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Abstract 

In this paper, three methods to compute the factors main effect on model responses are 

compared. The first one is the improved Fourier amplitude sensitivity test (see [1]). The 

second one is the extension of the previous technique to the method of Sobol. At last, an 

original approach that combines a sampling-based method (Monte Carlo) with iterated one 

dimensional fittings is also investigated. In our works, we show that the three methods are 

able to estimate the factors main effect. On the one hand, the improved FAST and the 

proposed sampling-based strategy are the less expensive methods as they only require one 

single sample set of simulation runs. On the other hand, when factors are correlated or an 

uncertainty analysis is also investigated, the former is the most suited. Besides, it is also 

demonstrated that the estimates of the main effects with the proposed sampling-based strategy 

is more robust and is computationally efficient. 

Keywords : Uncertainty analysis; Sensitivity analysis ; Main effect; FAST; Monte Carlo; LHS 
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1. Introduction 

This paper addresses the problem of uncertainty (UA) and sensitivity analysis (SA) of model 

output. In the context of numerical experiments, UA involves the determination of the 

distribution of the output Y of a given computer model that results from the distributions of its 

uncertain input factors 
1 2

{ , ,..., }X
k

X X X=  whereas SA intends to estimate how much the 

variability of Y is dependent on each of its input factors. Although SA is closely tied to UA, it 

tends to be a more complex undertaking due to the variety of possible measures of sensitivity. 

The sensitivity measure of interest is generally related to the aim of the survey. In particular, 

the estimation of main effects (also named first-order sensitivity index) is the aim of a 

particular problem setting called factors prioritisation (see [2] for details). Indeed, the 

uncertain factor that contributes the most to the uncertainty of a model response has the 

greater main effect. Consequently, it is of high interest to be able to efficiently compute all the 

factors main effects, at low computational cost and so, for any model. This sensitivity index is 

defined by : 

( )( )|

( )

i

i

Var E Y X
S

Var Y
=  

(1)

where Var(.) denotes the variance and E(Y|Xi) is the expectation of Y conditional on Xi. 

In global SA, two classes of methods are available : the deterministic and the stochastic 

approaches. The latter bring the analysis in the spectral domain and are the so-called FAST 

methods [3,4] whereas the former, based on Monte Carlo sampling, are the Sobol’ method [5] 

or the replicated Latin hypercube sampling (LHS) for instance [6]. 

Computing the entire factors main effects with the existing stochastic methods requires as 

much as sampling sets than the number of input factors. On the opposite, with the classical 

FAST method only one sample set is sufficient to evaluate the entire main effects but it has 

other drawbacks such as the choice of the frequency set and a number of simulation runs 
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related to the number of factors. Recently, Tarantola et al. [1] have proposed an improved 

FAST approach that avoids the problem of the choice of the frequency set. In this work, the 

improvement is extended to the stochastic methods. 

Unfortunately, to the authors’ knowledge, deterministic approaches do not deal with 

correlated factors. Besides, SA (computation of the main effects) and UA (assessment of the 

probability density function of the model response) are performed separately by using 

different simulation sets (see [7-8] for instance). We propose in the present paper, an 

approach to compute both the uncertainty of the model response and the factors main effect 

with only one sample set and we demonstrate that it is more efficient than the improved 

deterministic and stochastic methods. 

2. Computation of main effects 

2.1 The improved FAST 

In the classical approach, the parametric curve used in FAST is defined as: 

( )( ) sin
i i i

X s G sω= , 1,2,...,i k∀ =  

where Gi are functions to be chosen by the analyst to get the desired probability density 

function for Xi, s is the parametric variable varying in {-π, π}, and the frequencies ωi are 

selected such that they are free of interferences up to a given order M. The selection of 

frequencies is made using the algorithm described in [9] as function of the input dimension k, 

and the number of simulation runs must be greater than N = 2max(ωi)+1. However, N is an 

increasing function of k and, for large k, the computational cost can be too high to be 

acceptable.  

