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Summary

Spectral counting, a promising method for quantifying relative changes in protein abundance in mass

spectrometry-based proteomic analysis, was compared to metabolic stable isotope labeling

using 15N/14N “heavy/light” peptide pairs. The data were drawn primarily from a Methanococcus
maripaludis experiment comparing a wild-type strain with a mutant deficient in a key enzyme

relevant to energy metabolism. The dataset contained both proteome and transcriptome

measurements. The normalization technique used previously for the isotopic measurements was

inappropriate for spectral counting, but a simple adjustment for sampling frequency was sufficient

for normalization. This adjustment was satisfactory both for M. maripaludis, an organism that showed

relatively little expression change between the wild-type and mutant strains, and Porphyromonas
gingivalis, an intracellular pathogen that has demonstrated widespread changes between intracellular

and extracellular conditions. Spectral counting showed lower overall sensitivity defined in terms of

detecting a two-fold change in protein expression, and in order to achieve the same level of

quantitative proteome coverage as the stable isotope method, it would have required approximately

doubling the number of mass spectra collected.

Introduction

An important goal of proteomic analysis is to globally determine differences in protein levels

between different biological states, such as mutant versus wild-type microbial strains or growth

under different nutrient conditions. In recent years the “gold standard” for such global

measurements of relative protein expression has been multidimensional capillary HPLC

coupled with tandem mass spectrometry using differential stable isotope labeling.1,2

Unfortunately, isotopic labeling is not always straightforward, or even possible. Chemical

labeling strategies employed after cell harvesting often tend to yield poor coverage of the

proteome, and it is not always possible to metabolically label at the cellular or tissue level,

especially in the case of human proteomics in a clinical setting. In a laboratory setting,

prokaryotic organisms can often be grown on minimal media in which isotopically enriched

salt or gas can be used to introduce 13C or 15N as the sole carbon or nitrogen source,

respectively. However not all microorganisms of research interest can be so cultured. For these

cases, label-free methods for quantifying expression differences are also needed. A promising

label-free quantitation method is spectral counting, where the number of mass spectra identified

for a protein is used as a measure of the protein’s abundance.3,4 Old et al. have shown the

spectral counting method compares favorably with label-free peak area quantitation, although
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they suggested that the method is likely less sensitive than isotopic labeling.5 The same group

applied spectral counting to analyzing proteins extracted from leukemia cell membranes.6

Zybailov and coworkers recently compared quantitative MudPIT results using spectral

counting and stable isotope peak intensity to derive protein expression ratios from S.
cerevisiae grown under minimal and rich media conditions, demonstrating moderately positive

correlations between the two approaches to quantitation.7 In our studies of the proteome and

transcriptome of the archaeal methanogen Methanococcus maripaludis we have obtained an

extensive, metabolically labeled proteomic dataset8 comparing a mutant,9 called S40, and a

wild-type strain, S2. For this organism, transcription measurements tend to parallel the

direction, but not the magnitude, of expression change as measured by proteomics for most

protein encoding ORFs, subject to certain caveats regarding growth phase and timing with

respect to sample collection for mRNA and protein.8 In order to see how well spectral counting

compared to isotopic labeling and the transcriptome, we have re-examined the proteomic

dataset using spectral counting and compared these results with both the isotopic labeling and

transcriptome results. We also reference results for the invasive intracellular oral pathogen

Porphyromonas gingivalis, an organism quite different from M. maripaludis. These two

organisms can serve as models to represent the extremes in the continuum of prokaryotic

biology with respect to two qualities: ease of growth on fully defined growth medium with

a 15N-labeled nitrogen source and the degree of change observed under common experimental

conditions in a two-state differential expression comparison. M. maripaludis is easy to label

metabolically with 15N, and showed only modest expression differences between strains S40

and S2.8,9 P. gingivalis is difficult to grow economically on a single labeled nitrogen source,
10 and in two-state experiments contrasting P. gingivalis grown under extracellular reference

conditions and internalized within model human host cells, the proteome changes are dramatic

and widespread.11,12 The primary difference observed between protein expression ratios

determined using 14N and 15N peptide MS1 signal intensity measurements and spectral

counting in MS1 was in sensitivity to changes in protein expression determined from portions

of the raw data that were either low signal-to-noise or low in spectral counts relative to the

dataset as a whole.

