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ABSTRACT

Overcomplete representations are currently one of the highly researched areas es-

pecially in the field of signal processing due to their strong potential to generate sparse

representation of signals. Sparse representation implies that given signal can be represented

with components that are only rarely significantly active. It has been strongly argued that

the mammalian visual system is highly related towards sparse and overcomplete representa-

tions. The primary visual cortex has overcomplete responses in representing an input signal

which leads to the use of sparse neuronal activity for further processing. This work investi-

gates the sparse coding with an overcomplete basis set representation which is believed to

be the strategy employed by the mammalian visual system for efficient coding of natural

images.

This work analyzes the Sparse Code Learning algorithm in which the given image is

represented by means of linear superposition of sparse statistically independent events on a

set of overcomplete basis functions. This algorithm trains and adapts the overcomplete basis

functions such as to represent any given image in terms of sparse structures. The second

part of the work analyzes an inhibition based sparse coding model in which the Gabor based

overcomplete representations are used to represent the image. It then applies an iterative

inhibition algorithm based on competition between neighboring transform coefficients to

select subset of Gabor functions such as to represent the given image with sparse set of

coefficients.

This work applies the developed models for the image compression applications and

tests the achievable levels of compression of it. The research towards these areas so far
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proves that sparse coding algorithms are inefficient in representing high frequency sharp

image features. So this work analyzes the performance of these algorithms only on the

natural images which does not have sharp features and compares the compression results

with the current industrial standard coding schemes such as JPEG and JPEG 2000. It also

models the characteristics of an image falling on the retina after the distortion effects of the

eye and then applies the developed algorithms towards these images and tests compression

results.
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CHAPTER 1: INTRODUCTION

1.1 Motivation for the thesis

Claude E. Shanon in 1948 developed the mathematical foundation of information the-

ory, which establishes the limits or bounds called channel capacity for the maximum reliable

information transfer that can be possible in a noisy channel [51]. Since then researches in the

field of communications are directed towards building coding schemes that can achieve the

Shanon limit. In the early 1960’s LDPC (Low Density Parity Check) codes were discovered

by Gallager [52]. But they were almost forgotten until recently revived by the discovery

of turbo codes. It has been proved that this LDPC codes can achieve coding performance

which are just 0.0045 dB away from the Shanon limit [53].

The remarkable feature of the LDPC codes are its sparse connectivity. The codes

were defined to be low density since they are defined based on sparse parity check matrix

[52]. In the field of communications it has been already proved that these LDPC codes

achieves optimal coding performance [53]. So research is directed towards searching whether

the sparse structures or connectivity exists in any other fields ? If so they exist, questions

are raised whether they provides the optimal performance in the respective fields.

It is quiet remarkable that human’s neural system has this kind of sparse connectiv-

ity in upper layers of the brain [3]. So this raises the question, whether this connectivity

achieves optimal way of representing the input information to the brain. There are signif-

icant developments to prove that the human vision system has very close linkage to these
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sparse coding structures [3][4]. This forms the primary motivation for this thesis to analyze

the sparse codings.

In this thesis we try to study the sparse coding structures that are needed to represent

an image to the brain by the vision system. We tried to answer the question whether these

sparse codings are optimal way of encoding images that a typical human vision system can

encounter. We try to apply the sparse coding models and compare the compression results

of it with the existing image compression standards such as JPEG and JPEG 2000.

1.2 Organization of the thesis

In this thesis we aim to compare the sparse coding techniques with the standard

JPEG algorithms for blurred retinal images. It has been known that the quality of retinal

image is much poorer due to the optical imperfections of the eye and also eye motions. This

thesis aims to answer the question whether sparse coding is near optimal way of coding for

blurred retinal images.

JPEG standards including JPEG and JPEG 2000 are the best known practical im-

age compression algorithms. Sparse coding has been known as the best possible technique

adopted in the human vision system to encode retinal images. In his previous work Bruno

showed that with clear images the sparse coding technique performs closely to JPEG but

not JPEG 2000. So we further extend his work in this thesis by comparing the sparse coding

algorithm for blurred retinal images.

The thesis is organized as follows. In chapter 3 we discuss the statistical properties of

natural images which has close relationship to the coding scheme. This chapter also discusses

2



some of the mathematical models that simulates similar kind of images falling on the retina

of the eye after different impairments in the optical part of the eye. It also discusses the

filters such as whitening filter and the effect of point spread functions to simulate the similar

kind of retinal images.

Chapter 4 overviews the current image compression standards JPEG and JPEG 2000.

The compression results of applying these compression techniques for the case of natural

images and also for the retinal images are provided.

Chapter 5 and 6 forms the core of this thesis. In chapter 5, SCL (Sparse Code

Learning) algorithm based on the work by Bruno is investigated in detail. This chapter is

divided into two halves: 1) The first half discusses the training methods to extract the base

functions by learning algorithms. 2) The second half deals in application of the extracted

base functions to represent any given image by sparsely distributed coefficients and also

the compression levels that can be achieved by coding these coefficients are analyzed. The

compression achieved by coding in the above mentioned way is analyzed for both natural

and retinal images.

Chapter 6 discuss the inhibition based sparse coding algorithm in detail. It also

discusses the Gabor and log Gabor filters and its design issues in detail. This chapter

also discusses the inhibition based sparse coding algorithm which is one form of greedy

based sparse coding technique. The compression results achieved by applying the inhibition

algorithm for natural images and retinal images are produced.
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Chapter 7 compares the compression results of the JPEG, SCL, JPEG2000 and in-

hibition algorithms. It also discusses the problems in the sparse coding techniques and also

throws light on the future works required to solve the current problems.

1.3 Contributions

The important contributions from this thesis are discussed below:

1) Detailed comparison of performance of JPEG, JPEG 2000 and sparse coding algorithms

like SCL and inhibition algorithm for natural and blurred whitened and normalized images.

2) Detailed comparison of sparse coding schemes in terms of base functions for natural,

blurred, whitened and normalized images.

3) Implementation of inhibition based sparse coding algorithms and testing the compression

results for natural and blurred whitened and normalized images.
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CHAPTER 2: BACKGROUND LITERATURE

Barlow’s theory states that “The goal of natural vision is to represent the information

in natural environment with minimal redundancy”[1].

The biological motivation behind the theory of efficient sensory coding is the assump-

tion of economy in sensory processing [1][3][4]. It has been proved that if any biological

organism is confronted with sensory inputs of certain properties, evolution and learning will

adjust the organism to these properties such that the efficiency of sensory processing is in-

creased [1][5]. The efficiency in visual neuronal coding means that the neurons becomes

sensitive to individual elements that constitute an image. This implies that the receptive

fields of the neurons should then correspond to the statistically independent structural prim-

itives of natural images. If the number of structural primitives in a patch of natural images

are typically small, this reflects the sparseness structure in neurons that is only few neurons

are active at any given instance [3]. Thus the developmental ideas to prove that our human

vision has close linkage to sparse coding structures forms the motivational idea behind this

thesis.

Over the past four decades a number of attempts have been made to explain the

behavior of cortical neurons. The evidence that the cortical neurons are selective to spatial

frequency as well as orientation directed a number of researchers to suggest that such neurons

must be producing something like Fourier transform and are not performing any feature

detection [6][7]. Here features were assumed to be edges, bars and corners of an image

[6]. But the notion that the visual cortex performs a global Fourier transform is no longer

given serious considerations since the relatively broad spatial-frequency bandwidths and local
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spatial properties of cortical neurons make them totally unsuitable for extracting Fourier

coefficients. Although this lead to some interesting researches in feature or edge detection

due to its effective means to code different images, there is no clear evidence to prove that

cortical neurons can be classified as edge detectors. Also the frequency selectivity of the

cortical cells are identified to be in opposite to the notion of feature detection since there is

less connectivity between frequency selectivity and natural environment.

Field strongly argued that for any code to be efficient, they should be defined only

in relation to the class of images that it is most likely to encounter [1]. Since human vision

system is most likely to encounter natural images, any coding scheme defined must be related

closely to the statistics of natural images. Field also proved in his work that the response

properties of cortical neurons are very well suited for the statistics of natural images [1]. Also

the frequency selectivity allows the images to be represented by a few active cells. There

were arguments developing that the sensors with the tuning of cortical provides the high

probability of giving a large response or in worst case no response at all. But these proposals

are doubtful to fully claim that these behaviors are related to feature detection. These works

did not analyze the statistical behavior of the environment and its relation to the biological

significance. So these proposals failed for further developments.

Field [1] proposed a new approach in coding scheme based on Gabor’s theory of

communication [34] which showed the method to represent time-varying signals in terms of

functions that are localized in both time and frequency. These functions referred to as Gabor

functions have been used to describe the cortical simple cells behavior that extend in space

and time. Field’s work suggested that the code he proposed allows on the average the most
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information to be represented with small number of active cells. Here information is defined

with respect to the variability of the images and not to any specific feature of the image.

This description of the information can be directly related to the redundancy of the images.

Barlow [2] in his work provided a thorough discussion of the relations between the

redundancy and visual codes. Most of the work developed by Field are based on Barlow’s

theories of redundancy.

2.1 Barlow’s redundancy theories

The researches were directed to determine the efficient code for representing visual

information. The analysis was carried out with the base work developed by Barlow’s redun-

dancy theory.

The redundancy in the set of images are defined in terms of n-th order conditional

probabilities of the coefficients [8]. Consider an array of pixels with a range of possible

intensity values. First order statistics relate to the probability of individual pixels. (Eg:

pixel i taking on particular intensity level (m) − p(mi)). There is redundancy in the first

order statistics when the distribution of intensities is not uniform. A non uniform distribution

implies that there is some degree of predictability or order in the intensity values. Second

order statistics refer to the conditional probabilities of pairs of pixels. It is a measure of

the probability that a pixel will take on a particular value given the values of another pixel,

p(mi|nj). Most of the redundancies analyzed only consider the second order with power-

spectrum and autocorrelation function. However higher order redundancy (eg:third order)

may provide significant contribution to the total redundancy of an image. Consider an image

7



consisting of line segments of random orientation, here if there are two neighboring pixels

with same intensity then there will be high probability of a third point with same intensity

along the line. This correlation can be well defined only by third order statistics. The power

spectrum and autocorrelation will not provide any information regarding the third order

statistics. So the aim of the developed code must represent all forms of redundancy [2].

Barlow suggested that the ultimate aim is to reduce the redundancy of the code.

Field [1] discussed in his work the effective ways of coding visual information using

Gabor codes and much developed version of log Gabor codes. These models (Gabor and

log Gabor) however are not aimed to reduce the redundancy of the code [34][35]. The

total number of sensors in representing visual information with these codes remained fixed

and the amount of information represented by the code is constant (for a complete code).

But these codes provided means to convert the higher-order redundancy (correlation between

pair of pixels, triplets of pixels etc) into first order redundancy redundancy (i.e. the response

distribution of the sensors) [9]. Theoretically, the redundancy remains unchanged such that

the visual information is preserved. Field proved that the most efficient way of coding is the

code with most redundant first-order statistics [1]. The next stage of processing can make

use of the first-order statistics by coding only the non-redundant elements (i.e. highly active

neurons). So it is next stage of processing that has the potential for removing redundancy.

2.1.1 Overcomplete representation and sparse codes

Filed [1] in his inspirational work proposed the Gabor and log Gabor code models

to encode the visual information and proved that this way of coding not resembling Fourier
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transforms achieves the best efficiency possible for representing the information. The goal of

his code is not to discard any type of channel or sensor. The coefficients are here matched

to the energy of the image so that on the average any particular coefficient is just as likely

to be active as the other and also no particular choice is favored. Hence there can be no

chance of reduction in the number of free parameters. For any particular image only a subset

of coefficients are active and since the particular active members will vary from one image

to other it is not possible to eliminate any particular type of coefficient [4]. So this code

developed by him represents a good method for transforming the higher-order redundancy to

first order redundancy. Apart from the redundancy discussed that analyzes correlation and

statistics of input, there is one more kind of useful redundancy called over-representing the

information in the stimulus by using more free parameters than are required [6]. This forms

the base idea to represent the visual information using overcomplete basis sets. However

Field’s work proposed only complete code, where the dimensionality or redundancy in the

codes will be equal to the input information. But later developments extended his work

towards overcomplete representations using the same set of log Gabor or Gabor kind of

codes as developed by Field [1]. He proposed in his work that the redundancy infested by

the code can be utilized in later stages to produce a non redundant representation [27]-[29].

If the later stages analyze the outputs of only very active cells (i.e. impose a threshold or

inhibition stages) then redundancy can be reduced. This simple-cell behavior model as to

represent the visual information with over complete representation set and then use the later

stage processing to reduce the induced redundancy forms the core model of research towards

sparse coding [7][8]. There are innumerable ways of developing a overcomplete representation

and there is still no claims as to define the kind of representations happening in visual system.
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However the codes considered such as Gabor and log Gabor have very close resemblance to

cortical cell response properties and also forms the base work for most part of the literatures

developed that analyzes the ways of reducing the redundancy [4].