The improvement of the FAST method goes back to the idea of Satterthwaite [10], who uses 

random balance designs in regression problems, and extends it to the case of sensitivity 

analysis of model output. In the improved FAST approach, all the factors are sampled using 
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the same frequency as follows : 

( )( ) sin
i i i

X s G sω= , 1, 2,...,i k∀ =  

where ω is an arbitrary integer, which is set to 1 for simplicity, si are random permutations of 

uniform sampled values over {-π, π}. Then, the model Y = f(X) is evaluated N times. 

To compute Si the main effect of Xi, the values of model output Y(s) are then arranged such 

that the corresponding values si are ranked in increasing order. With such an arrangement, it is 

like the simulation runs have been performed with only the factor Xi sampling along with a 

periodic curve and the others being randomly sampled. The main effect is computed in the 

same way as for the classical FAST approach by computing the Fourier spectrum. Note that, 

the method requires only N simulation runs as the same set of model output is just re-arranged 

for the computation of each main effect.  

2.2 The improved Sobol’ method 

The method originally proposed by Sobol is based on Monte Carlo sampling [5]. To compute 

the main effect of Xi, the model is first evaluated N times with factors values randomly 

sampled in their range of variation and according to their respective probability function. Let 

Y
(0)

 be the response of the first set of model evaluations. Then, a second set of model 

evaluations is performed by changing all the factors values except for the factor Xi. Let Y
(i)

 be 

the corresponding response. Then, Xi's main effect can be computed as follows : 

(1) (0)

2
1

( )
i

Y Y
Var

S
Var Y

−   = −  

(2)

In this approach, k+1 sample sets are necessary to compute the entire main effects. The 

simulation runs are performed accordingly to the following designs : 

(0) (0) (0) (0)

1 2
( , ,..., )

k
Y f X X X=  and (1) (1) (1) (1) (0) (1) (1)

1 2 1
( , ,..., , , ..., )

i i i k
Y f X X X X X X+− +=  1, 2,...,i k∀ = . 



7 

To reduce the simulation cost to only two sets of simulation runs, a random balance design 

can also be derived. Indeed, the first simulation remains unchanged but the second set is built 

from the first one by permuting the values of each column. We then obtain the following 

sample sets : 

(0) (0) (0) (0)

1 2
( , ,..., )

k
Y f X X X=  and (1) (1) (1) (1) (1)

1 2
( , ,..., ,..., )

i k
Y f X X X X=  

where (1) (0)( )
ii i

X RP X=  and RPi is the random permutation function of Xi's values. In the same 

way as for the improved FAST, the values of model output Y
(0)

 are rearranged with the 

corresponding permutation RPi to compute Si. With such an arrangement, it is like Y
(1)

 has 

been obtained by varying all the factors except the factor Xi as compared to the first sample 

set. Xi's main effect is then computed with the following formula : 

( )(1) (0)

2
1

( )

i

i

Y RP Y
Var

S
Var Y

 −   = −  

(3)

 

2.3 Coupling sampling-based methods with iterated one dimensional regressions 

The improvements proposed above are based upon random permutations of factors values. 

But, such a methodology is inapplicable to models with dependent input factors. Indeed, 

whatever the class of methods employed, the permutations do not preserve the factors 

correlations. Besides, factors prioritisation setting is closely related to UA, but the methods 

discussed above are only suited for SA and are usually not employed to perform UA. 

Such an analysis involves the exploration of a mapping from uncertain factors to uncertain 

outcomes. Several sampling strategies are available, including random sampling, importance 

sampling and LHS. The former is very popular because its efficient stratification properties 

allows for the extraction of a large amount of UA and SA information with a relatively small 
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sample size [11]. The attractive features of Monte Carlo analysis are the extensive sampling 

from the ranges of uncertain factors and that correlated factors can be propagated through the 

model. Unfortunately, with one single simulation set, the quantitative sensitivity analysis tools 

usually employed (standardized regression coefficient, standardized rank regression 

coefficient, stepwise rank regression ...) are restricted and subject to model assumptions such 

as linearity or monotonicity. Given that LHS is the suitable approach for UA, we describe, in 

the following, a strategy to compute all the factors main effects from a single sample set. 