Experimental

Culture conditions, mass spectrometry and transcription microarrays

For information regarding the M. maripaludis strains, growth conditions, isotope labeling,

mass spectrometry, proteomic data collection, mRNA extraction, cDNA preparation, labeling,

and hybridization see Porat et al.9 and Xia et al.8 The latter reference contains a detailed

explanation of how the M. maripaludis protein expression ratios were originally calculated

using stable isotope labeling. Briefly, after tryptic digestion of the entire proteome extracted

from 109 to 1010 cells per preparation following standard procedures for shotgun proteomics,

for M. maripaludis an LCQ ion trap mass spectrometer (Thermo Electron Corp., San Jose, CA,

USA) was interfaced to an in-house modified Michrom Magic 2002 HPLC system (Michrom

BioResources, Auburn, CA, USA) and used for data dependent scanning13,14 of proteolytic

digests using a variant of MudPIT (multidimensional protein identification technology)1,2 that

was optimized for organisms with approximately 2,000 protein encoding ORFs. Raw data

collection of approximately 700,000 mass spectra for M. maripaludis was followed by

matching the peptide mass spectra using SEQUEST15 with a database consisting of all known

ORFs from M. maripaludis concatenated with the human subset of the nrdb (non-redundant

database).16 Proteins were reassembled and quantified in silico by using DTASelect17 to

globally filter the raw data for quality and to group the filtered SEQUEST output files for each

peptide according to the protein from which they were derived. The data were converted into

text format using routines contained in the Xcalibur data system developer’s kit (Thermo) and

stored in a Filemaker Pro database. Subsequent data processing was carried out in either
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Filemaker Pro or a Microsoft Excel spread sheet. Redundant spectral counts as defined below

were summed for each ORF and normalized protein level expression ratios were calculated as

described below. The P. gingivalis data also shown in Fig. 1 were acquired similarly, the

significant differences being the use of a P. gingivalis ORF database from TIGR18 and an LTQ

(Thermo) rather than an LCQ ion trap. The details of the growth of P. gingivalis ATCC strain

33277, protein extraction, prefractionation, and MudPIT chromatography are given in Zhang

et al.11 The most current details regarding data acquisition parameters used specific to the

LTQ mass spectrometer and software routines used to generate protein expression ratios for

P. gingivalis (Fig. 1) using spectral counting can be found in Xia, Wang et al.12

The entire M. maripaludis dataset is available as an electronic supplement.8 The same dataset

can also be downloaded from the GEO depository19 in a somewhat different form using GEO

Series Accession Numbers GSE2744 for the proteomics and GSE2745 for the spotted cDNA

microarrays.

Protein expression ratio and p-value calculations

For information regarding the post acquisition data analysis of the transcriptome or the isotopic

ratio calculations for the M. maripaludis proteome, see Xia et al.8

For spectral counting, the S40/S2 protein expression ratios were calculated as shown:

(1)

Where for each protein, Rsc is the log2 ratio of abundance between S40 and S2; ns40 and ns2
are the redundant spectral counts for the protein in S40 and S2 respectively; ts40 and ts2 are the

sum of ns40 + 1 and ns2 + 1, respectively, over all proteins. Redundant spectral counts are

defined as those acquired at all stages of the MudPIT analysis, including instances of the same

peptide fragment being detected in different fractions. The ratio ts2/ts40 was used as a

normalization factor. The Differences in spectral counts were identified by applying a

likelihood ratio test (G test)5,20 for independence using normalized values and a null

hypothesis of even distribution between the two strains as shown:

(2)

Where for each protein, G is the G test statistic; cs2 is ns2 + 1; cs40 is (ns40 + 1)(ts2/ts40); and

tcs2 is (cs2 + cs40)/2. The G statistic is approximately distributed as χ2 with 1 degree of freedom,

allowing the calculation of p-values for identifying differential expression. The p-value

calculations were performed as described previously for proteomics data.5,12 Briefly, after

generating a G test statistic for each protein, a p-value was calculated as the probability that a

χ2 distribution with 1 degree of freedom was more extreme than our G statistic for that protein.

