that it is not 

sensitive to the assumption of the solution vector made. The 



 

solution in this case converges in most cases as compared to 

the Gauss-Seidel method and it is done in a fewer number of 

iterations. The drawback of this method is increased 

computational burden and the need of additional storage space 

since it involves calculation of Jacobian matrices and storage 

of values of previous iterations.  

At any iteration, the function is approximated by a tangent 

hyperplane and the problem is linearized into a Jacobian-

matrix equation [3]. The Jacobian matrix consists of slopes of 

the tangent hyperplanes.                                

                         F(X) =— J. ΔX                                      (7) 

The problem is solved for the correction ΔX - the correction 

solved is then added to the previous value of X, so the new 

updated value is closer to the solution and this iteration 

process continues until an acceptable accuracy is obtained and 

the correction values in subsequent iterations are very small.  

The application of this method to the power system will be 

as follows: 

1. For a PQ bus for which the values of active and 

reactive power are known (Pi and Qi), an initial 

assumption of the solution for Vi and i is made. 
Substituting these values in equation (1) the calculated 

values for Pi and Qi are obtained then the corrected 
values are calculated.  

          𝛥𝑃𝑖 =𝑃𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 − 𝑃𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑                       (8) 

      𝛥𝑄𝑖 = 𝑄𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 − 𝑄𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑                      (9) 

 

These values ΔPi and ΔQi correspond to F(X) in (6) 

and the corrected values for Vi and i can be obtained 
by solving (6). 

2. At the slack bus the values of voltage magnitude and 

angle Vi and i is fixed. Hence, there would be no 
equations pertaining to the slack bus in the Jacobian. 

3. Once the corrected values ΔVi and Δi are obtained, the 
next iteration is carried out by adding these corrected 

values to the previous values of Vi and i and step 1 is 
repeated. This process continues until the corrected 
values are very small pertaining to an accuracy that is 

acceptable. 

4. PV buses have constant voltage magnitude and active 

power at every bus and the iterative process is carried 

out to obtain values for reactive power and voltage 

angle. 

C. Fast decoupled load flow methods.  

In transmission systems there is always an interdependence 

between the voltage angle and active power (-P) and between 
voltage magnitude and reactive power (V-Q). Hence, the 

coupling amongst -P and V-Q is weak and this can be 
exploited in order to make the load flow problem simpler and 

reduce the computational burden on processing software. This 

can be done by solving the -P and V-Q problems separately, 
that is to have two small submatrices for the variables and it is 

the basis for the decoupled load flow methods. The Jacobian 

that is formulated in the Newton-Raphson method as 

mentioned above is simplified by eliminating the elements 

with weak coupling and it is usually about half of the elements 

that are eliminated in this manner. This could affect the true 

convergence of the solution but there is a trade-off between 

solution accuracy and reduced computational burden which is 

acceptable [2, 3].   

III. LOAD FLOW ANALYSIS  

Load flow analysis will be carried out for all three methods 

mentioned above on IEEE-30 bus and IEEE-57 bus test cases 

and the results of each will be discussed in-order to understand 
the advantages and disadvantages of both. 

A. IEEE-30 bus 

The summary of load flow analysis of the ieee-30 bus test 

case, including the total amount of active and reactive power 

generated, consumed and line losses using Gauss-Seidel, 
Newton-Raphson and FDLF methods are presented in Figures 

1-3 respectively. The Gauss-Seidel method was able to arrive 

at the solution in 492 iterations and 0.45 seconds.  

The Newton-Raphson method was able to arrive at the 

solution in 2 iterations and 0.14 seconds.  

The FDLF method was able to arrive at the solution in 7 P-

iterations and 6 Q-iterations with a total of 13 iterations and in 

0.16 seconds. This method takes advantage of the weak 

coupling between -P and V-Q, hence the equations for both 
set of variables are solved separately and the number of 

iterations for the solution also differ.  

 
Figure 1. System summary and load flow analysis using Gauss – Seidel 

numerical method. 

 

 

 
Figure 2. System summary and load flow analysis using Newton-Raphson 

numerical method 



 

 
Figure 3. System summary and load flow analysis using Fast decoupled 

load flow method 

B. IEEE-57 bus 

To study the effects of increasing the network size on the 

performance of numerical solvers, the IEEE-57 bus test case is 

used and the results are compared with those obtained from 

the IEEE-30 bus test case. Figures 4-6 represent load flow 

summary, including the total amount of active and reactive 
power generated, consumed and line losses using the all 3 

methods respectively. The Gauss-Seidel method was able to 

arrive at the solution in 518 iterations and 0.59 seconds 
 

 
 

Figure 4. System summary and load flow analysis using Gauss – Seidel 

numerical method 

 
Figure 5. System summary and load flow analysis using Newton-Raphson 

method 

 

 
Figure 6. System summary and load flow analysis using Fast decoupled 

load flow method. 

 

The Newton-Raphson method was able to arrive at the 

solution in 3 iterations and 0.15 seconds.  

The FDLF method was able to arrive at the solution in 7 P-

iterations and 7 Q-iterations with a total of 14 iterations and in 

0.17 seconds. This method takes advantage of the weak 

coupling between -P and V-Q, hence the equations for both 
set of variables are solved separately and the number of 

iterations for the solution also differ.  