Let us consider the ANOVA representation proposed by Sobol [5] : 

( ) ( ) ( )0 12... 1 2
1

( ) , ... , ,...,X
k k

i i ij i j k k
i j i

Y f f f X f X X f X X X
= >

= = + + + +∑ ∑  

where the summands in the expansion are orthogonal. As a consequence, it is straightforward 

to prove that ( ) 0
E Y f=  by integrating the previous expansion over all variables. In the same 

way, integrating over all variables but Xi, we obtain : 

( ) ( )0
|

i i i
E Y X f f X= +  

that yields to 

( )( ) ( )( )|
i i i

Var E Y X Var f X= . 

The former is the numerator in the definition of the sensitivity index defined in Equation (1). 

As a consequence, if one has an estimate of fi(Xi) then he also has an estimate of Si. We 

propose to approximate fi(Xi) by fitting the model response (in a least-square sense) to the 

input factors individually. Such a one dimensional regression may be polynomial or more 

sophisticated. So, once the simulation runs are achieved from the Monte Carlo sampling 

(LHS), k one-dimensional regressions are built from the model response by successively 

considering one factor at a time. In the case of polynomial regression, the model response is 

fit on a function of the form : 

( ) 2

0 1 2
... M

i i i i i i i iM i
P X a a X a X a X= + + + +  1, 2,...,i k∀ =  where M is an integer and the aij's are 
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the polynomial coefficients to determine. The factor main effect is then computed as follows : 

( )( )
( )

i i

i

Var P X
S

Var Y
=  

(4)

It has to be noted that because Var(Pi(Xi)) is evaluated using the sampled values of Xi, there 

are neither interpolation nor extrapolation problems encountered. The sampling method 

employed in the next sections is the so-called LHS. 

3. Assessment of the methods on an international benchmark : the g-function of Sobol’ 

3.1 Model with eight factors 

We test the performances of the three methods on the g-function of Sobol’. This function has 

been widely used as benchmark for sensitivity analysis (see e.g. [12]). The function is defined 

by : 

( )
1

k

i
i

Y g X
=

= ∏  

where Xi and gi(Xi) are given by 

( ) 4 2

1

i i

i

i

X a
g X

a

− += + , for Xi uniformly distributed between [0,1] and 0
i

a ≥ . 

The values of ai’s determine the relative importance of the Xi’s. For instance, ai = 0 implies 

that the factor Xi is very important; for ai = 1 it is considered important, while for ai = 9 it 

becomes non important and for ai = 99 non significant. The partial variances of the first order 

and the total unconditional variance of the model output are given by 

( )( ) ( )2

1
|

3 1
i i

i

Var E Y X V
a

= = +  ( ) ( )
1

1 1
k

i
i

Var Y V
=

= + −∏  

from which the main effect can be calculated analytically. 

In a first survey, we test the methods on the model with eight factors. Four tests cases are 
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selected : test case A, a very difficult test case for which each factor has the same importance 

with a very weak main effect (0.04), test case B, is also a case where all the factors have the 

same importance but the model is additive (Si = 0.125), in case C, we select the coefficients ai 

as {0, 1, 4.5, 9, 99, 99, 99, 99}, so that only the two first factors are the most important and at 

last, for test case D, we choose factors in random order of importance by setting ai={99, 0, 9, 

0, 99, 4.5, 1, 99}. The analytic main effects Si's and their estimates Si
*
’s are computed with 

the three methods described in section 2. The estimation procedures are replicated r = 100 

times for increasing sample sizes N to test the robustness of the methods. Their performances 

are assessed by comparing the sum of absolute error defined by :  

*

1

k

i i
i

SAE S S
=

= −∑  

The arithmetic means and the standard deviations of the SAE's are plotted against the sample 

size in figure 1; the standard deviations are presented as error bars. Whatever the method 

employed, the estimated indices converge towards the analytic values. But it also highlights 

that the iterated polynomial regressions based method gives better estimates of the main 

effects especially at low sample sizes. Indeed, with this method the SAE's values are 

significantly lower and the error bars narrower, at low sample sizes, in all cases. In general, 

the improved FAST approach performs poorly at low sample sizes. This is due to the fact that 

the estimates for the non important factors are generally biased as reported by Tarantola et al. 