Results and discussion

Here we present the results from a global, quantitative, “two state” protein expression ratio

analysis comparing two strains of M. maripaludis, using spectral counting (SC) to determine

the ratios, which were then tested statistically for significant change in expression level between

the two strains. In the previous paper cited in the introduction, we compared the genome wide

differential expression results from proteome and transcriptome analyses of a mutant, S40, and

a wild-type strain, S2, of M. maripaludis. In the earlier paper,8 the proteome results were

obtained using m/z peak height calculations from isotopically labeled samples. Here we

Hendrickson et al. Page 3

Analyst. Author manuscript; available in PMC 2009 March 25.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



compare the results calculated using SC with the results for the same raw data previously

calculated using conventional stable isotope methods.

Data reduction and normalization

When using SC, some proteins will have spectra in only one of the conditions, i.e. n = 0 in one

state but not the other (see Eq. 1), which presents problems in the calculations. Such proteins

may be very important in terms of gene regulation, so in order to handle these values, all the

spectral counts were increased by one before beginning the calculations. Adding the additional

count does have the undesired effect of smoothing out differences between samples at the low

end, but the effect decreases with increasing counts, becoming increasingly less significant

beyond the quantized region shown in Figs. 1, 2. The term “quantized region” refers to the left

side, near zero on the x-axis, where total spectral counts are low and assume a narrow range

of allowed values, an artifact that is intrinsic to the method. How far to the right the quantized

region extends in relation to the complete dataset is a function of the number of peptides

recovered that map in silico to each protein encoding ORF predicted by the genome annotation.

The better the coverage for each ORF, the smaller the quantized region as a fraction of all the

protein level expression ratios in the dataset. In absolute terms, this quantized region is a

function of the allowable ratios that can be calculated using discrete values, a number that

rapidly diminishes as the total spectral counts approach zero. For example, in Fig. 1, panels B

and C, essentially all the values between 0 and 4 on the x-axes are predictors of a true value

of zero, despite the wide spread of a few allowed values on the y-axes. Very few proteins show

a change in expression in this dataset regardless of total spectral count value, so most of the

points shown across the x-axes beyond a value of 4 also reflect random scatter about a net

expression change of zero, and random scatter rapidly diminishes as total spectral counts

increase. The artifacts potentially introduced by the addition of one spectral count (Eq. 1) are

most likely to have their greatest impact in the quantized region. The quantized region at low

counts is of little practical use for generating biologically meaningful expression ratios,

regardless of which method is chosen to avoid a divide-by-zero condition and other problems.

Smoothing algorithms that hide the discontinuities in the low counts region only serve to help

disguise the fact that such data consists mostly of random scatter about zero, quantized into a

small number of allowed values, see Eq. 1 and Fig. 2. Only in extreme cases is it possible to

call an ORF as alternative, i.e. non-zero expression change on a log2 scale, in the quantized

low counts portion of an SC dataset.

Like transcriptome datasets, proteomic datasets need to be normalized to account for

differences in overall signal between samples from the two biological conditions under study.

However, the degree of normalization employed with proteomics data is usually less than that

used routinely with microarrays dependent on the use of fluorescent dyes, when the adjustments

may be as much as an order of magnitude or greater due to differences in fluorescence quantum

yield, among other factors. For the peak height calculations in Xia et al.,8 the ratios were

normalized to an average log2 ratio of zero by plotting a frequency distribution histogram of

the ratios and applying a correction factor to center the distribution at zero. Given the highly

quantized nature of the SC data (Fig. 1A), the above mentioned approach was impractical for

SC. However, a plot of ratios against the total counts (Fig. 1B), both log2 transformed, showed

a skew towards the S2 sample. This observation was consistent with the larger overall number

of counts for the S2 sample. To normalize for the difference in overall counts, the S40 counts

were multiplied by the ratio of overall S2 counts to overall S40 counts making the total counts

for each strain equal, as shown in Eq. 1. This is a similar normalization scheme to that applied

by Old et al.5 The normalized values were then used to calculate expression ratios as well as

the total spectral counts for each protein. A plot of the normalized ratios versus total counts