This leads to the conclusion that overcomplete representation and sparse coding are

the efficient means of coding visual information. In researches so far only two kinds of code

representations involving Gabor and log Gabor codes are analyzed because of their close

proximities towards cortical cell responses and no other better codes were framed so far [9].

In relevance to the above developed theories many researches were directed towards proving

that human vision system is indeed sparse coding. But still there are many issues remain

unresolved by this model. The following section takes a brief look on the sparse coding

models proposed so far in the literature. To illustrates these model, the coding terminologies

must be defined and made common among them and these terminologies are identified in

the next section [9].

2.2 Generative model or image coding framework

An image which consists of m pixels can be modeled as a multivariate random signal x

ǫRm. This image can be generated as a linear combination of n independent random sources

s ǫRn according to:

x = As + v (2.1)

where the matrix A ǫ Rm×n is called the mixing matrix and v ǫ Rm can be considered as iid

(independent, identically distributed) Gaussian noise.

The coding formulation can be expressed such as to encode the image x into a linear expan-
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sion c ǫ Rn such that

x = Bc + r (2.2)

where the columns of B are called code vectors and the residual r is small relative to the

image. The coefficients obtained should be suitable for efficient compression. The coefficients

should be statistically independent to achieve efficient compression. The problem then breaks

down to just the source estimation if the probability density function of the natural images

can be modeled. Even if the statistical properties are properly modeled, there can be infinite

possible linear model that has statistically independent sources which could predict or match

the observed image density. Now the problem of choosing a model arises. The model that

achieves higher compression rates or the model that can show close approximation to human

vision system can be chosen. So the criterion of choosing a model depends on the application

and research interest of different areas.

The sparse coding algorithms that are applied for the image compression follows

the same terminologies. The term coefficients describes the source estimates and residual r

describes the noise estimation in the model and the estimation of mixing matrix constitutes

learning. There are number of literatures worked on learning as well as source estimation

process. This literature review briefly analyzes the existing linear models and also throws

light on the constraints and problems of the model assumed.

The sparse coding methods developed falls into two lines of research: sparse code

learning and matching pursuit.
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2.3 Sparse code learning models

2.3.1 Bayesian formulation

This model [10] forms the base model of sparse code learning that is expanded well

in chapter 5. Here the noise and the source are modeled with some prior densities, then the

density of the image can be obtained by suing simple Bayes rule:

P (s|x) =
P (x|s)P (s)

P (x)
(2.3)

This can be better analyzed by representing this in terms of entropy relation given by:

H(x) = −log(P (x)) (2.4)

H(s|x) = −log(P (s|x)) (2.5)

From the above equation the problem now reduces to estimation of criterion MAP (Maximum

Aposteriori) estimation by which the posterior negative log-density H becomes the objective

function to be minimized. This function can be further simplified by denoting the MAP

estimate of s by ŝ, the MAP criterion can be expressed as

ŝ = argc max H(c|x) (2.6)

The above equation implies that it maximizes the entropy relation by varying the argument.

However the problem now becomes to estimate the entire posterior prior density of

the sources should be estimated by Markov-chain Monte Carlo methods which becomes

practically difficult. By reducing the relation and by assumption of source densities the

Bayesian model is expanded for the spare coding in chapter 5. The next step is to model
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the residual or noise term. They are modeled as iid Gaussian with zero mean. By these

assumptions and reductions the final equation can be written as:

H(c|x) =
R

2σ2
v

+
∑

i

hi(ci) + Co (2.7)

where hi(ci) is the prior log-density of the source

σ2
v is the variance of the noise density

Co is a constant.

R is the residual error or reconstruction error.

There are lot of works towards this model by assuming different source densities and also

noise densities for estimation [9].

2.3.2 Gradient based learning

The algorithm in chapter 5 is based on this gradient learning method [18][20][21].

Here the source densities are smooth such as laplacian and so the objective function can be

optimized by gradient-based optimization. The exact form of the prior density is not known

and how close the hypothetical density matches this actual density determines the efficiency

of these methods. The penalty term used by the algorithm is defined as ĥ(c) to distinguish

it from the actual log-density of the sources.

The gradient of the objective function is:

∇cH =
g

σ2
v

+ ∇c

∑

i

ĥ(ci) (2.8)

where g is the gradient of the reconstruction error.

g =
1

2
∇cR (2.9)
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The problems with this approach is though the error in the source estimate gets spread over

many projections rather than updating the corresponding coefficient.

2.4 Sparse coding methods

2.4.1 Matching Pursuit

Matching pursuit is one of the most influential method on sparse coding which is just

an extension of vector quantization based on iterative greedy strategies [25][26]. Chapter 6

is based on matching pursuit applying with the inhibition method one of the special case of

matching pursuit algorithms.

2.4.2 Orthogonal Matching Pursuit

This is very similar to the matching pursuit. The variations are as follows:

1) Select the coefficients as in matching pursuit and its state is changed from inactive to

active. Truncate the non-selected coefficients to inactive state.

2) The reconstruction error is minimized in the subspace of active coefficients.

Here the iterations are more complex but the objective function is well defined as a weighted

sum of active coefficients [26].

2.4.3 Inhibition method

The inhibition method will be further developed and applied in chapter 6. This is

a special case of matching Pursuit. The matching pursuit algorithm can be generalized by
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updating more than one coefficient per iteration, but by following the constraint that the

updated coefficients corresponds to orthogonal or near orthogonal code vectors. However the

iterations for the matching pursuit is not much more complex than the matching pursuit.

This method provides faster convergence than other matching pursuit algorithms for natural

images in both computational cost and also in number of iterations needed, while the number

of active coefficients for a given reconstruction error are almost the same. The special note

about using this algorithm is that only the inhibition method and the matching pursuit

sparse coding methods has been previously applied towards image compression on natural

images with the same code book.

2.5 Biological significance of sparse coding

The work on analyzing the human vision system and thereby the working model of the

brain from the neural research have imminent proof that responses of simple cells in visual

cortex area V1 are projections of the retinal image (pre filtered by retinal neurons) onto

Gabor like code vectors [2][5]. The degree of overcompleteness of this Gabor representations

is very difficult to estimate since the number of neurons in the V1 exceeds the number of

inputs by a factor of about 500 and also these neurons serve purposes of processing not only

representation of the input. Considering approximately that 70 percentage of the neurons

in V1 are output, it is reasonable enough to believe that V1 representation is overcomplete.

The research works in psychophysics and brain research has some long history of works in

the idea that sparse coding plays an essential role in sensory perception and particularly

visual perception. The evidence that the sparse coding is used in V1 are as follows:
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1) Cortical cells are less active than their retinal inputs, i.e. the distribution of their activity

is sparse [2].

2) Simple cells in V1 are non linearly tuned to their stimuli and cross oriented inhibition

(the nonlinear tuning of simple cells to the orientation of Gabor stimuli). However it cannot

be stated that the representation in V1 is not ideally sparse in the sense that the tuning is

not so sharp that only one simple cell responds to a Gabor stimulus.

The research is still continuing in these areas and it concentrates on to analyze whether

the sparse coding is carried out iteratively. Research has been carried out still in these areas

without any solid proof to prove any hypothesis developed. Research on these areas implies

that the solution to the problem of sparse coding implies solution to the problem of sparse-

code learning but not the vice-versa [9]. There are number of works towards developing

learned codebooks for the natural images. Most of the work produces Gabor like code

vectors.
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CHAPTER 3: STATISTICS OF NATURAL AND BLURRED
IMAGES

The visual coding is significantly influenced by the statistical properties of the images

that it encounters. So this chapter briefs the statistical properties of the natural and blurred

images. Furthermore images that are falling on the retinal regions of the eye are blurred and

the high frequency spatial information are recovered by the brain only by further processing

on corresponding layers. Hence this chapter also discusses the optical distortions which are

primarily modeled using PSF (Point Spread Functions) and whitening filters.

3.1 Statistics of natural images

The images from the natural environment do not consists of random patterns but

consists of images with consistent statistical properties. A knowledge of these statistics can

lead to a better understanding of the coding of visual system.

Image set for computing the statistics consists of 10 natural images of trees, mountains

etc. No attempt was made to select particular type of image, but images was ensured that it

has no artificial objects. Though there are various statistical properties that can be analyzed,

the primary property is the image’s amplitude spectrum. Natural images on the whole appear

to be rather complex filled with various objects and shadows and different surfaces. Amid

this complexity they can be easily distinguished from variety of other class of images. This

difference is best described in terms of the amplitude spectra or power spectra of the images

(square root of amplitude spectrum).
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The two dimensional spectra of these images shows greatest amplitudes at low fre-

quencies and decreasing amplitude as frequency increases. The amplitude falls off quickly

by a factor of 1
f
. Fig.3.6 shows the amplitude spectra averaged across all orientations and

plotted on log-log scale.

3.2 Factors impairing the quality of image falling on the retina

Many factors affects the quality of the image that falls into the retina such as optics,

photo-pigment spectral sensitivities, effective mean absorbed quanta, internal neuron noises,

eye movements, photon Poisson noises etc [30]. This chapter briefs only on the optical

distortions neglecting the effects of other factors.

3.2.1 Point Spread Function

This constitutes the major distortion to the input image. When a dot stimulus was

presented to the eye, the image of a point source will be distributed or spread on the retina.

This effect is mainly due to abberations and diffractions. The optics of the eye at a given

eccentricity can be described by a point spread function, h(x, y). Campbell and Gubisch [31]

measured the point spread function in terms of the foveal line spread function. From the

line spread function a point spread function can be derived and it is related to the pupil’s

diameter. The measured line spread function can be typically approximated by the sum of

two, two dimensional Gaussian function [32][33].

h(x) =
a1

2πa3

exp[
−0.5.x2

a2
3

] +
a2

2πa4

exp[
−0.5x2

a2
4

] (3.1)
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Figure 3.2: Point Spread Function

For a 2 mm pupil the curve produced by Eqn.(3.1) with a1 = 0.684, a2 = 0.587 and

a3 = 2.305 mm fits well to the measured data from Campbell and Gubisch [31]. For a 3 mm
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pupil the coefficients are a1 = 0.417 min, a2 = 0.583 min, a3 = 0.443 min, and a4 = 2.04 min.

Fig.3.1 shows the line spread function for the eye with pupil diameters of 2 mm and 3 mm.

This line spread equation can be used to derive the PSF. Fig.3.2 shows the corresponding

Point Spread Function derived from Eqn.(3.1).

3.2.2 Whitening filter

The blurred images are further passed through a whitening filter to model our anal-

ysis. By applying whitening filter, the image data is sphered by equalizing the variance in

all directions [1]-[3]. Since the amplitude spectrum falls as roughly as 1/f at all orientations

in 2D frequency plane, syphering may be accomplished by filtering with a circularly sym-

metric “whitening filter” with frequency response W (f) = f , thereby attenuating the low

frequencies and boosting the high frequencies so as to yield a roughly flat amplitude spec-

trum at across all spatial frequencies. However it is not wise to boost all the high frequencies

indiscriminately for several reasons: First reason is that the highest spatial frequencies will

be corrupted by noise and effects of aliasing, second the energy presented in the corners of

the 2D frequency domain is an artifact of working on a rectangular sampling lattice, since

there is an effectively higher sampling densities across the diagonal than along horizontal

or vertical directions. For these reasons it is appropriate to cut out the the energy at the

highest spatial frequencies and also in the corners of the 2D Fourier plane by filtering with

a circularly symmetric low-pass filter. Hence an exponential filter with the given frequency

response is used.

R(f) = exp (−
f

f0

)n (3.2)
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Figure 3.3: Whitening filter in frequency domain
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Figure 3.4: Frequency response of whitening filter
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where f0 represents the cut-off frequency (taken as 200 cycles/picture), and n is the

steepness parameter (taken as 4). The steepness parameter is chosen to produce a fairly

sharp cutoff but without being so sharp as to introduce substantial ringing in the spatial

domain. The combined whitening and low pass filter is together used as whitening filter that

has the following frequency response.

R(f) = W (f)R(f) = f exp (−
f

fo
)4 (3.3)

The phase of the filter is set to zero at all frequencies. The profile of the filter is

shown in Fig.3.3 and Fig.3.4

3.3 Analysis of amplitude spectrum

Fig. 3.5 takes a simple natural image and Fig. 3.6 displays the amplitude spectrum

of it. It can be clearly seen that the amplitude drops of with a slope of 1
f
. Fig. 3.7 illustrates

the blurring effect as a result of the application of the PSF as per Eqn. (3.1). Fig. 3.8

displays the amplitude spectrum of this image. It can be seen that the very high frequency

amplitudes are further dropped down and also the spectrum falls off more smoothly than the

natural image spectrum. Fig. 3.9 shows the effect of the application of the whitening filter

to the image and Fig. 3.10 shows its corresponding amplitude spectrum. It can be seen that

the effect of whitening makes the spectrum much flatter till it reaches the cut off frequency

and there is sudden drop off in amplitudes for frequencies greater than cut off frequency.