[1]. The improved Sobol’ method performs better than the spectral approach at low sample 

sizes but is less accurate at large sample sizes. One inconvenient feature of the improved 

Sobol’ method is that negative indices can be obtained (not shown). This is inherent to the 

method itself and can be easily understood if one refers to equation (3). 

 

[Insert figure 1 about here] 
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3.2 Performance for large dimensional models  

In a second exercise, we test the ability of the three methods to detect the most influential 

factors of a high dimensional model. In this purpose, we use the g-function by fixing 4 very 

important factors (ai = 0), 4 important factors (ai = 1), 2 non important ones (ai = 9) and 90 

non significant ones. For each method, 10 replicates of the estimates of Si's have been 

obtained at seven different sample sizes (see figure 2). Once again, the efficiency of the 

proposed method is highlighted. Its performances remain unchanged in case of high 

dimensionality problems contrary to the other methods. In particular, it is able to estimate 

accurately the factors main effect at low sample sizes. 

It is also interesting to compare the estimated and the analytical marginal relationship 

between the factor Xi and the model response. The first one is represented by the one 

dimensional polynomial obtained by regression Pi(Xi). Figure 3 shows that the polynomial 

identified for factor X1 performs poorly where the relationship (or its derivative) is 

discontinuous and at the limits of the factor's range of variation. In spite of this lack of 

accuracy, the estimation of the Si's is good. The use of non polynomial regressions (likewise 

an artificial neural network) or piecewise polynomial regressions should lead to better 

accuracy. 

 

[Insert figure 2 about here] 

[Insert figure 3 about here] 
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4. Uncertainty and sensitivity analysis of a building thermal model  

4.1 Aim of the study 

The survey concerns the thermal model of a real test cell that was set at the University of 

Reunion Island (cf. [13]). The studied test cell is a cubic shape building with a single window 

on the south wall and a door to the north. All vertical walls are structurally identical and are 

composed of cement fibre panel and polyurethane. The roof and the floor are also insulated. 

The thermal model is capable to predict the indoor air temperature given the building thermal 

properties and the weather solicitations (outdoor air temperature, solar radiation, wind speed 

and direction). Figure 4 shows a picture of the test cell, and on the left, the weather station 

that provides the solicitations to the computer model. 

The uncertain factors are the thermo-physical properties of the building materials. From the 

knowledge of the factors uncertainty, the uncertainty of the model response (indoor air 

temperature) is estimated. In the same time, to plan future investigations, we also search for 

the factors that mainly contribute to the variance of the model response. We use LHS to 

evaluate the uncertainty of the predicted indoor air temperature and the iterated 1D 

polynomial regressions to identify the important factors. 

 

[Insert figure 4 about here] 

 

4.2 The uncertainty analysis 

The uncertainty assigned to the materials thermophysical properties are assessed by analyzing 

the reference document of the Building Environmental Performance Analysis Club (BEPAC 

[14]) which provides a list of materials properties commonly used in buildings construction. 

We proceed as follows : for each thermophysical property all the values are taken from the 
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database (different values are provided as they come from different sources and 

measurements) and an histogram is plotted to deduce the associated probability distribution 

function (pdf). An example of such a pdf is shown on figure 5. Then, the factors values are 

resampled according to the empirical distribution. A uniform distribution is assumed for the 

factors that are not reported in the document and for which no information is available. The 

factors and their associated distribution are listed in Table 1. 