(Fig. 1C) showed the log2 transformed ratios centered around zero, indicating that further

normalization was unwarranted. Experience with M. maripaludis shows that expression
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changes in this organism tend to be few under many experimental conditions, so it is a good

example of a system with minimal changes. Many microorganisms of interest, especially

pathogens, are more likely to have widespread changes between conditions. In order to see if

the same considerations and normalization would work with such an organism, a dataset from

the oral pathogen Porphyromonas gingivalis was analyzed using SC in the same manner as

the M. maripaludis data (Fig. 1D, E, F). The P. gingivalis data appears to have significantly

more scatter than the M. maripaludis data (Fig. 1D). This observation is all the more of interest

because the P. gingivalis dataset was collected using an LTQ mass spectrometer with superior

analytical figures-of-merit in terms of signal-to-noise, mass accuracy and run-to-run

repeatability, relative to the LCQ used to acquire the M. maripaludis dataset.21 Another

difference between the two datasets is that for M. maripaludis, the proteomes from both strains

were mixed and analyzed at the same time, as is commonly done for a stable isotope experiment.

For P. gingivalis, the two biological states referenced in Fig. 1 were run separately. The

frequency distribution histogram was not as strongly influenced by the quantized nature of the

data, compared to M. maripaludis, but it was still not ideal for centering (Fig. 1D). Figs. 1E

and 1F show that while a significantly larger number of ORFs show expression changes in the

P. gingivalis dataset, the normalization is still effective.

Detection of differentially expressed protein-encoding ORFs

Differential expression of protein between the S2 and S40 strains was identified using a G test

for significance (Eq. 2, Fig. 2). Discussion of counting statistics as applied to SC in proteomics

and SAGE (serial analysis of gene expression) can be found in Old et al.,5 Xia, Wang et al.
12 and the references contained therein. SAGE is a global transcription analysis technique with

similar data analysis requirements22 that has inspired to some degree the use of G tests and

related counting statistics with SC in proteomics. The G test calculations were conducted using

the normalized dataset with a null hypothesis of equal distribution between S2 and S40, i.e. all

log2 transformed protein expression ratios were equal to zero. Significance levels were

determined by comparing the G value to a χ2 statistic with one degree of freedom for the

selected level of significance. As shown previously,12 it is important to note that in this

application the G statistic is conservative, tending on average to generate more false negatives

than false positives, but not as conservative as the Bonferroni correction20 for multiple

hypothesis testing. Old et al.5 found that a 95% critical value might be more than 95% accurate

when applied to a replicate test case; that is their cut-off value for determining significant

change was also conservative. For our case the 95% critical value line (Fig. 2) does seem to

fit the scatter in our data appropriately (p-value = 0.05 or less for all ORFs called as alternative).

The critical value line is to be understood as predictive of the null hypothesis being true within

its boundaries, and false for ratios that fall outside. Validation using other methods8,9 tends

to support the predictions based on p-value for M. maripaludis protein expression.

Using the 95% significance cutoff, 33 M. maripaludis proteins were found to be differentially

expressed between S2 and S40 (Table 1 and Fig. 2). Of these, only 12 were found to be regulated

by all three methods: arrays (mRNA), SC (protein) and stable isotope (protein). All of these

were cases of greater expression in the S40 mutant strain (Fig. 2). As seen in Table 1, there

was a greater inconsistency among all methods in identifying reduced expression in S40. For

reduced expression, the large differences between the two proteomics methods imply that there

is unlikely to be a biologically significant difference between the protein and mRNA datasets,

but rather a situation where most of the true significant changes occur only in the up direction

as a result of the underlying biology.8,9 We found that in the isotope analysis8 a two-fold

change, 1 or −1 on the log2 scale, could be detected reliably if the number of heavy/

light 15N/14N peptide pairs exceeded ~10; 417 ORFs met the two-fold change detection

criterion. As seen in Fig. 2, SC could detect a two-fold change in expression if the peptide

counts, after adding one to the counts and normalizing, exceeded ~34; 277 ORFs fell into this
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two-fold range for SC. The number of peptide pairs and number of SC peptide counts cannot

be directly compared, as the SC counts have been modified and normalized while the peptide

pairs for the isotopic analysis have been filtered to exclude outliers. Nonetheless, looking at

the number of ORFs that fall into the two-fold detection range for each method, the isotopic

analysis is clearly more sensitive.