Fig. 3.11 shows the effect of applying PSF as well as whitening filter and normalizing the

variance of the images. Fig. 3.12 shows the corresponding amplitude spectrum. The effect

of applying PSF as well as whitening filter makes the spectrum much flatter in frequencies
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below cut-off and also smooth transition or drop off for frequencies greater than cut off

frequency.
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Figure 3.5: Natural image
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Figure 3.6: Amplitude spectrum of natural images
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Figure 3.7: Blurred image by PSF

0 0.5 1 1.5 2 2.5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

log10 spatial frequency (cycles/picture)

lo
g

1
0

(a
m

p
lit

u
d

e
)

Amplitude Spectrum

Figure 3.8: Amplitude spectrum of blurred image
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Figure 3.9: Whitened and normalized image
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Figure 3.10: Amplitude spectrum of whitened and normalized image
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Figure 3.11: Blurred,whitened and normalized image
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Figure 3.12: Amplitude spectrum of blurred,whitened and normalized image
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CHAPTER 4: JPEG AND JPEG 2000 COMPRESSION
STANDARDS

This chapter describes the practical JPEG and JPEG 2000 compression standards.

JPEG (Joint Photographic Experts Group) a joint ISO/CCITT committee [41] established

the first international standard for continuous-tone still images, both grayscale and colour.

JPEG 2000 [46]-[49] was later developed by the same group that targeted wide variety of

images for different applications under different settings. It is termed as a compression

standard with interactive imaging. The ultimate goal of the proposal [43] is to have one

unified standard to accomplish different tasks such as lossless compression, low complexity

encoding-decoding, scalability and efficiency. JPEG baseline method can be very efficiently

implemented in hardware and software. It also performs well in high BPP coding rates but

fails to provide flexibility in coding that is very much needed for applications such as internet

transmissions. So JPEG 2000 was developed to provide flexibility in coding based on the

application.

4.1 Introduction to JPEG

The JPEG standard [41] includes two basic compression methods, each with various

modes of operation. A DCT based method is specified for ‘lossy’ compression and a predictive

method for ‘lossless’ compression. A simple lossy technique called Baseline method is by far

the most widely implemented method and the same is implemented in this thesis.
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4.2 Processing steps for DCT based coding

Fig.4.1 illustrates the basic block diagram of JPEG.

Compressed Data StreamEntropy
EncoderFDCT Quantizer

Table
Specifications

Algorithm
Based

DCT based Encoder
8x8 blocks

Figure 4.1: JPEG encoder

Each source image undergoes subimage segmentation or gets divided into blocks of

8x8 gray scale sample images. Each 8x8 block goes through identical processing step and

yields output in the compressed form as data stream.

FDCT and IDCT:

At the input to the encoder, source image samples are grouped into 8x8 blocks, shifted from

unsigned integers with the range of [0, 2p − 1] to signed integers with range [−2p−1, 2p−1]. It

then undergoes forward Discrete Cosine Transform given by Eqn.(4.1)

FDCT:

F (U, V ) =
1

4
C(U)C(V )[

7∑

x=0

7∑

y=0

f(x, y)
cos(2x + 1)uπ)

16

cos(2x + 1)vπ)

16
] (4.1)

where C(u), C(v) = 1√
2

for u, v = 0 and C(u), C(v) = 0 otherwise
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Similarly to convert back to the image spatial domain in the decoder Inverse Discrete

Cosine Transform is used given by Eqn.(4.2)

IDCT:

f(x, y) =
1

4
[

7∑

u=0

7∑

v=0

C(u, v)F (u, v)
cos(2x + 1)uπ)

16

cos(2x + 1)vπ)

16
] (4.2)

4.2.1 Quantization

The output of FDCT gives 64 DCT coefficients for the given sub image block. The

purpose of quantization is to achieve compression representing DCT coefficients with no

greater precision than necessary to achieve desired image quality. Quantization is many-to-

one mapping and therefore it is the principal source of lossyness in DCT based encoders.

When the aim is to compress the image as much as possible without visible artifacts, each

step size ideally should be chosen as the perceptual threshold or just noticeable difference.

These thresholds are also functions of the source image characteristics, display characteristics

and viewing distance. This clearly shows that quantization table or algorithm used or defined

for sharp image will be completely different from the blurred whitened images.

For natural images quantization table mentioned in Table.4.1 is used [42][43]. The

method of quantization is by dividing the DCT coefficients with the given quantization table

and rounding off the resultant values as per Eqn.(4.3)

R(u, v) =
F (u, v)

Q(u, v)
(4.3)

where F (u, v) are the DCT coefficients. Q(u, v) is from the quantization table.
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Apart from quantization based methods, there are also selectivity based algorithms

described in the following sections. This chooses only set of few DCT coefficients and blindly

truncates others to zeros. Since for blurred retinal images there are no standard quantization

tables proposed, the selectivity bases quantization methods are chosen. After quantization

only few DCT coefficients will be left over as most of the coefficients becomes zero which

can be encoded efficiently by source coding techniques.

Table 4.1: Quantization table

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

Other quantization methods are listed as follows:

case 1: A single threshold can be applied to all sub image blocks. The coefficients above this

threshold are selected and below are truncated to zero. This is a very coarse quantization

technique, not able to produce efficient results.

case 2: A fixed number of coefficients are selected based on the zig-zag pattern discussed

earlier. The remaining coefficients are truncated to zero. Here the coding rate is kept

constant which determines the number of coefficients selected.
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case 3: A fixed number of coefficients are selected based on their position and also the

magnitude. However this method produces variable coding rate.

The results section analyzes the RMS coding performance of case 2 and case 3 algorithms.

4.2.2 DC coding and zig-zag sequence

After quantization, the DC coefficients are treated separately from the 63 AC coeffi-

cients. The DC coefficient in a given block is a measure of the average value of the 64 image

samples. Since there is strong correlation between DC coefficients of adjacent 8x8 blocks, the

quantized DC coefficients are encoded by differential encoding method. The DC coefficient

contains significant fraction of the total image energy and hence it should be encoded with

much protection. The AC coefficients are arranged in zig-zag pattern as mentioned in Fig.

4.2. This ordering facilitates entropy encoding by placing low frequency coefficients which

are more likely to be nonzero and high frequency coefficients that are mostly zero in order.

4.2.3 Intermediate entropy coding representation

The coding methods are based on the standards [42] [43] and Huffman codes (given

as Appendix) [44].

In the intermediate entropy encoding stage, each AC coefficient is represented in

combination with the ‘runlength’ of zero valued AC coefficients which precedes it in the

zigzag sequence. Each such runlength/non-zero combination is represented by a pair of

symbols:

symbol 1 symbol 2
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Figure 4.2: DC coefficients and zig-zag pattern of AC coefficients

(RUNLENGTH, SIZE) (AMPLITUDE)

Symbol 1 represents RUNLENGTH and SIZE. Symbol 2 represents the amplitude of the non-

zero AC coefficient. RUNLENGTH is the number of consecutive zero valued AC coefficients

that precedes the non-zero coefficient. SIZE is the number of bits required to encode the

AMPLITUDE in a signed magnitude representation.

RUNLENGTH represents the zero-runs of lengths from 0 to 15. Actual zero runs in

the zig-zag sequence can be greater than 15. So the symbol-1 value (15, 0) is interpreted

as an extension symbol with run-length=16. There can be up to three consecutive (15,

0) extensions before the terminating symbol-1. But to represent the last run of zeros the

special symbol-1 value (0, 0) which means EOB (End Of Block) is used. It can be viewed
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as an Escape Symbol which terminates the 8x8 sample block. Thus for each 8x8 block of

samples the zig-zag sequence of quantized co-efficients are represented as sequence of symbol-

1, symbol-2 pairs. In our case AMPLITUDE codes are represented with 1 to 10 bits and

RUNLENGTH is represented by values from 0 to 15. The intermediate representation for

differential DC coefficient is structured similarly. Symbol 1 here represents SIZE and symbol

2 represents AMPLITUDE. Because the DC coefficients are differentially encoded, so one

additional level must be added to the SIZE and AMPLITUDE table ranging from 1 to 11 is

used.

Symbol 1 Symbol 2

(SIZE) (AMPLITUDE)

4.2.4 Huffman coding

The quantized coefficients for an 8x8 blocks are computed and represented in inter-

mediate symbol sequence. For each 8x8 block the DC coefficient’s symbol 1 and symbol 2

are coded first. For both DC and AC coefficients, each symbol 1 is encoded with a variable

length code from the Huffman table (mentioned in Appendix as AC category codes). Each

symbol 2 is assigned with a variable-length integer code whose length is given in the SIZE

representation.The length of a Huffman code is not known until it is decoded fully, but the

length of a VLI code is stored in its preceding VLC.
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4.3 A simple example for JPEG encoder

This section takes a 8x8 block from an image and goes through all the steps involved

in JPEG compression. Table 4.2 gives 8x8 pixel values of a subimage . We subtract each

pixel value by 128 to create an array of pixels ranging from −128 to 128 (given in Table

4.3). These values are transformed using FDCT which results in Table 4.4. These coefficient

values are now quantized as per Eqn.(4.3) which would result in Table 4.5. For example the

first FDCT coefficient is 394.1250. This value is divided by 16 and rounded off to gives 25

as the quantized result.

Table 4.2: Source image (8x8 block)

196 196 194 189 184 180 177 180

189 186 182 177 175 168 164 166

195 191 183 178 177 172 167 169

188 188 182 177 175 171 165 165

185 188 183 179 176 169 160 158

191 189 185 181 181 174 164 165

181 177 175 166 167 164 154 152

194 191 187 179 176 173 169 166
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Table 4.3: Image sample shifted in scale

68 68 66 61 56 52 49 52

61 58 54 49 47 40 36 38

67 63 55 50 49 44 39 41

60 60 54 49 47 43 37 37

57 60 55 51 48 41 32 30

63 61 57 53 53 46 36 37

53 49 47 38 39 36 26 24

66 63 59 51 48 45 41 38

Table 4.4: FDCT coefficients

394.1250 72.0068 -0.5924 3.8771 1.1250 -7.1492 2.8161 0.6588

21.6568 -4.9030 3.7292 -4.5241 2.8650 -0.0410 -1.5541 -0.9027

11.8748 -2.9182 4.1365 -1.9731 -0.6088 2.6380 1.4812 1.3606

4.8939 -1.1292 -6.8714 -1.7957 0.5513 -1.0840 0.7910 -0.4590

16.8750 -1.0591 -1.0640 -3.5215 -2.6250 1.1884 -1.5888 -1.1737

-4.3393 -2.9301 1.9186 1.0676 -1.0727 -0.1133 1.6931 -0.0256

27.6884 -0.7598 2.2312 -0.2322 1.4699 -0.1273 -0.6365 -0.7127

-6.8293 2.2489 -0.6426 0.4374 -1.0123 -0.1350 0.0260 -0.1880
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Table 4.5: Quantized DCT coefficients

25 7 0 0 0 0 0 0

2 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

By taking the coefficients in zig-zag sequence the data for this 64 element block is

reduced to these set of elements 25, 7, 2, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0.

The DC coefficient 25 is encoded as:

(SIZE) (AMPLITUDE)

(5) (25)

The intermediate symbols are then Huffman encoded. DC and AC coefficients follow

different tables. The amplitude values are coded using 2’s complement representation.

Codes for the data:

DC coefficient VLC (5) (110)

DC coefficient VLI (25) (11001)

AC Coefficients codes

(runlength, size) VLC code (AMPLITUDE) VLI code

(0, 3) (100) (7) (111)
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Table 4.6: AC coefficients intermediate Codes

AC Coefficients Code (RUNLENGTH, SIZE), (AMPLITUDE)

7 (0, 3), (7)

2 (0, 2), (2)

1 (0, 1), (1)

1 (6, 1), (1)

1 (10, 1), (1)

0(EOB) (0, 0), (0)

(0, 2) (00) (2) (10)

(0, 1) (00) (1) (1)

(6, 1) (1111011) (1) (1)

(10, 1) (1111111110110111) (1) (1)

(0, 0) (1010 EOB) (0) (0)

Thus the entropy codes for the given 8x8 block data including EOB code are:

[11011001100111001000111110111111111111011011111010]

It is evident that only 51 bits are required for encoding 64 pixel values.

4.4 JPEG decoder

The entire process of decoding is illustrated in Fig.4.3. The decoder receives bit

streams of 0’s and 1’s. First step is the entropy decoding by using standard Huffman decoders

that are supplied with the table specifications. The bit streams are decoded back to the
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original values and are arranged into 8x8 blocks. Then IDCT is applied to each block given

by Eqn.(4.2). Final stage is to scale shift the image to its original representation of [0, 2p−1].

The compression achieved and the error performance of the system are analyzed using the

following set of equations Eqn.(4.4) - (4.8). The results of the JPEG compression algorithm

are tabulated in chapter 7.

Image

Entropy
Decoder DeQuantizer IDCT

Table
Reference

Table
Reference

Bit Streams

Reconstructed 

Figure 4.3: JPEG decoder block diagram

Compression Ratio =
No of bits required to represent original image

No of bits required for compressed image
(4.4)

Bits Per Pixel(BPP) =
No of bits in the compressed image

Total Number of pixels
(4.5)

PSNR = 10 log

∑n

i=1 f 2
i∑n

i=1(fi − f ′
i)

2
(4.6)

where fi is the original image, f ′
i is the reconstructed image in spatial domain and Fi and

F ′
i are in frequency domain.