Five hundred simulation runs were performed by sampling the twenty one factors from a 

LHSs and according their pdf's. The predicted indoor air temperature, a time-dependent 

output, is stored after each simulation run. Generally, to analyse the uncertainty, the 

cumulative distribution function is used. Because the output is time-dependent, such an 

analysis may be cumbersome. So, in this study, the uncertainty of the model response is 

summarized by the 95% two-sided confidence interval. The former is delimited by the 0.025 

and 0.975 quantiles of the model response. In figure 6 are plotted the 95% confidence bounds 

as well as the mean of the predicted indoor air temperature for the third day. In the daytime, 

the amplitude of the interval reaches 3°C whereas in the nighttime it is lower (2°C). 

 

[Insert table 1 about here] 

[Insert figure 5 about here] 

 

4.3 Sensitivity analysis of the indoor air temperature 

Given that the uncertainty interval associated to the output is too large, we investigated the 

factors that contribute the most to it. Such an investigation requires to estimate the factors 

main effect. From the same sample set we calculate the Si's with the method previously 

described in subsection 2.3. For all the factors, the regression is based on a fourth-order 
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polynomial. The effects of the most important factors are plotted in Figure 7 as well as the 

sum of the Si's. The former is close to one meaning that the factors interactions are negligible. 

Only two factors are preponderant during the daytime : the absorptivity of the outdoor 

surfaces and the albedo. This is explained by the fact that they are related to the solar 

radiation. The infiltration rate has a strong importance during the nighttime because of its 

refreshing capacity. The uncertainty of the cement fibre's density has a great impact all along 

the day. Consequently, to increase the reliability of the test cell model some specific 

measurements should be carried out to improve the knowledge of these four factors value.  

 

[Insert figure 6 about here] 

[Insert figure 7 about here] 

5. Conclusion 

In this article, we proposed a comparison of three efficient methods to evaluate the factors 

main effect of computer models. The methods described only require one or two sample sets. 

Two of them are based on random balance designs whereas the last one is based on iterated 

one dimensional regressions. Applications to analytical test cases demonstrated the 

superiority of the former even though some improvements seem possible regarding the nature 

of the regression (only  polynomial regressions were considered in this work). One of its 

attractive features is that coupling with an appropriate sampling strategy, one can perform 

both uncertainty and sensitivity analysis with the same sample set. Another compelling 

feature is that correlations between factors can be accounted for (not shown in the present 

article). 

An application to a real problem allows to highlight the factors that contribute the most to the 

variation of the model response. Such an investigation helps the modellers planning future 

experiments. In particular, to reduce the uncertainty of the model response, an effort must be 
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made to obtain accurate measure of four input factors value : the cement fibre's density, the 

absorptivity of the outdoor surfaces, the infiltration rate in the test cell and the albedo of the 

outdoor ground. 
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Table 1 : List of the factors and their assigned pdf. « Empirical distribution » concerns factors that are listed in [14], in 

brackets are mentioned respectively the minimal, the mean and the maximal values of the variable. U stands for uniform

pdf and N for normal pdf 

Factors Distribution 

Thermal conductivity of polyurethane (W/m.°K) Empirical distribution, [0.02, 0.024, 0.029]  

Density of polyurethane (Kg/m3) Empirical distribution, [24, 31, 37]  

Thermal conductivity of cement fibre (W/m.°K) Empirical distribution, [0.08, 0.287, 0.722]  

Density of cement fibre (Kg/m3) Empirical distribution, [350, 965, 1856]  

Thermal conductivity of heavyweight concrete (W/m.°K) Empirical distribution, [0.6, 0.85, 1.1]  

Density of heavyweight concrete (Kg/m3) Empirical distribution, [1649, 1850, 2100]  

Thermal conductivity of polystyrene (W/m.°K) Empirical distribution, [0.025, 0.036, 0.044] 

Density of polystyrene (Kg/m3) Empirical distribution, [11, 23.2, 41.6]  

Thermal conductivity of aluminium (W/m.°K) Empirical distribution, [200, 209, 230]  

Density of aluminium (Kg/m3) Empirical distribution, [2700, 2728, 2800]  