With large datasets, such as the M. maripaludis proteome, a correction is often applied to the

p-values to account for the large number of significance tests. The most common is the

Bonferroni correction noted above, which controls for error over the entire set. However, for

very large datasets like those under consideration here, this correction is often too conservative

and eliminates all results from consideration as alternatives to the null hypothesis (no

expression change). A newer, alternative correction method is to calculate q-values that control

for the proportion of false positives among those ORFs identified as significant.23 However,

no such correction was applied to the array or stable isotope measurements described here.

Such a correction would make the significance calls slightly more conservative, eliminating

some calls close to the confidence line cutoff shown in Fig. 2. The G test and p-values (Eq. 2)

were adequate for the M. maripaludis dataset in terms of striking a proper balance between

false positives and false negative calls without further adjustment.

Fig. 3 shows plots, centered about a net expression change of zero on a log2 scale, comparing

the results from the two protein expression ratio methods against the transcription microarray

results8 and against each other. In the isotope analysis there was a weak overall correlation

between the proteomic and transcriptome results (R = 0.27, Fig. 3A). The weak correlation

was mostly driven by the large number of results that were unchanged between the two strains,

those near zero where random noise would cause significant scatter between the two

measurements. When restricted to the regulated ORFs the correlation improved significantly

(R = 0.58, Fig. 3A). The SC analysis produced very similar results (Fig. 3B), with a slightly

lower correlation for the overall comparison (R = 0.26) and slightly higher when comparing

only the regulated ORFs (R = 0.66). While neither proteomics analysis produced a better

correlation with the transcriptome, there were significant differences between the results of the

two protein methods (Fig. 3C). Overall correlation between the two methods is better than that

with the transcriptome (R = 0.57 overall and 0.89 for the regulated ORFs), but still far from

unity despite being applied to the same dataset. However, most of the differences fall into two

categories that have relatively little effect on the most important results. First, as with the

transcriptome comparison, unchanged ORFs do not correlate well. Since the goal is to identify

changes in expression between the two strains, unchanged ORFs are not of great interest.

Second, given the level of quantitative uncertainties in the whole cell proteomics data, the

direction of change in expression is normally viewed as of greater practical interest than the

magnitude of change. For most of the ORFs where a change in expression is seen, both protein

methods show that change in the same direction, see Fig. 3C. Other, better methods exist to

determine the magnitude of expression change, where it is usually more efficient to work at

the transcription level using an approach like quantitative real-time RT-PCR (reverse-

transcriptase polymerase chain reaction)24 for the small number of genes that are typically of

sufficient interest to justify further study. The exception to this last statement would be cases

of known or suspected post-transcriptional gene regulation, where a more precise direct

measure of protein abundance would be of greater interest. More in-depth discussion of

transcription and translated protein expression correlations for M. maripaludis can be found

in Porat et al.9 and Xia et al.8

Conclusions

The most significant difference observed between metabolic isotope labeling and SC was

overall sensitivity. Stable isotope labeling yielded approximately 50% more ORFs that fell into
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a range where a two-fold expression difference could be detected. Making the simplifying

assumption that sampling remained somewhat consistent across the proteome, under our

conditions it would thus take roughly double the number of mass spectra under the two-fold

change criterion to obtain the same number of statistically significant expression ratios using

SC. Despite the many problems with such an assumption regarding uniform sampling and the

overall complexity of the analytical scheme, such an estimate is still useful as a guide to the

depth and breadth of sampling required to achieve a desired level of confidence in the

expression ratios generated in a shotgun proteomics experiment. At high signal-to-noise and

(or) counts, the two methods converge on average, within the dynamic range of the isotope

ratio measurements, which is not as great as that associated with SC.4 It is in the more

problematic portions of the dataset, where signal-to-noise is relatively poor and (or) total counts

are low that metabolic labeling with stable isotopes appears to allow generation of a larger

number of biologically meaningful and statistically significant expression ratios. We agree

with the conclusions of Zybailov et al.7 and others that SC approaches appear to have a wider

dynamic range relative to measurements based on signal intensity, and have so noted in two

prior publications, as well as noting the excellent reproducibility typical of SC combined with

multidimensional capillary HPLC separations.10,12 However, dynamic range was not

systematically investigated as part of the present study. Our overall impression of spectral

counting to date is that it performs poorly when counts are low (see Figs. 1 and 2), but performs

quite well when counts and signal-to-noise are high, a conclusion that is not inconsistent with

the data presented by Zybailov et al. in their study of yeast membrane proteins.7 The problem

with SC in the present context is that for biological questions driving ongoing research with