 

C. Convergence of methods 

 
 Figure 7. Convergence of Gauss-Seidel method (IEEE-30 bus) 

Figure 7 describes the convergence of the Gauss-Seidel 

method (IEEE-30 bus) and in-comparison with Figure 8 it can 

be inferred that the slope of convergence is quite gradual in 

this method and the number of iterations are much higher 

when compared to the Newton-Raphson and FDLF methods 

(IEEE – 30 bus) as seen in Figure 8. Figure 8 which describes 

the convergence of Newton-Raphson and FDLF methods, it 

can be seen that the Newton-Raphson method takes lesser 
number of iterations, and from Figure 3 the time taken by the 

FDLF method is 0.16 seconds compared to 0.14 seconds for 

the Newton-Raphson method from Figure 2, hence it can be 

concluded that the per iteration is much higher in the Newton-

Raphson method when compared to the FDLF method. This is 

because the assumptions taken in the FDLF method reduce the 

computational burden hence accelerating the iterative process. 

It should also be noted that there is no significant 

improvement in the overall time taken for the load flow 

analysis between Newton -Raphson and FDLF methods.   
 

 
Figure 8. Convergence of Newton-Raphson and FDLF method (IEEE-30 

bus) 

Figure 9 represents the convergence of the Gauss-Seidel 

method (IEEE-57 bus) to the solution. It can be noticed that 

the convergence is gradual and it takes a total of 518 iterations 

for the method to finish. Figure 10 represents the convergence 

of the Newton-Raphson and FDLF (IEEE – 57 bus) methods. 

It can be noticed that the convergence in Figure 10 is much 

steeper and the solution is obtained in 3 iterations for the 

Newton-Raphson method and 14 iterations (7 – P iterations 

and 7 – Q iterations) for the FDLF method.  

 
                     Figure 9. Convergence of Gauss-Seidel method (IEEE-57 bus) 

 
Figure 10. Convergence of Newton-Raphson and FDLF method (IEEE-57 

bus) 

 

IV. CONCLUSIONS 

A. Results  

TABLE I 

LOAD FLOW RESULTS FOR IEEE – 30 BUS 

Characteristics Gauss-Seidel Newton-

Raphson 

FDLF 

Iterations 492 2 7 P-iterations 

6 Q-iterations  

Total – 13  

Time  0.45 0.14 0.16 

Time/iteration 0.0009 0.07 0.0114 

Convergence Gradual Steep Steep 

Computational 

burden 

Low High Higher than 

Gauss-Seidel, 

Lower than 

Newton- Raphson   

 

 

 

 

 

 

 

 

 

 

 



 

TABLE II 

LOAD FLOW RESULTS FOR IEEE – 57 BUS 

Characteristics Gauss-

Seidel 

Newton-

Raphson 

FDLF 

Iterations 518 3 7 P-iterations 

7 Q-iterations  

Total – 14  

Time  0.59 0.15 0.17 

Time/iteration 0.0011 0.05 0.0121 

Convergence Gradual Steep Steep 

Computational 

burden 

Low High Higher than 

Gauss-Seidel, 

Lower than 

Newton- 

Raphson   

 

B. Discussions 

The comparison of different methods to solve the load 

flow problem yields the following results, the Gauss-Seidel 

method takes less time to perform one iteration when 

compared to the Newton-Raphson method, this is because of 
the fewer number of arithmetic operations involved in 

completing an iteration, as the calculation of the Jacobian 

which is an inherent part of the calculations for the Newton- 

Raphson method. The Newton-Raphson method has a faster 

rate of convergence because of its quadratic convergence 

characteristics. The technique is said to ‘home-in’ to the 

solution.  

For the Gauss-Seidel method the number of iterations 

increase with the network size i.e. higher the number of buses 

in the network, the longer it takes for the method to find a 

solution, this evident from the fact that it takes 518 iterations 

and 0.59 seconds for the IEEE-57 bus test case to find a 
solution compared to 492 iterations and 0.45 seconds for the 

IEEE-30 bus test case. The relationship is not as proportional 

in the Newton-Raphson method as the time taken for the 

IEEE-57 test bus case with this method is 0.15 seconds and 3 

iterations whereas for the IEEE-30 bus case it is 0.14 seconds 

and 2 iterations representing only a marginal increase in the 

computational time. This conclusion holds also for bigger 

networks with a much higher number of buses [2,3].  

The Gauss-Seidel method is relatively easier to implement 

and does not require a lot of memory, whereas the Newton-

Raphson method is complex to implement and does require 
higher memory and processing capacity.  

The Gauss-Seidel method is very sensitive to the selection 

of the slack bus, In some cases the method is also known to 

not converge to a solution hence, making the first step of 

choosing a solution vector very crucial. Inversely, the 

Newton-Raphson method is not so sensitive to the selection of 

the slack bus and almost always converges to a solution.  

The FDLF method in both cases (IEEE – 30 and 57 bus 

test cases) takes more iterations and more time to arrive at the 

solution. It is important to remember that the FDLF method 

takes into account certain assumptions while searching for the 

solution making it as fast as the Newton-Raphson method with 
the advantage of reduced computational needs such as 

memory and processing capability.  

It can be hence concluded that both Newton-Raphson and 

FDLF methods are efficient and can be extended to bigger and 

more complex networks but the computational advantage that 

the FDLF method provides can lead to cost savings. 

Therefore, the selection of a methods depends on the overall 

finances involved in solving load flow issues along with speed 

and accuracy.     

Therefore, this paper has described and compared the 

application of 3 methods in solving the load flow problem for 

2 standard IEEE bus test cases and conclusions arrived at 
commensurate with the objective. 

Future study in this regard is to extend the analysis to 

networks containing renewable energy sources that are 

unpredictable in their output which makes the load flow 

problem more complicated and to include time series analysis. 

The methods can also be executed on other tools and make a 

comparison as to which tools are most efficient for performing 

load flow analysis  
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