PSNR = 10 log

∑n

i=1 F 2
i∑n

i=1(Fi − F ′
i )

2
(4.7)
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RMS =

√∑N

i=1(fi − f ′
i)

2

N
(4.8)

Existing problems of JPEG

1) It is hard to achieve exact BPP coding rates using JPEG encoder.

2) JPEG has poor RMS performance at low BPP coding rates. Low BPP rates are mostly

used for internet and transmission based systems. So poor performance makes it less attrac-

tive for these applications.

3) It supports only full reconstruction rather than region or resolution based decodings. So

all data bits must be recovered for reconstruction.
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4.5 Introduction to JPEG 2000

JPEG 2000 was developed and published as an ISO/IEC standard as well as an ITU-

T Recommendation [45] - [54].

Major improvements over JPEG are listed as follows:

1)Superior low BPP performance:

Many compression algorithms including JPEG, can achieve good RMS performance at low

compression ratio or equivalent high BPP rate but deliver poor performance at high compres-

sion ratio or low BPP. JPEG 2000 can significantly improve performance at high compression

ratios.

2) Progressive transmission by pixel accuracy:

Progressive transmission is highly preferred for transmissions over communication channels.

JPEG 2000 can support progressive transmission in two ways: progression by image com-

ponent and progression by spatial location. For example, the user can select any particular

image component or all components at a particular location or combination of both to trans-

mit.

3) Randomness in code-stream access and processing:

JPEG 2000 offers the code-streams with capabilities to support the spatial random access

called ‘region of interest access’ at varying degrees of granularity. ‘Degree of interest’ is also

supported whereby the quality of the decompressed image can be adjusted for each region

of interest.

4) Robustness to bit-errors:
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JPEG 2000 introduces resynchronization markers and introduce error control coding of

smaller data blocks so that the errors inside the block can be corrected.

4.5.1 Processing steps for JPEG 2000

Fig.4.4 illustrates the JPEG 2000 encoder. The implementation provided in the fol-

lowing sections, however is a simple progressive coding without the features of region of

interest coding. It follows a discrete wavelet transform and the irreversible scalar quantiza-

tion and EZW based bit plane coding source encoder. These were chosen for its simplicity

in implementation as well as the high performance.

Rate Control

Wavelet Transfrom Quantization

TCQ SQ

Entropy Coding

Bitplane Coding context Aritmetic coding

Figure 4.4: JPEG 2000 encoder

To encode an image of size 2J x 2J pixels,we first need to tile the image components

according to their properties and positions. This step is called tiling process which is essential

to achieve progressive transmission and random code stream access. In this thesis since we

are only interested in compression of full images, the tiling process is not considered. After

the tiling process, the images are shifted in scale from its representation of [0, 2p−1] to signed
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integers with range [−2p−1, 2p−1]. Then the image is transformed using wavelet transform. To

perform this transformation the analysing function ψ and minimum decomposition level(D)

must be fixed. The wavelet selected as forward and inverse transforms affects directly the

computational complexity and indirectly the compression rates and image reconstruction

capabilities. The most widely used wavelets are Daubechies and bi-orthogonal filters. In

this thesis, we select Daubechies 9-7 filters listed in Table 4.7,4.8. The following sections

describe the wavelet transforms, quantization and coding in detail.

4.5.2 Wavelet transform

The scale shifted image of size 2J x 2J is passed through the subband coding structure

as described in the Fig.4.5. As a first step, this image is convolved with filters h0(m) and

h1(m) and downsampled along the rows to yield a pair of 2
J
2 x 2J array. Now this array is fed

to the pair of decomposition filters h0(n) and h1(n) and they are convolved and downsampled

along the columns. The decomposition filter coefficients are shown in Table 4.7. Repeating

this procedure will yield a set of four 2
J
2 x 2

J
2 arrays called LL1,HL1,HH1 and LH1. Inside

these arrays the maximum energy is packed in the LL1 array called the approximate of the

image. The remaining three arrays contain main features of the image in Vertical (LH1),

horizontal (HL1) and diagonal (HH1) aspects. These four arrays are arranged into a single

2J x 2J matrix as shown in Fig 4.7. This is called the first level decomposition in which

the given image is broken down into a set of approximate, horizontal, vertical and diagonal

coefficients. Each of them has reduced resolution than the original image. To perform the

second level decomposition the approximate array (LL1) is fed back to the same subband
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coding structure which results in four 2
J
4 x 2

J
4 arrays called as LL2, HL2, HH2 and LH2.

Repeating this process, we can obtain third and fourth levels of decompositions. In practice,

we can achieve significant improvement in compression ratio at the second and third levels,

but the improvement is diminished after four or more levels and hence we consider only three

levels of decomposition in this thesis. Fig.4.7 illustrates the two level decomposition process

and Fig.4.6 illustrates the two level decompositions coefficients of the original image Fig.6.8.

Fig.4.8 illustrates the iterative reconstruction process to get back the original image from

decomposed coefficients.

Table 4.7: Decomposition filters

Filter Filter Coefficients

ho(m) 0 0.02674 -0.01686 −0.07822 0.26686 0.60294 0.26686

−0.07822 -0.01686 0.026748

h1(m) 0 -0.09127 0.05754 0.59127 -1.11508 0.59127 0.05754

-0.09127 0 0
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Table 4.8: Synthesis filters

Filter Filter Coefficients

ho(m) 0 -0.0912 -0.057543 0.5912 1.1150 0.5913 -0.5913

−0.0913 0 0

h1(m) 0 -0.0267 -0.0168 0.0782 0.2668 0.0782 -0.0168

-0.0267 0 0

Downsample along columns

ho(m)

h1(m)

ho(n

h1(n)

)

ho(n

h1(n)

2

2

2

2

2

2
Image

Input

HH Diagonal

(512 x 512)

(256 x 256 )

(256 x 256 )

(256 x 256 )

(256 x 256 )

Filter

Filter

LL Approximate

LH Vertical

HL Horizontal

Downsample along rows

Figure 4.5: Sub band coding method

4.5.3 Quantization

This section discusses the scalar quantization method. It is very important to analyze

the genealogy relationship of the coefficients such that they can be grouped efficiently for

coding and also to determine the quantization levels.

Genealogy (‘parent-child’) relationship among the coefficients from sub bands of the

same orientation are essential to determine the quantization levels [54] [55]. Fig.4.9 explains
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LLInput
Image

(512 x 512)

 HL

HHLH

Diagonal

First level
Second Level

Approximation Horizondal

Vertical

Figure 4.6: Multiresolution decomposition

Figure 4.7: Two level decomposition of an image

the genealogy relationship diagrammatically. Each coefficient in HLd is parent of 4 children

in the sub band HLd−1. ‘D’ is the total number of decomposition levels used in the transform.

These relationship are same for the following LHd, HHd sub bands.

Similarly this relationship holds for each d = 2, 3, ...D. The coefficients in the highest
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Synthesis Filters
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Figure 4.8: Reconstruction of sub band coding

HL3

HH1LH1

HL1

HH2
LH2

HL2
HH3

LL3

LH3

Figure 4.9: Genealogy of sub band coefficients (3 levels of decomposition)

frequency sub bands (d=1) have no children. The coefficients in the lowest frequency sub
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band LLD have only 3 children comprised of single coefficient at the same spatial locations

in the HLD, LHD and HHD sub bands.

The ‘descendants’ of a coefficient consists of all children, grandchildren and great-

grandchildren etc. In general any coefficient in the sub band HLD, LHD and HHD sub

band has 4 children, 16 grandchildren and 64 great-grand children etc. Thus each coefficient

has total number of descendants given by Eqn.(4.9)

4 + 42 + ... + 4d−1 =
4d − 4

3
(4.9)

Similarly each coefficient in LLD has 3 children, 12 grandchildren and 48 great-grandchildren

for a total of 4D − 1 descendants.

This section proceeds on to discuss the quantization level determinations. The basis

of quantization comes from the fact that most of the image energy is concentrated into only

a few transform coefficients. For wavelet sub band transform the highest energy coefficient

resides in the lowest frequency sub bands. In Fig.4.7, it can be clearly seen that the LL2

sub band which looks similar to the input image has the maximum energy while other sub

bands mostly has near zero coefficients. The EZW algorithm also relies on the fact that if

a coefficient is small in magnitude then the coefficients corresponding to the same spatial

location in the higher sub bands will also tend to be smaller.

Since the descendants of a small coefficients will also be small, they are compared to

a series of thresholds, Tk, k = 0, 1, ..., K −1. For coding purposes, the thresholds of the form

Tk = To2
−k are considered where To must satisfy the follwing:

|y|max

2
< To ≤ |y|max (4.10)
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|y|max

3.5
< To ≤

|y|max

2
(4.11)

Here |y|max is taken as the maximum magnitude of all the coefficients of all the sub bands. For

blurred and whitened images after simulations the quantization level values are determined

given by Eqn.(4.11).

A particular coefficient y = y[i, j] is said to be significant with respect to Tk if |y| ≥ Tk

or equivalent notation can be:

|y|max

TK−1

≥
Tk

TK−1

(4.12)

By considering that the Tk

TK−1
is an integer, then y is significant top Tk if and only if:

|q| ,
|y|

TK−1

≥ 2K−k−1 (4.13)

So it can be considered that value of ‘q’ is the quantized coefficient using a step size

value of TK−1 = 2−(K−1)To and also the ‘K’ bits are sufficient for coding ‘q’. Let the binary

representation of ‘q’ can be given as:

q = s, q0, q1, ..., qK−1 (4.14)

From Eqn.(4.12), it can be concluded that the value ‘y’ is significant if and only if

the magnitude of its quantized index is significant with respect to 2K−k−1 or equivalently if

atleast one value of the q0, q1, ..., qk is 1.

4.5.4 Entropy encoding

This thesis implements bit plane coding based Embedded Zero tree Wavelet coding

and Huffman coding of the EZW coded symbols. From the quantized results, it is proved
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that the value of ‘q’ becomes significant in the bit k′. It implies that:

qk′ =






1 if ∀k > k′

0 ∀k < k′

(4.15)

The first bit qk′ is called the ‘significance bit’ of ‘q’. All sequences following this are

called the ‘refinement bits’.

The algorithm of EZW based bit plane coding is the entropy coding used to encode the

quantized coefficients. Consider the size of the original image to be of N X N , where N = 2n

and also n > D. This image is transformed with the D levels of a dyadic tree-structured sub

band transform as on Fig.4.9. This transformation will yield 3D + 1 subbands of transform

coefficients. Each of the coefficient is then replaced by the index (in sign magnitude form)

resulting from quantization with step size TK−1 = To2
−(K−1), where To is selected based on

Eqn.(4.10). The resulting N ×N array of integers is then ‘sliced’ into K +1 bit planes. The

first such plane consists of sign bit of each index, denoted by s[i, j] where i = 0, 1, 2..., N −1.

The next plane consists of all the MSB’s of each magnitude denoted by qo[i, j] and next plane

consists of q1[i, j] and so on. The sign bit of a particular index is coded with the significance

bit of that index. This can be explained as the sign bit s[i, j] is coded with the qk′ [i, j] where

qk′ [i, j] = 1 and qk[i, j] = 0 for all k < k′.

Each of the magnitude bit-planes are coded in two passes. The first passes the codes

all refinement bits, while the second pass codes everything else (all the bits that are not coded

in the first pass). This can be illustrated as the first pass codes a bit for each coefficient

that is significant (due to its significance bit have been coded in a previous bit-pane. This is

called ‘refinement pass’ since all the bits coded in this pass are refinement bits. The second

50



pass codes a bit for each coefficient that is not yet significant. This is called ‘significant

pass’ since the a 1 coded in this pass indicates a coefficient becoming newly significant. The

refinement pass was called the ‘dominant pass’ since the significance pass is the first to result

in coded data and determines which coefficients are visited in the refinement(subordinate)

pass of subsequent bit planes.

Significance pass:

In the significance pass each insignificant coefficient is visited in the raster order (left-to-

right) and (top-to-bottom), first with LLD, then with HLD, LHD, then HHD, then HLD−1

and so on up to and including HH1. Coding is done using 4 alphabets:

1) POS= Significant Positive. This symbol is equivalent to a 1 followed immediately by

a corresponding ‘positive’ sign bit.

2) NEG = Significant Negative. This symbol is equivalent to a 1 followed immediately

by a corresponding ‘negative’ sign bit.

3) ZTR = Zero Tree Root. This symbol indicates that the current bit of a particular

coefficient is 0 and the corresponding bit in all its descendentats will also be zero.

4) IZ=Isolated Zero. This symbol indicates that the bit is 0 but atleast one of its descen-

dent has a corresponding 1 bit.

The three highest frequency subbands HL1, LH1, HH1 have no children. So while

coding bits from these subbands, the ZTR and IZ symbols are replaced by single Z symbol.