Thermal conductivity of wood panel (W/m.°K) Empirical distribution, [0.10, 0.15, 0.23]  

Density of wood panel (Kg/m3) Empirical distribution, [530, 624, 800]  

Windows transmittance (-) N(0.8, 0.05) 

Air infiltration rate (vol.h-1) U(0, 4)  

Outdoor albedo (-) U(0.2, 0.4) 

Absorptivity of outdoor surfaces (-) U(0.2, 0.5) 

Absorptivity of indoor surfaces except the floor (-) U(0.6, 0.9) 

Absorptivity of the floor (-) U(0.6, 0.9) 

Indoor vertical surfaces convective heat transfer coefficient (W/m2.°K) U(3, 6)  

Indoor convective heat transfer coefficient of the roof (W/m2.°K) U(5, 7.5) 

Indoor convective heat transfer coefficient of the floor (W/m2.°K) U(0.5, 2.5) 
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Figure Captions 

 

Figure 1 : Assessment of the three methods by application to four analytical test cases. The 

calculation of the eight factors main effect is more precise with the iterated one dimensional 

polynomial regressions approach than with the random balance methods 

Figure 2 : Performance of the three methods on a high dimensional model (100 input factors). 

The calculation of the 100 main effects are replicated 10 times. The errorbar represents the 

standard deviation of the SAE's 

Figure 3 : Scatterplots of the g-function of Sobol versus factor X1 (a1 = 0). The theorical 

marginal relationship between factor X1 and the model response is in dashed line. In solid line 

is the estimated marginal relationship obtained by regressing the model response on a one 

dimensional fourth-order polynomial. With a polynomial approximation some lack of 

accuracy appears at the points of discontinuity of the derivative (X1 = 0.5) and at the limits of 

the interval of variations (0, 1) 

Figure 4 : Picture of the test cell and in the back, the weather station that provides solicitations 

to the model 

Figure 5 : Pdf of the thermal conductivity of the polyurethane extracted from the BEPAC [14]  

Figure 6 : The predicted indoor air temperature and its 95% two-sided confidence bounds 

Figure 7 : Hourly variation of the four most important factors main effect. Some factors are 

important in the nighttime whereas others are preponderant in the daytime. The sum of the 

Si's. is close to one meaning that the relationship between the factors and the output is additive 
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Case D 

Figure 1 : Assessment of the three methods by application to four analytical test cases. The calculation of the 

eight factors main effect is more precise with the iterated one dimensional polynomial regressions approach than 

with the random balance methods 
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Figure 2 : Performance of the three methods on a high dimensional model (100 input factors). The calculation of 

the 100 main effects are replicated 10 times. The errorbar represents the standard deviation of the SAE's 
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Figure 3 : Scatterplots of the g-function of Sobol versus factor X1 (a1 = 0). The theorical marginal relationship 

between factor X1 and the model response is in dashed line. In solid line is the estimated marginal relationship 

obtained by regressing the model response on a one dimensional fourth-order polynomial. With a polynomial 

approximation some lack of accuracy appears at the points of discontinuity of the derivative (X1 = 0.5) and at the 

limits of the interval of variations (0, 1) 
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Figure 4 : Picture of the test cell and in the back, the weather station that provides solicitations to the model 
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Figure 5 : Pdf of the thermal conductivity of the polyurethane extracted from the BEPAC [14]  
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Figure 6 : The predicted indoor air temperature and its 95% two-sided confidence bounds 



25 

50 52 54 56 58 60 62 64 66 68 70 72
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (hr)

S
i (

%
 o

f 
v
a
ri

a
n
c
e
)

Density of cement fibre         

Air infiltration rate           

Albedo                          

Absorptivity of outdoor surfaces
Sum(S

i
)                        

 

Figure 7 : Hourly variation of the four most important factors main effect. Some factors are important in the 

nighttime whereas others are preponderant in the daytime. The sum of the Si's is close to one meaning that the 

relationship between the factors and the output is additive 

 