M. maripaludis and P. gingivalis, the low counts and (or) low signal-to-noise portion of the

data is often of the greatest experimental interest, where traditional stable isotope methods still

offer clear advantages for quantitation. The issue of under-sampling is always a concern in a

shotgun proteomics study, even with organisms expressing relatively small numbers of protein

encoding ORFs, such as the model systems used in this report. While the current state-of-the-

art in mass spectrometry instrumentation and pre-fractionation methods could allow for

doubling the amount of data collected as a practical strategy for organisms such as M.
maripaludis or P. gingivalis, it would be impractical at present for organisms with larger, more

complex proteomes. Microbiologists usually have the option of metabolic labeling, and thus

avoiding the lower quantitative proteome coverage we have observed with SC. However, many

scientists studying human proteomics and others already dealing with serious under-sampling

issues do not have this option, and for them SC may still be the best available quantitative

approach, despite the limitations described above. Improved mass spectrometry

instrumentation, that can maintain unit resolution or better for precursor ion selection while

increasing the number of scans that can be acquired per unit time, will facilitate the application

of spectral counting methods to a wider range of biological investigations by reducing the

impact of under-sampling.
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Fig. 1.

Normalization of proteomic expression ratios for spectral counting. (A) Histogram of the

log2 transformed S40/S2 ratios for the proteomics data calculated by spectral counting, prior

to normalization. (B) Plot of the log2 transformed S40/S2 expression ratios against the log2

transformed total number of spectral counts used to calculate the ratio. (C) Plot of the log2

transformed S40/S2 expression ratios against the log2 transformed total number of spectral

counts used to calculate the ratios, after normalization. The data were normalized by

multiplying the number of S40 counts used in the calculation by the total number of S2 counts

divided by the total number of S40 counts for the entire dataset, see text. (D) Histogram of the

log2 transformed ratios from a Porphyromonas gingivalis dataset contrasting two different

growth conditions, prior to normalization (E) Plot of the log2 transformed P. gingivalis
expression ratios against the log2 transformed total number of spectral counts used to calculate

the ratio. (F) Plot of the log2 transformed P. gingivalis expression ratios against the log2
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transformed total number of spectral counts used to calculate the ratio, after normalization.

The data were normalized by multiplying the number of growth state 1 counts used in the

calculation by the total number of growth state 2 counts divided by the total number of growth

state 1 counts for the entire dataset, similarly to the M. maripaludis data.
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Fig. 2.

Plot of normalized log2 transformed S40/S2 expression ratios against the total number of

spectral counts used to calculate the ratios. Curved lines show the 95% critical value thresholds

(p = 0.05) for determining differential expression from spectral counting calculated using the

G test statistic, see text. The dashed line indicates a log2 transformed ratio of zero, indicating

no expression change between the two strains. Diamonds: unchanged expression between S40

and S2; Open squares: ORFs called differentially expressed only by the SC method; Circles:

ORFs called differentially expressed by both SC and isotopic labeling analysis of the proteome:

Crosses: ORFs called differentially expressed by both SC and mRNA measurements;

Triangles: ORFs called differentially expressed by all three methods.
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Fig. 3.

Scatter plots showing correlation between mRNA expression ratios and protein expression

ratios calculated by both spectral counting and isotopic peak height methods. (A) Plot of

log2 transformed differential mRNA and protein expression ratios generated by isotopic peak

height measurements.8 Product-moment correlation coefficients20 were: 0.27 for all data

points and 0.59 for the data that showed significant changes in both mRNA and by the isotopic

peak height calculations. (B) Plot of log2 transformed differential mRNA and protein

expression ratios generated by SC. Product-moment correlation coefficients were: 0.26 for all

data points and 0.66 for the data that showed significant changes in both mRNA and by SC.

(C) Plot of log2 transformed differential protein expression ratios generated by isotopic peak

Hendrickson et al. Page 12

Analyst. Author manuscript; available in PMC 2009 March 25.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



height measurements and SC respectively. Product-moment correlation coefficients were: 0.57

for all data points and 0.89 for the data that showed significant changes in protein expression

ratios by both methods.
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