As the scan of insignificant coefficients progresses through subbands, any bit known already

to be zero is not coded again. Also for the purpose of determining is a bit is a zero-tree

root, only insignificant descendents are examined. Similarly the refinement bits of significant
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descendants are treated as if 0 for the purpose of ZTR formation.

Refinement pass:

In this pass, a refinement bit is coded for each significant coefficient. A coefficient is sig-

nificant if it has been coded POS or NEG in a previous bit plane. Its current refinement

bit is simply its corresponding bit in the current bit plane. The order by which significant

coefficients are visited during the refinement pass is: First by magnitude, Second by raster

within subbands in order LLD, HLD, LHD, HHD, HLD−1,... HH1.

Now let us go through a simple example to describe the EZW coding process. Here

to explain the above mentioned coding procedure small sub image of 8 x 8 sample its taken.

It is initially transformed to a 3 level dyadic subband decomposition. It is then quantized as

explained in the above section with a series of threshold values each representing a particular

sub band. Fig.4.10 represents the quantized coefficients.

Significant pass of q0:

LH1

61 −33

−31 22

1049

14 −13

−8 −6

15 12 2

−14 7

−11

7 13 −11 6

2 5 7 −1

4 −6 3 9

4 −2 3
2

−5 9 −1 46

3 0 −3 2

2 −3 6 −4

5 11 4 6

4 6 −2 2

3 −2 0 4

3 6 3 6

0 3 −4 4

LL3

HL3

LH3
HH3

HL2

HH2LH2

HL1

HH1

Figure 4.10: Quantised coefficients of a 3 level dyadic decomposition

Coding process begins with the significant pass through q0. The single value in the LL3
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Figure 4.11: Bit plane Slicing

coefficient has a value of 1 and also corresponding sign bit is positive. So the first code

symbol is POS. Similarly the HL3 of the q0 bit is coded as NEG. The single bit in LH3 is

coded as IZ since the corresponding bit is zero but it has a non-zero descendent in LH1 of

the q0 bit plane. The bit in HH3 is coded as ZTR indicating it and all its descendants are

0. It can also be noted that no further coding of HH2, HH1 will be done for q0 bit plane.

So the code for the first level sub band is:

POS, NEG, IZ, ZTR

Proceeding similar way to the HL2 the first bit is coded as POS while the other three bits

are coded with 3 ZTR symbols. Similarly LH2 is coded as ZTR, IZ, ZTR, ZTR. HH2 is

already coded with all zeros and so it is skipped. Proceeding similar way to the sub band

HL1 it can be noted that out of 16 coefficients in this sub band, 12 has been already coded

as zero by the zero tree from the HL2. The four remaining bits are coded with Z, Z, Z, Z.

Similarly there are only 4 uncoded bits in the LH1, they are coded as Z, POS, Z, Z. Thus

the code symbol for the ‘Significant Pass’ of the q0 bit plane is:

POS, NEG, IZ, ZTR - From level D

POS, ZTR, ZTR, ZTR, ZTR, IZ, ZTR, ZTR- From level D-1
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Z, Z, Z, Z, Z, POS, Z, Z - From level 0.

Refinement Pass:

By the Significant pass, there are four coefficients known to be significant.

Specifically q[0, 0], q[0, 1], q[0, 2], q[4, 3]. The code symbol for this pass is:

q[0, 0], q[0, 1], q[0, 2], q[4, 3] = 1, 0, 1, 0.

Significant pass of q1: This codes all the remaining bits left from the previous refinement

pass. So the codes are:

NEG, POS

ZTR, ZTR, ZTR, ZTR, ZTR, ZTR, ZTR, ZTR, ZTR, ZTR, ZTR

Z, Z, Z, Z

Refinement pass of q2:

The q1 significant pass has added two more significant bits (q[1, 0] and q[1, 1]). Here first

the coefficients in the follwing order |q4 = 3|, |q4 = 2| and |q4 = 1| are coded. Thus symbols

coded in the refinement pass are:

q2[0, 0], q2[0, 2], q2[0, 1], q2[4, 3], q2[1, 0], q2[1, 1] = 1, 0, 0, 1, 1, 0.

Thus the coding procedures follows with alternating significant and refinement pass till it

reaches the bit plane depth.

Thus the EZW coding codes the given coefficients into series of symbols in the sig-

nificant pass and group of bit in the refinement pass. These symbols can be coded using

a Arithmetic encoder or by simply assigning Huffman codes based on the probability of

occurrence of each symbols. Here we use Huffman codes for encoding the symbols.
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The compression results by applying the JPEG 2000 encoding methods for natural

and blurred images are explained in chapter 7.
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CHAPTER 5: SPARSE CODING OF IMAGES

This chapter analyzes the Sparse Code Learning algorithm [20]-[22]. This chapter be-

gins by introducing the mathematical representations needed for sparse coding and explains

in detail the sparse code learning algorithm. This chapter is divided into two stages: 1)

Training the SCL algorithm for obtaining the base functions. 2) Applying the trained bases

for compressing the images.

5.1 Mathematical representation

5.1.1 Image series expansion

An image can be better analyzed [55] as linear combination of expansion functions

given by the following Eqn.(5.1):

f(x) =
∑

k

αkϕk (5.1)

Here k is an integer index of the finite or infinite sum, the αk are real valued expansion

coefficients and the ϕk are real valued expansion functions. If the expansion is unique that is

there is only one set of αk for any given f(x), then ϕk(x) are called the basis functions and

the expansion set ϕk(x) is called a basic for the class of functions that can be so expressed.

The expressible functions form a function space that is referred to as the closed span of the

expansion set denoted by Eqn.(5.2):

V = Spank(ϕk(x)) (5.2)

For any function space V and corresponding expansion set ϕk(x), there is a set of dual

functions denoted by ϕ′
k(x) that can be used to compute the αk coefficients for any f(x)εV
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by Eqn.(5.3):

αk = 〈ϕ′
k(x), f(x)〉 =

∫
ϕ′∗

k (x)f(x)dx (5.3)

Here * represents the complex conjugate operation. Depending on the orthogonality of the

expansion set, this computation takes on the following three forms.

Case 1:

If the expansion set forms an orthonormal basis for V, then

〈ϕj(x), ϕk(x)〉 = δjk

δjk =






0 j 6= k

1 j = k

the basis and its dual are equivalent. That is, ϕk(x) = ϕ′
k(x).

Case 2:

If the expansion functions are not orthonormal but are an orthogonal basis for V, then

〈ϕj(x), ϕk(x)〉 = 0 if j 6= k

The basis functions and their duals are called biorthogonal.

〈ϕj(x), ϕ′
k(x)〉 =

δjk =






0 j 6= k

1 j = k

Case 3:

If the expansion set is not a basis for V, but supports the expansion, it is a spanning set in

which there is more than one set of αk for any f(x) ∈ V . The expansion sets and their duals

are called Overcomplete or redundant.
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They form a frame in which some A > 0, B < ∞ and f(x) ∈ V .

A‖f(x)‖2 ≤
∑

k

|〈ϕk, f(x)〉|2 ≦ B‖f(x)‖2

The overcomplete set explained forms the main coding interest. When the number of code

elements is greater than the effective dimensionality of the input space it is called over-

complete representation. Here the basis functions are non-orthogonal and not linearly

independent of each other. So coding challenge is to sparsify the code that is to select

those basis functions necessary for representing given input. This also implies that the input

-output relation is not purely linear.

5.1.2 General coding model

The general form of coding strategy is to apply a linear transform such as DCT or

Wavelet transform as already discussed by taking inner product of the image, I(~x) with a

set of spatial weighing functions ψ as per Eqn.(5.4):

bi =
∑

~xj

ψi(~xj)I(~xj) (5.4)

~xj denotes the discrete spatial position within the image. The output of the transformation

is represented by bi. In matrix notation it is represented as Eqn.(5.5):

b = WI (5.5)

The JPEG and JPEG 2000 based compression are based on this transformation. The matrix

W is invertible and is chosen so that the transformation b satisfies certain criterion like

sparseness, decorrelation etc.
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5.1.3 Generative image model - probabilistic approach

The sparse coding strategy is based on using a probabilistic structure to capture the

image structure [21]. Here images are represented as linear superposition of basis functions.

The basis functions are adapted so as to best account for the image structure in terms

of statically independent events. The probability distribution of these events are sparse

meaning that a given image can be represented in terms of small number of basis functions

chosen out of a larger set.

The alternate way of coding (different from Eqn.(5.4)) is to represent the image in

terms of a linear superposition of basis functions φi(~x) mixed together with the amplitudes

ai given by Eqn.(5.6):

I(~x) =
∑

i

aiφi(~x) (5.6)

The basis functions φi(~x) are chosen such that they form an overcomplete representation of

the given input image. The coefficients ai are calculated for each image. The choice of the

basis function φi becomes very important such that it should best capture the independent

structures in images. Fig.5.1 represents this structure.

5.2 Sparse coding algorithm

The sparse coding algorithm is based on the Sparse Code Learning algorithm proposed

by Bruno [21]. Based on the generative model [20], the given problem is reduced to determine

the basis function that can best account for the structure in images in terms of sparse

statistically independent events. The aim is to match, as closely as possible the distribution
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Figure 5.1: Generative image model

of images arising from the linear image model given by P (I|φ) to the actual distribution of

images in nature P ∗(I). The coefficients ai are considered to be sparsely distributed, which

means the distribution has more number of zeros with extending tails. The problem now can

be interpreted as analyzing the distribution of the image when the coefficients are assumed

and how to make it resemble the actual distribution of the images. This is the challenge

in sparse coding techniques, where the basis functions are trained and adapted, so that the

coefficients needed to represent the image structure follows sparse distribution and also the

generated image matches with the real world distribution of the images.

The probability of an image arising from the model is given by Eqn.(5.7)

P (I|φ) =

∫
P (I|a, φ)da (5.7)
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The probability of an image arising out of particular choice of coefficients, P (I|a, φ)

expresses the uncertainty or level of noise in the imaging process. Consider the noise to have

Gaussian distribution such that noise added is Additive White Gaussian Noise (AWGN). So

the image model can be given by Eqn.(5.8)

I(~x) =
∑

i

aiφi(~x) + v(~x) (5.8)

The probability of an image arising from particular choice of coefficients a, is given

by Eqn.(5.9)

P (I|a, φ) =
1

ZσN

e
− (|I−aφ|)2

2σ2
N (5.9)

|I − aφ|2 =
∑

~x

[I(~x) −
∑

i

aiφi(~x)]
2

where σ2
N is the noise variance and ZσN

is the normalizing constant.

Since the basis function is overcomplete there will be a infinite number of a’s to represent

the given image. So the distribution P (I|a, φ) takes the form of Gaussian ridge along the

line where I = aφ.

The sparseness is introduced in the distribution of coefficients. Statistical independence is

incorporated by specifying P(a) to be factorial distribution in ‘ai’.

P (a) =
∏

i

P (ai) (5.10)

Thus the probability of any state ‘a’ of the coefficients is simply given by the product of

individual probabilities of each component ‘ai’. The sparseness is incorporated by shaping
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the distribution of each ‘ai’ to be uni-modal and peaked at zero with heavy tails. This

distribution can be given by:

P (ai) =
1

Zβ

e−βS(ai) (5.11)

where function S determines the shape of the distribution and β controls the steepness. Zβ

is Normalizing constant.

Assume β = 1, S(x) = log(1 + x2). This corresponds to cauchy density for the prior that

has the sparse shape.

To determine the matching of the model with the real world distribution of images,

log likelihood or Kullback-Leibler divergence between the two distributions are taken.

KL =

∫
P ∗(I) log(

P ∗(I)

P (I|φ)
)dI (5.12)

This measures the average information gain per image drawn from P ∗(I), for judging in

favour of the image being drawn from P ∗(I) as opposed from P (I|φ). The value of KL

will be zero if and only if the two distributions are equal. If the difference between the two

distribution are more, then the value of KL will be greater. So the aim is minimize the value

of KL. Minimizing KL can be interpreted as maximizing 〈log(P (I|φ))〉 since P ∗(I) is fixed

and also by:

〈log(P (I|φ))〉 =

∫
P ∗(I) log(P (I|φ))dI (5.13)

Thus the goal of learning is to find a set of φ that maximizes the log-likelihood of the

images under a sparse, statistically independent prior.
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5.2.1 Learning or training

The problem is to determine the learning set of basis functions φ for the image model

that best accounts for image in terms of sparse, statistically independent components [18]-

[20]. The goal as described in probabilistic framework is to find a set of bases, φ∗, such

that

φ∗ = arg maxφ〈log(P (I|φ))〉 (5.14)

The evaluation of P (I|φ) requires integrating over all possible states of ‘a’ which makes

it intractable and difficult to implement. So assume that the function inside the integral

P (I, a|φ) = P (I|a, φ)P (a) has a peaked maximum in a-space. So this approximates the

relation and by evaluating P (I, a|φ) only at its maximum, the expression reduces to find φ∗

such that it becomes as Eqn.(5.15).

φ∗ = arg maxφ〈maxa log(P (I|a, φ)P (a))〉 (5.15)

In order to analyze the effects of this approximation, rewrite the objective equation

in energy function framework given by Eqn.(5.16)

E(I, a|φ) = − log(P (I|a, φ)P (a)) (5.16)

So Eqn.(5.15) can be restated as Eqn.(5.17),Eqn.(5.18)

φ∗ = arg minφ〈minaE(I, a|φ)〉 (5.17)
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E(I, a|φ) =
∑

~x

[I(~x) −
∑

i

aiφi(~x)]
2
+ λ

∑

i

S(ai) (5.18)

This equation is obtained by using the expressions for P (I|a, φ) and P (a) from equa-

tions Eqn.(5.9),Eqn.(5.10),Eqn.(5.11) and by substituting λ = 2σ2
Nβ.

The function to be minimized E(I, a|φ) is now reduced to sum of two terms: the

first term computes the reconstruction error that forces the φ to span the input space and

the second terms handles the coefficient activities that makes it sparse. E is minimized in

separate phases, one nested within the other. The inner phase minimizes E with respect to

ai for each image, while keeping φi constant. The outer phase over many image presentations

E is minimized with respect to φi.

The inner loop minimization over the coefficients ai is performed by iterating until

the derivative of E(I, a|φ) with respect to ai Eqn.(5.19) becomes zero. For each image the

ai are determined by solution to the differential equation.

ai =
∑

~x

φi(~x)r(~x) − λS
′

(ai) (5.19)

where r(~x) is the residual image given by Eqn.(5.20)

r(~x) = I(~x) −
∑

i

aiφi(~x) (5.20)

Thus Eqn.(5.19) makes ai to depend on summation of two terms. The first terms

takes a spatially weighted sum of current residual image using the function φi(~x) as weights.
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The second term applies a non-linear inhibition on ai that pushes its activity toward near

zero values making it sparse.

The outer loop minimization over the φi is accomplished by simple gradient descent.

This gives rise to the learning rule given by Eqn.(5.21)

∆φi(~x = η〈air(~x)〉) (5.21)

where η is the learning rate. φi are updated by learning between the ouputs computed

for each image ai and the residual image r(~x). By this method the φi will grow without

bounds. To prevent this, the L2 norm of each basis function given by Eqn.(5.22),Eqn.(5.23)

is separately adapted such that the output variance of each ai is held at appropriate level.

l2i =
∑

~x

|φi(~x)|2 (5.22)

lnew
i = lold

i [
〈a2

i 〉

σ2

goal
]
α

(5.23)

where σ2
goal is the desired variance of the coefficients.

Thus the algorithm can be interpreted as that on each image presentation the gradient

of ‘S’ sparsifies the distribution activity by differentially reducing the value of low activity

coefficients than the high activity coefficients. The φi will then learn on the error induced

by this sparsification process and adapt itself such that it results in a set of bases that on

reconstruction with the sparse coefficients will result in minimum mean square reconstruction

error. When the basis set is overcomplete and non-orthogonal, the effect of sparsification is
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to choose which bases are most effective for describing a given image structure. Thus the

system tries to infer which bases are most appropriate for describing a given image.

5.3 Simulation methods

The datas for training to get the base functions were taken from natural image set.

These images are blurred and whitened as already explained. The datas for training were

chosen from the image set by randomly selecting a sub image of size 8 x 8. The pixels in

the corner of the image are avoided. Initialize the base by taking a random value of 64 x 64

matrix and then normalizing it. The ai co-efficients are computed using Eqn.(5.24)

ai =
∑

−→x

φi(−→x )I(−→x ) (5.24)

Iterate the above equation using conjugate gradient method [22], halting after 10

iterations or whenever there is very slight changes in the ai coefficients. The set of base

functions was updated according to Eqn.(5.21),Eqn.(5.23) based on averages computed every

100 image presentations. The learning rate parameter η was initially set to a higher value

and then slowly decreased as the number of iterations increases and then finally reduced

to 1.0. The rate parameter for the gain adjustment α was set to 0.01 and target output

variance σ2
goal was set to variance of the image pixels. The form of sparseness introduced

was S(x) = log(1 + x2). A stable result will be obtained after iterating for around 300 000

image samples. The basis functions obtained for different imagesets are shown in Fig.5.2,

Fig.5.3, Fig.5.4 and Fig.5.5. It can be clearly seen that the basis functions are not properly

trained or evolved to definite structures for both the case of natural and blurred images.
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For whitened images and blurred whitened cases, we can clearly see that the base functions

typically looks like log Gabor functions varying in orientations.

Figure 5.2: Learned bases function for natural images

5.4 Application towards image compression

The initial step of the algorithm discusses the training methods to determine the base

functions. Once the base functions are obtained for a given set of images, they can applied

to any given image for obtaining the coefficients. The coefficients are obtained for any given

image using similar equations as discussed in the training algorithm except for the update

step of base function. The advantage of this method is that only coefficients are required

to represent any given image and since these coefficients follows a Sparse distribution, they

clearly provide an insight towards image compression. The coefficients were determined in
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Figure 5.3: Learned basis function for blurred images

a similar way as in the inner loop iterations of the training section and avoiding the outer

loop base functions updating steps.

For an example for a given natural image the coefficients were determined for it.

Fig.5.6 shows the distribution of the obtained coefficients. Once the coefficients are obtained

they can be quantized using either uniform or nonuniform quantization algorithms discussed

in detail in next section. These quantized coefficients are then source encoded using Huffman

source encoder. For communication or transmission applications it is essential to quantize

and transmit the basis function also in a similar manner. But for vision purposes the base

functions are not considered for computing the bit rates. This work doesnot include the

transmission of base functions.
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Figure 5.4: Learned basis function for whitened and normalised images

In the decoder it becomes simple as when the coefficients are decoded they can be

directly used to reconstruct the image by using the Eqn.(5.24). since the images are linear

superposition of the coefficients with the base functions.

5.5 Quantization methods

The quantization methods analyzed for quantizing the coefficients are uniform and

non-uniform quantization. Though there are different algorithms proposed in literature to

obtain minimum quantization error, the above mentioned algorithms were chosen due to its

simplicity in implementation.

69



Figure 5.5: Learned basis function for blurred whitened and normalised images
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Figure 5.6: PDF of coefficients from simulation
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5.5.1 Uniform quantization

In this method [57][58] the range of the values to be quantized is divided into ‘Q’

intervals of equal length taken as λ (according to the PDF of the data). If any of the data

falls between the quantizing intervals xi and xi+1, then the quantized value is taken as the

midpoint value mi between xi and xi+1. Fig.5.7 represents this with the help of a Gaussian

PDF. Similarly it can be used for the coefficients that has the Sparse PDF. If ‘a’ and ‘b’ are

the minimum and maximum values of the the coefficients then the step size can be given as

λ =
(b − a)

Q
(5.25)

The quantized output xq is generated according to:

xq =

{
mi if xi−1 < X ≤ xi

where i = 1, 2, ..., Q

xi = a + iλ (5.26)

mi =
(xi−1 + xi)

2
(5.27)

5.5.2 Non uniform quantization

The RMS error from the uniform quantization is high because the PDF of the data

is not uniform and also it is highly distributed towards the region near zero and very few

datas in other areas. So the quantization intervals should be varied in accordance to the

distribution of the data [57]. Here the quantizer step size should be varied with smaller step

sizes near the mode of the PDF of the data and larger tails near the tails of the PDF. Fig.5.8
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Figure 5.7: Uniform quantisation

explains this method with the help of a Gaussian PDF. This can be similarly applied to the

coefficients which follows the sparse PDF.

The input to the quantizer is the data from the sparse PDF and the quantizer output

is determined according to:

xq =

{
mi if xi−1 < X ≤ xi

(5.28)

where x0 = − inf xQ = inf where i = 1, 2, ..., Q

The step size λi = xi − xi−1 is variable. The design can be theoretically approached

as follows. The data X is given with a PDF of fx(x). This data X has to be approximated

by the discrete value Xq in accordance with the Eqn.(5.28) The quantizing intervals and the

levels are to be chosen such that the noise value NQ has to be minimized. The minimizing
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Figure 5.8: Non uniform quantization

can be done as follows:

NQ =

Q∑

i=1

∫ xi

xi−1

(x − mi)
2fx(x)dx (5.29)

Since NQ is to be minimized, the necessary conditions to achieve this can be obtained by

differentiating NQ with respect to the xj and mj and setting the derivatives to zero:

dNQ

dxj

= (xj − mj)
2fx(xj) − (xj − mj+1)

2fx(xj) = 0 (5.30)

where j = 1, 2, ...Q − 1

dNQ

dmj

= −2

∫ xj

xj−1

(x − mj)fx(xj) = 0 (5.31)

where j = 1, 2, ..., Q

xj =
(mj + mj+1)

2

mj = 2xj−1 − mj−1 (5.32)
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where j = 2, 3, ...., Q

Eqn.5.31 can be reduced as

∫ j

xj−1

(x − mj)fx(x)dx = 0 (5.33)

where j = 1, 2, ...Q

This implies that mj is the mean of the jth quantizer interval. For a specific PDF

the method of solving the above mentioned equations are by picking m1 and calculate the

succeeding xi and mi. If m1 is chosen correctly then at the end of the iteration, mQ will

be the mean of the interval [xQ−1, inf]. If mQ is not the mean of the Qth interval then a

different choice of m1 is chosen and repeated with the corresponding suitable values of xi and

mi. Fig.7.2 in the Chapter 7 shows the improvement in performance of using a non-uniform

quantizer.

5.6 Results

After quantization each bin level is considered as a symbol for the Huffman source

encoder. The quantized values are assigned Huffman codes. In communication based systems

it is essential to transmit both the base functions as well as the coefficients. But vision based

systems does not need the base functions. We consider only quantizing and encoding the

coefficients.

The SCL algorithm is trained using different image sets such as:

1) Natural image set.

2) Blurred image set (blurred by PSF function).

3) Whitened and normalized image set.
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4) Blurred whitened and normalized image set.

The compression results for these image sets are tabulated and compared in chapter 7.
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CHAPTER 6: GABOR FILTERS AND INHIBITION BASED
SPARSE CODING

This chapter begins by introducing the Gabor and log Gabor filters and then analyzes

the methods to design a log Gabor filter bank [1][34][35][40]. It explains the methods to

construct an overcomplete representation of the given image by applying the constructed

filter bank. It also discusses the inhibition based sparse coding algorithm applied for selecting

the coefficients from the overcomplete set [25][27].

6.1 Log Gabor filters

It has been shown by Field [1] that Gabor filters are optimal for obtaining localized

frequency information. Gabor filters provides very good localization of spatial and frequency

information. But the limitations are that the maximum bandwidth of a Gabor filter is limited

to approximately one octave [1] and they are not optimal for broad spectral information

representation with maximal spatial localization [1]. An alternative to Gabor function is the

log-Gabor function proposed by Field [1]. They can be constructed for arbitrary bandwidth

and can also be optimized to produce spatial localization [29].

It has been proven that natural images are better coded by filters that have Gaussian

transfer functions when viewed on the log frequency scale [1]. The transfer function of

log-Gabor function is given by Eqn.(6.1)

G(ω) = exp(
−log( ω

ωo
)2

2log( k
ωo

)2
) (6.1)
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where ω is the frequency scale, ωo is the filter’s center frequency. k is held constant for

varying values of k
ωo

. Fig.6.1 shows a simple plot of the log Gabor transfer function for the

value of k
ωo

= 0.74. The important aspect of this function is that unlike Gabor functions, the

frequency response of the log Gabor is symmetric on a log axis [1]. Moreover the log axis is

the standard way of representing the spatial-frequency response of the visual neurons.
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Figure 6.1: Transfer function of log Gabor filter on linear scale

The log Gabor functions has no DC component and also the transfer function has an

extended tail at the high frequencies. Field’s investigation of natural images have amplitude

spectrum that falls approximately 1
f

[1]. So to encode such images the filters must have

similar filter characteristics. Field [1] proved in his work that log Gabor functions having

extended tails, should be able to encode natural images more efficiently. The problem with

Gabor functions are that they over represent low frequency components and under represent

high frequency components which is not an efficient coding method. Also from [2][8], it is
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consistent with measurements on mammalian visual systems that indicates cell responses

are symmetric on the log frequency scale.

6.1.1 Design of log Gabor filter bank

Due to singularity in the log function at the origin, the shape of the log Gabor function

cannot be constructed in spatial domain [34][39][40]. So they are designed in frequency

domain and then by IFFT (Inverse Fast Fourier Transform), the equivalent spatial domain

can be obtained [39]. Both Gabor and log Gabor filters looks similar for bandwidths less

than one octave. As the bandwidth increases the shape of the log Gabor filters becomes

much sharper [39].

A Gabor or log Gabor filter bank [35] does not form an orthogonal basis set and hence

there is no standard arrangement of the filters. So the aim is to produce a filter bank that

provides an even coverage of the spectrum to be represented (the spectrum of the image).

This can be achieved by making the overlap of the filter transfer functions sufficiently large

such that when one sums the individual transfer functions the net result is the even coverage

of the given spectrum [39]. The problem in building this kind of filters is that all points

in the spectrum should be covered and also minimum number of filters should be used for

efficient coding. The output of each of the filters should be as independent as possible. The

filter bank’s aim is to obtain maximum information from the given input signal which could

be possible only if the outputs of each of the filters are not much correlated to each other

[38]. So to achieve the independence of output of filters the filters should have minimum

overlap of their transfer functions. So as a conclusion of the issues considered the filter bank
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must have independent transfer functions and also must provide even coverage of the given

spectrum [38].

The design of the filter bank [39] depends on the following parameters:

1) Minimum and maximum frequencies needed to be covered.

2) Filter bandwidth.

3) Scaling between the center frequencies of successive filters

4) Number of filter scales

5) Number of filter orientations

6) The angular spread of each filter.

The maximum frequency is set by the wavelength of the smallest scale filter. The

smallest value one can choose is the Nyquist wavelength of 2 pixels but even at this frequency

there is significant amount of aliasing and so minimum value of 3 or above number of pixels

are used. The minimum frequency is set by the wavelength of the largest scale filter. This is

defined by the number of filter scales, scaling between center frequencies of successive filters

and the wavelength of the smallest scale filter. This is given by the following equations

Eqn.(6.3),

MaximumWavelength = MSN−1 (6.2)

Minimumfrequency =
1

MaximumWavelength
(6.3)

where M - Minimum pixels (taken as 3 pixels)

N - Number of filter scales

S - Scaling between center frequencies of successive filters.
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Table 6.1: Bandwidth and scaling of filters

Filter bandwidth Scaling between filters

0.85 1.3

0.75 1.6

0.65 2.1

0.55 3

Filter bandwidth is set by defining the ratio of the standard deviation of the Gaussian

describing the log Gabor filter’s transfer function in the log-frequency domain to the filter

center frequency. This is given by the parameter G and the value taken is 0.65. The scaling

between the center frequencies of successive filters plays a major role in deciding the even

spectral coverage. So with the trade of between even spectral coverage and independence

of filter output this parameter is carefully chosen by simulation trials. The angular over-

lap of the filter transfer function is controlled by the ratio of the angular interval between

the filter orientations and the standard deviation of the angular Gaussian spreading func-

tion. This parameter is taken as R and the value is 1.5 for minimal overlap and maximum

spectral coverage from standard results [38]. Table.6.1 shows the computed parameter values

which provides design of filter banks with minimal overlap necessary to achieve even spectral

coverage [38].

Number of filter orientations needed is in conjunction with the angular spread of the

filter. It has been shown [35] that six orientations can be used for coverage of image spectrum

without much loss in information. The angular spread of each filter has to be determined

carefully by considering the trade off between the even spectral coverage and independence
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of filter output. The angular interval between the filter orientations is fixed by the number

of filter orientations. Fig.6.2 shows the filter bank that provides even coverage of spectrum

with minimum number of filters. It uses filters varying in four orientations and four different

scales to provide an even coverage of the image spectrum. For better results a very low pass

filter and a high pass filter with very high cut off is chosen to extract the left out very high

frequncy fine details in the image spectrum.

HIGH PASS 

LOW PASS

Residual

Fourth Scale

Third Scale

Filter

First Scale

Second Scale

Figure 6.2: Log Gabor filter bank for even coverage of image spectrum
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6.1.2 Filter construction

It is already explained that the log Gabor filters cannot be directly designed in spatial

domain [39]. So it is designed in frequency domain and then converted to spatial domain by

applying IFFT. Filters are constructed same size as of the input image considered.

Filters are constructed in terms of two components:

1) Radial component: This controls the frequency band response of the filter.

2)Angular Component: This controls the orientation response of the filter.

These two components are multiplied together to get the overall response. For small wave-

lengths, the filters can extend into the higher frequencies in the corners of the frequency

domain whereas it is cut off in the vertical and horizontal directions. To overcome this prob-

lem and to make uniform coverage in all directions, the filters are multiplied by a low-pass

filter with very high cut-off frequency. Fig.6.3 represents the radial component of log Gabor

filter designed with wavelength = 3 and centerfrequency = 0.33 and Fig.6.4 represents the

angular component with orientation angle of 0.8 radians. Fig.6.5 shows the frequency domain

representation of the log Gabor filter formed by the product of angular and radial component.
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Table 6.2: Filter design parameters

Filter Parameters Values

Number of Scales 4

Number of Orientations 4

Minimum Wavelength (In pixels) 3

Scaling Between centers of successive filters (S) 2

Parameter R 1.5

Parameter G 0.65

Figure 6.3: Radial component of log Gabor filter

A filter set is constructed by varying the filter in four different scales and four different

orientations. This gives the combination of 16 filters varying in scale and orientation that

altogether provides an even spectral coverage. Fig.6.6 represents the filter set constructed

with four different scales and four different orientations.
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Figure 6.4: Angular component of log Gabor filter

Figure 6.5: Product of angular and radial component log Gabor filter

6.2 Forming overcomplete transform pyramid

This section discusses the construction of an overcomplete pyramid representation of

the given image using the filter bank. The method of compression is to filter the given image

84



Figure 6.6: Log Gabor filter set varying in 4 scales and 4 orientations

with the filter set generated to form the transform pyramid and then to apply the inhibition

algorithm [27]-[29]. The following notations and equations describes the filtering operation.

Here I is denoted as the input image, J is its corresponding Fourier transform. Wo denotes

its linear log Gabor transform. gi represents the log Gabor filter in the frequency domain

and Gi denotes the log Gabor filter in the spatial domain.

Let Ci denotes different channel outputs obtained by the operation of convolution

between image I and the filters and downsampling the results:

Ci =↓i (Gi ⊗ I) (6.4)
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Here ⊗ represents the convolution operation. The transformation Wo can be calculated in

the frequency domain as:

W (I) = (Ci)i = (F−1(↓i (giJ)))i (6.5)

The inverse W−1 also called reconstruction is given by:

W−1(C) =
∑

i

(↑ Ci) ⊗ Gi (6.6)

In frequency domain:

W−1(C) = F−1(
∑

i

(↑ ci)gi) (6.7)

The reconstruction is possible if and only if W−1(Wo(I)) = I. So this implies that

∑

i

(gi)
2 = 1 (6.8)

Thus the square sum of the filter set must be equal to one. Since the log Gabor filter

set is designed in considering these factors, complete reconstruction can be achieved [27].

The method of constructing the transform domain [27], i.e. the pyramid structure can be

explained by the following steps:

1) The given image is transformed to frequency domain by FFT (Fast Fourier Transform)

2) The first scale log Gabor filters are shifted (since they are designed keeping center as

origin).

3) They are then multiplied by the given image. This operation is equivalent to convolution

of the image with the filter.

4) By IIFT (Inverse Fast Fourier Transform) convert the image back to the spatial domain.

This forms the first layer of the pyramid structure. This operation is repeated for all the

orientations to form the first layer in the pyramid structure.
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5) The steps from 1 to 4 are repeated for the second layer in the pyramid structure but

now the second scale log Gabor filters are used and also the resulting filtered images are

downsampled once.

6) Similarly third and fourth layer of the pyramid structure are formed by correspondingly

downsampling twice and thrice the filtered images.

7) Although the log Gabor filters are designed for a even coverage of the image spectrum,

yet a low pass filter with very low cut off frequency is used to pass the luminance and a high

pass filter is used for encoding very high frequency components. For blurred retinal images

this can be neglected.

8) The top layer of the pyramid is formed by filtering the input image with the low pass

filter and then downsampling it four times and also by filtering the image with the high pass

filter. Fig.6.7 represents this process in detail.

6.2.1 Reconstruction

It has been shown that perfect reconstruction of the filtered image from the transform

domain can be possible based on the Eqns.(6.4 - 6.7). The method to reconstruct is explained

below and Fig.6.10 details this procedures:

1) The low pass filtered image is upsampled using linear interpolation method to the size of

the original image. It is converted to the frequency domain by FFT and filtered by the same

low pass filter.

2) The high pass filtered image is converted to the frequency domain by FFT and filtered

back by the high pass filter.
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Figure 6.7: Filtering operation using Gabor filter set

3) The first scale filtered images are converted to frequency domain and filtered back with

the same first scale filters.

4) The second scale filtered images are upsampled using bilinear interpolation method and

then converted to the frequency domain by FFT and they are filtered by the second scale

log Gabor filters.

5) Similarly third scale filtered images are upsampled twice and fourth scale filtered images

are upsampled thrice and the same operations as carried on step 2 are repeated.

6) The summation of all the above filter outputs are taken and then by IFFT, the image in

spatial domain can be reconstructed.
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Figure 6.8: Input image for filtering

6.3 Inhibition based sparse coding algorithm

The aim of the inhibition algorithm is to remove the redundancy introduced by the

overcomplete log Gabor filtered representation [28][29]. Though the method adopted to

compress the data varies from the previous algorithm, it also follows the sparse structure since

the distribution of coefficients after compression has sparse distribution [1]. This algorithm

aims to keep the expansion of the transform domain to minimum such as to extract a sparse

structure out of it. The expansion is kept to minimum because sparse coding algorithm do

not permit to recover all the redundancy and also even if the most of the coefficients are

zeroed out, still a large population of zeros are needed to be coded and transmitted and

this affects the compression rate achieved. Since the transform domain is an overcomplete

representation, many sets of the pyramids can provide same reconstruction by the inverse

method above mentioned [1]. So the overcompleteness is equivalent to the transforms non-

uniqueness. So different iterative algorithms have been proposed in literature [17][25]. But
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Log Gabor Filtered Images − Transform Pyramid Structure

Figure 6.9: Filtered images pyramid structure using log Gabor filters

they have the disadvantage of high complexity and implementation is not practically feasible

and also they have the problem of finding a sparse set representation. So these algorithms

are seldom applicable for image processing or compression applications.

Here a set of 16 filters varying in 4 different orientations and 4 different scales are

considered and also a low pass filter to encode luminance component and a high pass filter

to encode very high frequencies. The high pass filter can be avoided for the blurred retinal

images. So transform domain for a natural image consists of set of 18 filtered images.

Each of this is termed as channel. In this kind of representation the redundancy of data

representation is from the neighboring transform coefficients, since the log Gabor functions
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Figure 6.10: Reconstruction of image from filtered pyramid

considered are non orthogonal [28] and so they respond redundantly to the same image

feature. So sparse decoding is achieved by removing this redundancy by iterating the the

transform to select only few coefficients and zero out the redundant coefficients such that

they can reconstruct the original image back [27]. The coefficients obtained have sparse

distribution. This is achieved by the iterative nature of the inhibition algorithm. Consider

an example image x is encoded to the pyramid g by the linear Gabor transform filtering. This

contains large number of coefficients spread out in frequency neighborhood. By applying the

iterative algorithm, the same pyramid is reduced to pyramid h which has a sparse distribution

of coefficients yet able to represent the image completely as the pyramid g. Both pyramids
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g and h can be used for reconstructing the image expect for the fact that the pyramid h is

much sparser representation of the information. So the goal of the inhibition algorithm is to

obtain the h pyramid from the given g pyramid [27].

6.3.1 Algorithm explanation

To obtain the sparse representation the algorithm implements the competition based

method [27] between the neighboring coefficients by zeroing out or inhibiting the lowest

coefficients and by concentrating the amplitudes in the higher ones [27]-[29]. The aim as in

sparse coding is to obtain as much zeros as possible among the transform coefficients. The

algorithm is based on building the pyramid hn at each iteration with few nonzero coefficients.

Each iteration has the following steps:

1) Linear Gabor transform:

The linear transform is computed as already explained by filtering the given image with set

of log Gabor filters to form the input pyramid.

g = Ax (6.9)

where x ∈ RI is the source image consisting of I pixels.

g ∈ RJ is the pyramid representation of the given image as a vector of J real values.

A ∈ RI×J is the direct transform.

Å is the generalized inverse transform.

Å = RJ×I (6.10)

Since it is overcomplete (J > I) representation, AÅ is not identity.

First iteration is initialized with h1 = g.
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2) Selection of coefficients: The coefficients are selected on the basis of: i) They must be

local maxima along the normal to the filter direction. ii) They must pass a threshold value

φ. The value of φ is chosen as the maximum absolute value of g(φ = max|g|). The growing

of coefficients is implemented by a sequence of pyramids termed as En where n ∈ N . It is

increased in each iteration by adding the past value of hn−1. This can be given by:

En = En−1 + ηn−1hn−1 (6.11)

The value of ηn−1 can be held as constant as 0.02 or can be varied. This helps in faster

convergence of the algorithm. hn coefficients are selected when their corresponding En passes

the threshold value φ in absolute value. Through out this process initially larger coefficients

are first selected and then smaller coefficients are added in each step to it.

3) An approximation pyramid an is obtained by zeroing out all the non selected coefficients

of hn−1. These non selected coefficients are called residual pyramid rn.

an(k) =






hn−1(k) if |En(k)| > φ

0 otherwise

hn−1 = an + rn (6.12)

4) Coefficient adjustment and iteration:

A new pyramid hn is defined as for (n > 1)

hn = an + AÅrn (6.13)

hn = hn−1 − rn + AÅrn (6.14)

It is straightforward to note that after each iteration hn has exact reconstruction given by

Åhn = x
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This algorithm is repeated through step 2 for given number of iterations or till it

reaches the desired sparse distribution of coefficients.

6.3.2 Example for algorithm iteration

The algorithm is explained in detail for a single iteration. Consider this as the first

iteration (n=1).

1) Linear transform: For the given image the linear transform is obtained and the pyramid

structure is obtained as explained in previous section. h1 = g

2) E1 = 0. So further proceeding to the algorithm is not possible for n=1. Consider the

iteration number n=2.

1) Linear transform: h1 = g

2) Coefficient selection: E2 = E1 +η1h1 the value of η is kept constant 0.02 for all iterations.

a2(k) =






h1(k) if |E1(k)| > φ

0 otherwise

3) Residual pyramid:

r2 = h1 − a2

4) New pyramid construction:

h2 = a2 − AÅr2

This step of calculating AÅr2 is by first computing the inverse transform of the error image

and then calculating the linear Gabor transform of it. The algorithm can be checked for its

operation by reconstructing the image with this newly formed h2., since at every iteration

the pyramid constructed must have exact reconstruction [27].
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6.4 Application towards image compression

As the number of iterations of this algorithm is increased, the energy is concentrated

in minimum number of coefficients many of the non selected coefficients are truncated to

zero in each iterations. Matching Pursuit algorithm [26] can select only one coefficient

per iteration, whereas this algorithm chooses few coefficients per iteration. This makes it

computationally fast compared to similar algorithms although it requires still significant

computation time for efficient practical applications. The coefficients are then quantized

based on their distribution by using nonuniform quantization methods and they are encoded

using runlength and Huffman as encoder as explained in JPEG section. The compression

rates and iteration numbers required are tabulated in chapter 7.
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CHAPTER 7: RESULTS AND CONCLUSIONS

7.1 JPEG and JPEG 2000 simulation results

The following figure compares the performance of the quantization algorithms. From

Fig.7.1 it can be inferred that by choosing the coefficients based on their magnitudes, provides

better performance. So for quantizing blurred and whitened images, this algorithm is chosen.
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Figure 7.1: Selection of coefficients algorithm comparison
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Here N is natural image and B is the blurred, whitened and normalized image.

Table 7.1: BPP Vs RMS using JPEG

BPP RMS(N) RMS(B)

0.57 0.2881 0.3440

1.00 0.1822 0.2912

1.55 0.1044 0.1132

2.00 0.066 0.0882

2.57 0.0558 0.0773

Table 7.2: BPP Vs RMS using JPEG2000

BPP RMS(N) RMS(B)

0.57 0.0898 0.1203

1.00 0.0644 0.0811

1.55 0.0202 0.0218

2.00 0.01338 0.0142

2.57 0.00884 0.009877
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7.2 Spare coding results

Fig.7.2 illustrates the improvement in RMS performance by using the non uniform

quantization. The following section discusses the result of training the SCL algorithm with

different kind of image sets such as natural images (N), blurred images (B), whitened and

normalized images (WN) and blurred whitened normalized images (BWN). The improve-

ment in performance for the case of whitened and normalized image and also for blurred,

whitened and normalized images from the natural images due to the filtering of high fre-

quency components.
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Figure 7.2: Comparison of uniform and non uniform quantization
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Table 7.3: BPP Vs RMS using SCL for different imagesets

BPP RMS(N) RMS(B) RMS(WN) RMS(BWN)

1.00 0.931 0.7822 0.3242 0.4100

1.54 0.522 0.433 0.1011 0.0824

2.00 0.2684 0.2256 0.0727 0.0766

2.57 0.2098 0.1699 0.0629 0.0611

3.00 0.1837 0.1249 0.0614 0.0577
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BPP

BPP Vs RMS of SCL algorithm for different imagesets

Blurred Image

Natural Image

Whitened and Normalised Image

Blurred,Whitened and Normalised image

Figure 7.3: Comparison of SCL coding performance for various imagesets

7.3 Inhibition based sparse coding results

Table.7.4 and table.7.5 illustrates the compression results for natural and blurred,

whitened and normalized images correspondingly. It can be inferred that there is not much
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difference in compression rates but the iteration number required for the blurred images are

lesser. The reduction in iteration number is due to the fact that for blurred images, we

neglect the high and low pass filters in the pyramids.

Table 7.4: Inhibition results for natural images

BPP Iterations RMS)

0.57 344 0.08820

1.00 287 0.0781

1.55 221 0.0586

2.00 133 0.04332

2.57 102 0.0352

Table 7.5: Inhibition results for blurred and whitened images

BPP Iterations RMS)

0.57 323 0.1022

1.00 231 0.0612

1.55 187 0.0433

2.00 98 0.0388

2.57 68 0.0211
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Table 7.6: Comparison graphs for sparse and JPEG codings for natural images

BPP JPEG SCL Inhibition JPEG2000

1.00 0.1822 0.931 0.0781 0.0644

1.55 0.1044 0.522 0.0586 0.0202

2.00 0.066 0.2684 0.04332 0.01338

2.57 0.0558 0.2098 0.0358 0.00844
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Figure 7.4: Comparison of sparse and JPEG codings for natural images
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Table 7.7: Comparison graphs for sparse and JPEG codings for blurred whitened images

BPP JPEG SCL Inhibition JPEG2000

1.00 0.2912 0.4100 0.1022 0.0811

1.55 0.113 0.0884 0.0612 0.0218

2.00 0.082 0.0716 0.0433 0.0142

2.57 0.077 0.0611 0.0388 0.009877

3.1 0.06111 0.0577 0.0211 0.008433
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Figure 7.5: Comparison of sparse and JPEG codings for blurred, whitened images
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7.4 Conclusions and future works

The sparse coding algorithm discussed produces reasonable compression results when

compared with the existing JPEG standards. Our main interest in this thesis is for blurred

and whitened images. For these images we can see the SCL coding algorithm slightly betters

the JPEG but still cannot better the JPEG 2000 algorithm. The inhibition based algorithm

results are very near to JPEG 2000 results. Here the testings are done only for fixed number

of natural images. So further testings with broad variety of images are needed.

Significant improvement in performance can be made in the SCL coding algorithm by

considering more efficient quantizers such as trellis based quantizers and also efficient source

coding strategies can be employed. Most of the RMS error in this algorithm is from the

quantization stage. The inhibition algorithm is still computationally very hard to simulate.

So investigation towards reduction in complexity of this algorithm is necessary. Although,

we cannot prove that sparse coding is the optimal way of encoding the blurred retinal images,

this work can be considered as a good beginning for this kind of research rather than final

solution for the problem.

7.4.1 Future work

The preceding section contains some of the short comings or existing problems with

the algorithms. First progress would be towards correcting on the existing problems. Recent

developments in the sparse coding algorithm suggests that soft sparse models considered

so far could be replaced by the hard sparse models very recently proposed. Significant

advancement would be to adapt these sparse coding algorithms for space time functions to
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encode the real world videos rather than stationary images. Recent researches are directed

towards proving that these kind of sparse coding schemes may be at work at the human

visual system for viewing real world sceneries.
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APPENDIX A: HUFFMAN AC CODES
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Table A.1: AC category codes

RUN/SIZE CODE LENGTH CODE WORD

0/0(EOB) 2 00

0/1 2 01

0/2 3 100

0/3 4 1010

0/4 5 11000

0/5 5 11001

0/6 6 111000

0/7 7 1111000

0/8 9 111110100

0/9 10 1111110110

0/A 12 111111110100

1/1 4 1011

1/2 6 111001

1/3 8 11110110

1/4 9 111110101

1/5 11 11111110110

1/6 12 111111110101

1/7 16 1111111110001000

1/8 16 1111111110001001

1/9 16 1111111110001010

1/A 16 1111111110001011

106



2/1 5 11010

2/2 8 11110111

2/3 10 1111110111

2/4 12 111111110110

2/5 15 111111111000010

2/6 16 1111111110001100

2/7 16 1111111110001101

2/8 16 1111111110001110

2/9 16 1111111110001111

2/A 16 1111111110010000

3/1 5 11011

3/2 8 11111000

3/3 10 1111111000

3/4 12 111111110111

3/5 16 1111111110010001

3/6 16 1111111110010010

3/7 16 1111111110010011

3/8 16 1111111110010100

3/9 16 1111111110010101

3/A 16 1111111110010110

4/1 6 111010

4/2 9 111110110

4/3 16 1111111110010111

4/4 16 1111111110011000

4/5 16 1111111110011001

4/6 16 1111111110011010

4/7 16 1111111110011011

4/8 16 1111111110011100

4/9 16 1111111110011101

4/A 16 1111111110011110

5/1 6 111011

5/2 10 1111111001

5/3 16 1111111110011111

5/4 16 1111111110100000

5/5 16 1111111110100001

5/6 16 1111111110100010

5/7 16 1111111110100011

5/8 16 1111111110100100

5/9 16 1111111110100101

5/A 16 1111111110100110
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6/1 7 1111001

6/2 11 11111110111

6/3 16 1111111110100111

6/4 16 1111111110101000

6/5 16 1111111110101001

6/6 16 1111111110101010

6/7 16 1111111110101011

6/8 16 1111111110101100

6/9 16 1111111110101101

6/A 16 1111111110101110

7/1 7 1111010

7/2 11 11111111000

7/3 16 1111111110101111

7/4 16 1111111110110000

7/5 16 1111111110110001

7/6 16 1111111110110010

7/7 16 1111111110110011

7/8 16 1111111110110100

7/9 16 1111111110110101

7/A 16 1111111110110110

8/1 8 11111001

8/2 16 1111111110110111

8/3 16 1111111110111000

8/4 16 1111111110111001

8/5 16 1111111110111010

8/6 16 1111111110111011

8/7 16 1111111110111100

8/8 16 1111111110111101

8/9 16 1111111110111110

8/A 16 1111111110111111

9/1 9 111110111

9/2 16 1111111111000000

9/3 16 1111111111000001

9/4 16 1111111111000010

9/5 16 1111111111000011

9/6 16 1111111111000100

9/7 16 1111111111000101

9/8 16 1111111111000110

9/9 16 1111111111000111

9/A 16 1111111111001000
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A/1 9 111111000

A/2 16 1111111111001001

A/3 16 1111111111001010

A/4 16 1111111111001011

A/5 16 1111111111001100

A/6 16 1111111111001101

A/7 16 1111111111001110

A/8 16 1111111111001111

A/9 16 1111111111010000

A/A 16 1111111111010001

B/1 9 111111001

B/2 16 1111111111010010

B/3 16 1111111111010011

B/4 16 1111111111010100

B/5 16 1111111111010101

B/6 16 1111111111010110

B/7 16 1111111111010111

B/8 16 1111111111011000

B/9 16 1111111111011001

B/A 16 1111111111011010

C/1 9 111111010

C/2 16 1111111111011011

C/3 16 1111111111011100

C/4 16 1111111111011101

C/5 16 1111111111011110

C/6 16 1111111111011111

C/7 16 1111111111100000

C/8 16 1111111111100001

C/9 16 1111111111100010

C/A 16 1111111111100011

D/1 11 11111111001

D/2 16 1111111111100100

D/3 16 1111111111100101

D/4 16 1111111111100110

D/5 16 1111111111100111

D/6 16 1111111111101000

D/7 16 1111111111101001

D/8 16 1111111111101010

D/9 16 1111111111101011

D/A 16 1111111111101100
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E/1 14 11111111100000

E/2 16 1111111111101101

E/3 16 1111111111101110

E/4 16 1111111111101111

E/5 16 1111111111110000

E/6 16 1111111111110001

E/7 16 1111111111110010

E/8 16 1111111111110011

E/9 16 1111111111110100

E/A 16 1111111111110101

F/0 (ZRL) 10 1111111010

F/1 15 111111111000011

F/2 16 1111111111110110

F/3 16 1111111111110111

F/4 16 1111111111111000

F/5 16 1111111111111001

F/6 16 1111111111111010

F/7 16 1111111111111011

F/8 16 1111111111111100

F/9 16 1111111111111101

F/A 16 1111111111111110
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APPENDIX B: HUFFMAN DC CODES

Table B.1: DC codes

RANGE DC difference category AC difference category

0 0 NA

-1,1 1 1

-3,-2,2,3 2 2

-7,,-4,47 3 3

-15,-8,8,.15 4 4

-31,-16,16,.31 5 5

-63,-32,32,.63 6 6

-127,-64,64,.127 7 7

-255,-128,.128,255 8 8

-511,.,-256,256,.511 9 9

-1023,.,-512,512,.1023 A A

-2047,-1024,1024,.. 2047 B B

-4095,-2048,2048,.. 4095 C C

-8191,-4096,4096,..8191 D D

-16383..,-8192,8192,.16383 E E

-32767,16384,16384,32767 F NA
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Table B.2: DC codes (luminance)

Category Base Code

0 010

1 011

2 100

3 00

4 101

5 110

6 1110

7 11110

8 111110

9 1111110

A 11111110

B 111111110
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